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ABSTRACT It is shown that the nature of processes in oxide solid-phase systems, primarily in nanosized ones, is
determined by the behavior of the substance in a non-autonomous state. The composition of non-autonomous
phases, the temperature of transition of non-autonomous phases to a liquid-like state, the equilibrium (locally
equilibrium) and metastable thickness of non-autonomous phases, and the viscosity of the liquid-like non-
autonomous phase are considered as the main parameters of non-autonomous phases.
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1. Introduction

According to the definition given in the works of Defay and Prigogine [1, 2], surface phases, as well as phase and
grain boundaries in polycrystalline systems are considered in a number of works as non-autonomous phases [4–46]. Such
a definition has a number of advantages due to its more general nature. In this regard, the present paper employs this
particular terminology.

A large number of both original works and reviews have been and are devoted to the formation and transformation
of solid-phase oxides [46–66]. It should be noted that in the majority of the works on this topic, which have become
classic, the main attention is paid to the influence, which the diffusion of components in bulk (autonomous) phases has on
the processes occurring in the systems based on solid phases [61–66]. However, recent decades have shown an increased
interest in studying the features of phase formation processes in nanopowders [47–61]. The volume fraction of non-
autonomous phases in nanocrystalline systems, including those based on oxide nanocrystals, can be very significant [9].
This, apparently, should be taken into account in experimental studies, when determining the mechanisms and kinetics
of the processes of phase formation and transformation, and when constructing physicochemical models of chemical
and structural transformations in nanocrystalline systems. By now, there are no works that would analyze studies on
the influence of the composition, structure, and properties of the non-autonomous phases on processes in solid-phase
systems and, in the first place, in nanocrystalline systems. Of particular interest is the study of phase formation and phase
transformation processes in materials based on oxide systems, since this is apparently the class of materials most widely
represented in nature and in technology [65–73].

In relation to the listed reasons, this work is aimed at analyzing the results available in the literature, which are
related to the determination of the properties and behavior of non-autonomous phases in polycrystalline systems and their
influence on the course of phase formation processes and structural transformations, mainly in oxide phases.

2. Non-autonomous phases in polycrystals: composition, structure, properties

Conclusions that the composition, structure and surface properties of solid substances differ from their bulk properties
were made on the basis of empirical data already in the works of 19th century scientists [74–76]. The works of Gibbs [77]
theoretically consider some features of the behavior and properties of the surface of substances (interphase regions) from
a thermodynamic standpoint. A detailed thermodynamic description of the regions between bulk (autonomous) phases
as non-autonomous phases was given in [1–3]. These works considered the non-autonomous phases as regions between
the coexisting (bordering on each other) autonomous phases, having a finite thickness, composition and structure, and
changing from one autonomous phase to another.

It was shown in [4, 78–80] that such a description of non-autonomous phases is equivalent from the thermodynamic
point of view to such a consideration of surface phases, in which all their ’excessive’ properties are attributed to some
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two-dimensional surface, as was proposed in [1–3]. This statement is absolutely true when the volume fraction of non-
autonomous phases is negligibly small compared to the volume fraction of autonomous phases, i.e. for the case of
macrocrystalline systems. When the particle (crystallite) sizes decrease to nanometer values, the volume fraction of
non-autonomous phases increases sharply [11, 15]. In this case, it is no longer possible to ignore the thickness of non-
autonomous phases. It is especially important to know the sizes and behavioral features of non-autonomous phases when
considering the kinetics of processes in solid-phase systems [15].

The work [81] shows a certain similarity in the behavior of substance at the boundaries of different autonomous
phases and at the boundaries of grains of one phase. That is why further on, as is shown in [81], non-autonomous phases
can be understood as layers of finite thickness also in the autonomous phases contact area and at the boundaries of grains
of the same phase, if these layers have not formed their own autonomous phase.

A detailed analysis of experimental data and the construction of calculation models, carried out in [81], showed
that in the case of high-angle boundaries of grains of the same autonomous phase of variable composition, components
redistribution between the autonomous and non-autonomous phases can be described in the first approximation by a
dependency shown in Fig. 1. This result was obtained assuming that the non-autonomous phases formed at high-angle
boundaries of the autonomous phase grains contain a thin layer of amorphous substance (Fig. 2). Naturally, a dependency
similar to that shown in Fig. 1 cannot be expected in cases with low-angle and special boundaries of grains.

FIG. 1. Dependence of the impurity component distribution between the autonomous and non-
autonomous phases [81]

It should be noted that the described effect of components redistribution between the autonomous and non-autonomous
phases in particles based on crystalline autonomous phases can lead to the formation of structures of the core-shell type.
In these structures, the shell appears due to the segregation of some components located on the particles surface in the
non-autonomous phase. This effect is most noticeable when obtaining nanocrystalline particles. To date, a large number
of examples of such structures formation are known [82–87]. A variant of the mechanism for the core-shell nanoparticles
formation is described in [87]. However, apparently, this is only a special case of such nanostructures formation, and this
area will be expanded subsequently.

When different solid autonomous phases are in contact, then the composition of the corresponding non-autonomous
phase at temperatures not much different from the eutectic temperature will be close to the eutectic composition [81]. It
should be noted that this result allows for describing the phenomenon of eutectic melting from positions different from
the traditional ones [88].

Another case where it is convenient to use the term ’non-autonomous phase’, or more precisely, the ’non-autonomous
state of substance’, is the state of substance under conditions of spatial limitations, when the amount of substance is
insufficient for the formation of an autonomous phase with a composition and structure characteristic of the specified
temperature and pressure. Such states may be exemplified by nanoparticles of certain sizes, thin surface layers, as well
as the substance in micropores, in nanochannels, and in the matrices of composites with inclusions of nanoparticles at a
certain placement density [89–106]. In this case, when the spatial restrictions are chemically inert, a substance, being in
a non-autonomous state, will be unable to change the initially specified composition, but will have a structure different
from that of the autonomous phase of the same composition at the same temperature and pressure.
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FIG. 2. Schematic representation of a 2-D non-autonomous phase (regions II, II’, III) and relaxation
processes in a polycrystalline system [81]. Regions: νi – inside autonomous (I, I’), structured (II,II’)
and amorphized (III) zones of the non-autonomous phase; νj – region coinciding with the amorphized
zone of the 2-D non-autonomous phase; νk – two grains in contact with each other together with the
intergranular formation. Processes: A – establishment of the locally equilibrium state in regions νi by
introducing corresponding changes in the structure and composition; B – establishment of the locally
equilibrium thickness of region III without mutual turning of grains; C – turning and shift of grains
until the crystal sublattices completely coincide – for polycrystals based on one autonomous phase, or
until the energy of translational mismatch is minimized – for systems consisting of different phases

The possibility of a liquid phase appearance at the boundary of solids at a temperature below their melting point
was exemplified by ice already in [74, 75], but the quantitative relationship between the melting temperatures of the
surface and bulk of solids was revealed only after an of experimental series by Tammann et al. [107]. It should be
noted that despite the establishment of a quantitative relationship between the solid phase melting point and the so-
called Tammann temperature (TT ) in these works (Table 1), the discovered phenomenon was interpreted incorrectly. For
instance, the authors of [107] believed that volume diffusion processes are activated at the Tammann temperature. Only
after a series of similar experiments, it was concluded in [108] that the TT value in processes described in [107] determines
the temperature, above which mass transfer is activated at the boundaries of solid phase particles.

TABLE 1. Tammann temperature for different materials

Materials Tammann temperature References

Metals ∼ 0.33 Tm [107]
Oxide ∼ 0.57 Tm

Metals ∼ 0.3 Tm [108]

Based on the analysis of [109], the work [110–112] presents the generalized data on the temperature dependency
of the diffusion in the crystalline (autonomous) phase, on the surface, and at the boundaries of grains, i.e. in non-
autonomous phases. Taking into account the results of [107,108], as well as the dependency of the surface phase thickness
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on temperature [11], these results can be illustrated by Fig. 3. The data presented in Fig. 3 allow concluding that the
substance in the non-autonomous phase is found in the liquid (liquid-like) state at temperatures above TT .

FIG. 3. Temperature dependences of the surface phase thickness (a) and the diffusion coefficients of
the substance (b). For case (b), the solid lines are from [81], the dashed line is an extrapolation of the
dependence presented in [81]

By now, a significant number of experimental and theoretical works analyze the transition of non-autonomous phases
to the liquid (liquid-like) state [113–131]. A detailed thermodynamic analysis of the relationship between the melting
temperatures of autonomous and non-autonomous phases was made in [81]. It was shown in [11] that in cases when
non-autonomous phases contain a thin amorphous layer of substance, the dependency between the melting temperatures
of the autonomous and non-autonomous phases can be represented by the expression

Tm n ≈
1− αH

1− αS
Tm, (1)

where αH = ∆Ham/∆Hm; αS = ∆Sam/∆Sm; Tm – is the autonomous phase melting temperature, K; Tm n – is the
melting temperature of the non-autonomous phase of the same composition, K; ∆Ham – is the amorphization enthalpy;
∆Hm – is the melting enthalpy; ∆Sam – is the amorphization entropy; ∆Sm – is the melting entropy.

Further on, expression (1) was analyzed in [18] for a number of oxide substances, and the limits of variation of the
non-autonomous phase melting temperature were determined as a function of the autonomous phase melting temperature
for this class of compounds:

Tm n = γTm, (2)

where γ – is a dimensionless parameter that takes values from 0.55 to 0.75, but most often 0.65.
A comparison of expression (2) with that for the Tammann temperature given in Table 1 shows their good agreement.

This result once again confirms that in physical sense the empirical dependency of the Tammann temperature on the
substances melting point reflects the dependency of the temperature of the non-autonomous phase transition into the
liquid (liquid-like) state on the melting point of the autonomous phase of the corresponding composition. It should be
noted that, as was analyzed in [81], the temperature of the non-autonomous phase transition into the liquid-like state
depends on the phase structure. For example, in cases of the coherent grain intergrowth, this temperature approaches the
autonomous phase melting point [81].

Another important parameter for the analysis of high-temperature processes in polycrystalline systems is the thickness
of non-autonomous phases. From the mid-20th century to the present, a large number of experimental, theoretical papers
and reviews have been devoted to the problem of determining the thickness and structure of non-autonomous phases. The
works [2,115,116,122,126–132] can be cited as an example. An important component of these works is the determination
of the dependency of the non-autonomous phase thickness on temperature. The most well-known expressions for the non-
autonomous phase thickness as a function of temperature are presented in Table 2. Among the expressions given in
this Table, it is possible to single out the dependency described in [81], which differs from the others by two factors.
First, this dependency changes at the non-autonomous phase melting point, which was not reflected in other formulas
(Table 2). Second, when approaching the melting point of the solid phase, its thickness does not tend to infinity, as
in other expressions, but remains a finite (albeit large) value. In this case, the crystal sizes decrease, apparently, to
nanometer values. Physically, this means, as was indicated in [81], that the melting of solids can be considered as the
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autonomization of the liquid non-autonomous phase with the transition of the crystalline (autonomous) phase to non-
autonomous nanoclusters in the melt. To confirm the possibility of such a consideration of the melting process, the
work [81] cited [135–144], in which various experimental data and theoretical calculations allowed making conclusions
that solid (crystalline) clusters are observed in the melt near the melting point. The existence of nanosized solid clusters
above the melting point of the substance, demonstrated in these works, allowed constructing in [145–154] a model of
nanofluid flow in nanochannels, which under certain conditions predicts an unusually high flow rate due to the effect of
solid clusters slipping along the nanochannel walls. Along with that, the cases where the channel dimensions were smaller
than those of the nanoclusters, the effect of sharp deceleration of such liquids flow was described [146].

TABLE 2. Dependence of the thickness of the non-autonomous phase on temperature

Formula References

hp = α ln(
β

Tm − T
+ δ) [113]

hp =
C

(Tk − T )
1
6

[4]

hp =
a

(Tm − T )
1
24

[115]

hp = ξ ln(γT ) [116]

hp =
a

(Tm − T )
1
3

[119]

hp =
α

(Tm − T + (Tm2n − T )H(Tm2n − T )β + δ)
1
3

[11]

The dependencies of the non-autonomous phase thickness on temperature given in Table 2 describe the equilibrium
(locally equilibrium) value of its thickness. However, the dimensional parameters of the particles of a substance in the
non-autonomous state may turn out to be larger than those described by these expressions. In such cases, this non-
autonomous state can be regarded as metastable, associated with the existence of some spatial or other limitations for
mass transfer, described, for instance, in [155]. These limitations on the amount of substance in the system do not allow
the formation of an autonomous phase, i.e. a solid phase with a structure that it would have at the given temperature and
pressure if the said limitations did not exist. A substance in the metastable non-autonomous state can stably exist in the
amorphous or crystalline state, but its crystalline structure will differ from that of the equilibrium (autonomous) phase.
Similar cases of metastable non-autonomous states of substance have been experimentally discovered and theoretically
described for a large number of oxide compounds and some other substances [94–106]. It should be noted that the
thermodynamic estimate of the particle sizes of a substance in some metastable non-autonomous state may differ from
the actually observed sizes [89,156]. This is connected not only with the evaluative nature of the calculated data, but also
with the role of kinetic factors, which can play a decisive role at temperatures below the melting point of non-autonomous
phases [156].

Another important characteristic of non-autonomous phases for the analysis of interaction processes in solid polycrys-
talline systems is the viscosity of the liquid (liquid-like) non-autonomous phase. It was shown in [157] that by assuming
that the viscosity of a liquid non-autonomous phase at a certain temperature can be calculated by extrapolating the depen-
dency of the viscosity of the molten autonomous phase of the same composition on a given temperature, it is possible to
obtain a quantitative match between the experimental and calculated data for the rate of particles migration through ice.
Such an approach to predicting the non-autonomous phase viscosity is also corroborated by the temperature dependency
of the diffusion coefficients of the substance in it (Fig. 3), since these values are closely related to each other [158]. Based
on the above-mentioned nature of the dependency of the non-autonomous phase viscosity on temperature, some phe-
nomena that can be observed during the liquid non-autonomous phase flow in polycrystalline systems were theoretically
predicted in [12, 81, 159, 160].

Of considerable interest from the point of view of understanding the structural features of non-autonomous phases are
the results of an experimental study of the nature of the viscous behavior of the surface layer (surface – non-autonomous
phase) of the crystalline phase, given in [126]. It was experimentally shown in this work that the nature of the viscous
behavior of the surface layer at relatively high values of the homologous temperature can only be described if this layer
is imagined as inhomogeneous, consisting of a liquid phase with inclusions of solid particles of very small size. It can
be noted that essentially this result is close to the conclusions made in [81, 138, 139], in which melting was considered as
developing in a rather narrow, but still certain temperature range, as a transition of solid autonomous phase particles to a
non-autonomous state, and of the non-autonomous liquid phase to the autonomous one. Another conclusion, apparently
very important for understanding the features of the liquid-like non-autonomous phase behavior at high temperatures, is
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an experimentally derived conclusion that the thickness of these phases is several times greater compared to the values
presented in conclusions of works [161–164].

So to date many basic questions related to the structure and properties of non-autonomous phases remain open.
Moreover, this applies both to the region of high values of the homologous temperature, and to the region of temperatures
below the melting point of the non-autonomous phase. In the latter case, this is due to the ’frozen’ state of the non-
autonomous phase, which complicates studies of the processes of approaching this state to equilibrium.

3. Solid-phase reactions and sintering of materials

The experimental works of Tammann and co-authors [107] were aimed at determining the temperature of the onset of
active sintering of particles of different composition (TT ). The further studies, which interpreted the effect discovered in
these works as associated with the transition of phase boundaries and grains (non-autonomous phases) into the liquid-like
state [119], began considering the Tammann temperature (TT ) as a boundary temperature, upon reaching or exceeding
which any processes of solid particles interaction, including solid-phase reactions, start [61]. Along with that, the mech-
anisms and models of solid-phase chemical reactions, the rate of which was determined by the mass transfer between
components, were described as those limited by the rate of diffusion in the solid phase [61, 65]. This situation was appar-
ently due to the fact that the volume fraction of non-autonomous phases in these works was significantly smaller than the
fraction of solid (autonomous) phases. The transition of a non-autonomous phase to the liquid-like state could increase
only the rate of reagent particles agglomeration. This led to a noticeable increase in the contact area of the interacting
particles. In addition, point contacts of solid particles were replaced by areas with a liquid-like interlayer. An increase
in the rate of components diffusion through the liquid-like non-autonomous phase in the case of interaction of relatively
large particles of micron and even submicron sizes could not significantly affect the total mass transfer rate due to the
extremely small proportion of non-autonomous phases in such reaction systems.

The situation changed dramatically when chemical reactions began to take place between nanosized reagent particles.
For example, it was shown in [166–169] that in nanosized layers obtained by molecular layering [169–173], no interaction
between reagents resulting in formation of solid-phase compounds is observed at temperatures below the non-autonomous
phase melting point, and upon reaching this temperature, the synthesis proceeds at such a high rate, which cannot be
described as that limited by solid-phase diffusion. A similar situation is observed in the case of synthesizing solid-phase
compounds from nanosized reagent powders [174–178]. An analysis of the processes of solid-phase compounds synthesis
in oxide compositions consisting of nanosized reagent particles in [179] yields a somewhat paradoxical conclusion that all
solid-phase chemical reactions occurring at a high or simply noticeable rate are liquid-phase to some extent, i.e. a liquid-
like non-autonomous phase must first form in the reaction system for such reactions to start. The role of non-autonomous
phases in the processes of solid particles interaction was considered in more detail in [15]. Numerous examples of the
influence of liquid-like non-autonomous phases on mass transfer in solid-phase systems and on the synthesis of solid-
phase compounds are given in [28–34, 36, 180].

Other processes in solid-phase systems that start only after the transition of the non-autonomous phases to the liquid-
like state, as was shown, e.g. in [81, 107, 108], are the processes of sintering and inelastic deformation of ceramics by
the mechanism of high-temperature creep. It should be noted that the role of liquid-like non-autonomous phases can
consist not only in increasing the rate of particles agglomeration due to the facilitation of their sliding relative to each
other due to the appearance of a liquid-like non-autonomous phase, but, as was shown in [9, 10, 12, 81], also by the
transformation-transport mechanism of solid-phase particles interaction. Such interactions are schematically illustrated in
Fig. 4a,b. It was shown in [81] that proceeding from a more general model relationship and variation of the expressions
for the non-autonomous phase viscosity, the transformation-transport mechanism makes it possible to obtain practically
the same dependencies as a set of known models of sintering and inelastic deformation of materials obtained by applying
different mechanisms. The corresponding comparison of models is given in Table 3.

An important role in solid-phase chemical reactions, in the processes of sintering and inelastic deformation of ceram-
ics, can be played by small additives of relatively fusible solid-phase substances, even in cases where they are chemically
inert to other components of the solid-phase system. It was shown in [5,81,182] that such additives get quickly distributed
over the surface of other components at a temperature equal to or higher than the melting point of the non-autonomous
phase based on such additives. This, in turn, promotes agglomeration of particles of the solid-phase system and, as a
consequence, an increase in the rate of solid-phase synthesis and sintering of ceramics.

Another area for which the transition of non-autonomous phases to the liquid-like state is important is the construction
of phase equilibrium diagrams in solid-phase systems. For instance, while the approach to the equilibrium state in oxide
solid-phase systems at high temperatures requires hours, tens or hundreds of hours [185], the process of approaching
equilibrium in the low-temperature region can take a year or more [185], or even geological epochs. In this regard, the
analysis of characteristic values of the diffusion rate in solid phases in [185] resulted in proposing the time criterion
as a criterion for dividing into high-temperature and low-temperature processes. When the time of approaching the
equilibrium state in a solid-phase system is a year and more, then it is proposed to define such systems as low-temperature
ones [185]. However, the above analysis of the role of non-autonomous phases in the behavior of solid-phase systems
allows proposing another criterion for dividing solid-phase processes into high-temperature and low-temperature ones.
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TABLE 3. Parametric dependence of shrinkage during sintering and hot pressing of materials

Average Mechanical force

Model Time, t particle per square of the

radius average particle

R̂ =
d

2
radius, f =

F

R̂

Transformation-transport mechanism (approximation without taking

into account the contribution of dislocation tubes to transport processes)

Asymptotic equation of the initial t1 R̂−1 –

stage of sintering [81]

Equation of sintering limited by

mass transfer of a substance through a t
2
3 ·

n
1+n R̂− 2

3 ·
1+2n
1+n f

2
3 ·

1
1+n

liquid non-autonomous phase [81]

n=0.5 t
1
2 R̂− 8

9 f
4
9

n=1 (Newtonian fluid) t
1
3 R̂−1 f

1
3

n=2 t
4
9 R̂− 10

9 f
2
9

n=3 t
1
2 R̂− 7

6 f
1
6

n→∞ t
2
3 R̂− 4

3 f0

Compaction due to redistribution of t1+x R̂0 f1

particles in the liquid phase [183]

Volume diffusion

[182] t0.49 R̂−0.98 f0.49

[183] t0.4 R̂−0.8 f0.40

[184] t
1
2 R̂−1 f

1
2

[182] t0.46 R̂−0.92 f0.46

[116] t0.48 R̂−0.96 f0.48

Volume diffusion to grain boundaries t0.53 R̂−1.06 f0.53

and spherical surface of particles [184]

Grain boundaries diffusion

[182] t
1
3 R̂−1 f

1
3

[184] t
1
3 R̂−1 f

1
3

[184] t0.31 R̂−0.93 f0.32

[116] t0.32 R̂−0.96 f0.31

Limited dissolution of the solid phase

in the liquid and diffusion-viscous t
1
3 R̂−1 f

1
3

flow of the liquid phase [183]
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FIG. 4. Schematic representation of the transformation-transport mechanism of solid phase particles interaction

Apparently, it makes more physical sense to use the temperature of the non-autonomous phases transition to the liquid-
like state as such a criterion. The corresponding division of processes in solid-phase systems into high-temperature and
low-temperature ones is schematically shown in Fig. 5. It should be noted that in terms of the real division of solid-phase
systems, the proposed boundary does not differ much from that proposed in [185], but is more justified in physical sense.

FIG. 5. Scheme of processes division in solid-phase systems into high-temperature and low-temperature

4. Conclusion

An analysis of the literature data on the nature of processes in oxide solid-phase systems demonstrated that the deci-
sive role in them is played by the behavior of the substance in the non-autonomous state. A particularly great influence
the non-autonomous phases have on the behavior of nanosized systems. The main parameters of the non-autonomous
phases that determine the properties and behavior of the solid-phase, especially nanocrystalline ones, are the composi-
tion of the non-autonomous phases, the temperature of the non-autonomous phase transition to the liquid-like state, the
equilibrium (locally-equilibrium) and metastable thickness of non-autonomous phases, and the viscosity of the liquid-like
non-autonomous phase.

The data available in the literature show that there are still a large number of open questions both on the structure and
properties of the substance in the non-autonomous state, and on the influence of the non-autonomous state on the behavior
and properties of solid-phase systems, which indicates the prospects for further research in this area.
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