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In this paper, we consider a model with logarithmical potential and with the set [0, 1] of spin values, on a Cayley tree Γk of the order k. In

the case k = 2, 3, we shall prove that, there is a unique translation-invariant splitting Gibbs measure for this model. For the case k = 4, we

show that there are three translation-invariant Gibbs measures for this model.
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1. Introduction

One of the central problems in the theory of Gibbs measures is to describe infinite-volume (or limiting) Gibbs
measures corresponding to a Hamiltonian. The existence of such measures for a wide class of Hamiltonians was
established in the ground-breaking work of Dobrushin. However, complete analysis of a set of limiting GMs for a
specific Hamiltonian is quite often a difficult problem.

In [1,2,6,9–11,14–16] for several models on Cayley tree Γk with the order k, using the Markov random field
theory, Gibbs measures are described. These papers are devoted to models with a finite set of spin values. In [8],
the Potts model with a countable set of spin values on a Cayley tree Γk is considered and it was shown that the
set of translation-invariant splitting Gibbs measures of the model contains at most one point, independently on
parameters of the Potts model with countable set of spin values on the Cayley tree. This is a crucial difference
from the models with a finite set of spin values, since those may have more than one translation-invariant Gibbs
measure.

In [12], a Hamiltonian with an uncountable set (a set with continuum cardinality) of spin values (with the set
[0, 1] of spin values) on a Cayley tree Γk is considered and it was shown that: the existence translation-invariant
splitting Gibbs measure of the Hamiltonian is equivalent to the existence a positive fixed point of some nonlinear
integral operator. For k = 1, the model with the continuous potential function was shown to have a unique
translation-invariant splitting Gibbs measure. In the case k ≥ 2, some models which have the unique splitting
Gibbs measure were constructed. In the paper [4], sufficient conditions were found for the potential function
of the model on a Cayley tree Γk with an uncountable set of spin values under which the model had unique
translation-invariant splitting Gibbs measure. In [3, 5], several models were constructed, of which these models
had at least two translational-invariant Gibbs measures, i.e the existence of phase transition for some models on a
Cayley tree Γk (k ≥ 2) was proven.

This paper is a continuation of previous investigations [3–5, 12]. We shall construct model with a logarithmic
potential on a Cayley tree Γk. We reduced the studying of translation-invariant Gibbs measures to a description of
the fixed points for some nonlinear operator on R2. In the case k = 2, 3, we shall prove that, for the Hamiltonian
on a Cayley tree Γk with logarithmic potential, there is a unique translation-invariant splitting Gibbs measure. In
the case k = 4, we show that, for the model on Γ4 with the logarithmic potential there are three translation-invariant
Gibbs measures, i.e. there is a phase transition.

2. Preliminaries

A Cayley tree Γk = (V,L) of order k ∈ N is an infinite homogeneous tree, i.e., a graph without cycles, with
exactly k + 1 edges incident to each vertex. Here, V is the set of vertices and L that of edges (arcs).

Consider models where the spin takes values in the set [0, 1], and is assigned to the vertices of the tree. For
A ⊂ V , a configuration σA on A is an arbitrary function σA : A → [0, 1]. We denote ΩA = [0, 1]A the set of all
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configurations on A. A configuration σ on V is then defined as a function x ∈ V 7→ σ(x) ∈ [0, 1]; the set of all
configurations is [0, 1]V . The Hamiltonian of the model is :

H(σ) = −J
∑
〈x,y〉∈L

ξσ(x),σ(y), σ ∈ ΩV , (2.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0, 1]2 → ξuv ∈ R is a given bounded, measurable function. As usual, 〈x, y〉
represents the nearest neighbor vertices.

Let λ be the Lebesgue measure on [0, 1]. On the set of all configurations on A, the a priori measure λA is
introduced as the |A| fold product of the measure λ. Here and subsequently, |A| denotes the cardinality of A.
Below, Wm represents a ‘sphere’ and Vm for a ‘ball’ on the tree, of radius m = 1, 2, . . ., centered at a fixed vertex
x0 (an origin):

Wm = {x ∈ V : d(x, x0) = m}, Vm = {x ∈ V : d(x, x0) ≤ m};
and

Lm = {〈x, y〉 ∈ L : x, y ∈ Vm}.
Here, distance d(x, y), x, y ∈ V , is the length of (i.e. the number of edges in) the shortest path connecting x
with y. ΩVn

is the set of configurations in Vn (and ΩWn
that in Wn; see below). Furthermore, σ

∣∣
Vn

and ω
∣∣
Wn+1

denote the restrictions of configurations σ, ω ∈ Ω to Vn and Wn+1, respectively. Next, σn : x ∈ Vn 7→ σn(x) is a
configuration in Vn. For each σn ∈ ΩVn

, we define:

H (σn) = −J
∑

〈x,y〉∈Ln

ξσn(x),σn(y).

We write x < y if the path from x0 to y goes through x. Call vertex y a direct successor of x if y > x
and x, y are nearest neighbors. We denote by S(x) the set of direct successors of x. We observe that any vertex
x 6= x0 has k direct successors and x0 has k + 1.

Let h : x ∈ V 7→ hx = (ht,x, t ∈ [0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}. Given n = 1, 2, . . ., consider
the probability distribution µ(n) on ΩVn defined by

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

)
, (2.2)

where β =
1

T
, T > 0 is temperature. Here, as before, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition

function:

Zn =

∫
ΩVn

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
λVn

(dσ̃n). (2.3)

The probability distributions µ(n) are compatible [12] if for any n ≥ 1 and σn−1 ∈ ΩVn−1
:∫

ΩWn

µ(n)(σn−1 ∨ ωn)λWn
(d(ωn)) = µ(n−1)(σn−1). (2.4)

Here, σn−1 ∨ ωn ∈ ΩVn
is the concatenation of σn−1 and ωn. In this case, there exists [12] a unique measure µ

on ΩV such that, for any n and σn ∈ ΩVn , µ

({
σ
∣∣∣
Vn

= σn

})
= µ(n)(σn).

The measure µ is called the splitting Gibbs measure corresponding to Hamiltonian (2.1) and function x 7→ hx,
x 6= x0.

Proposition 2.1. [12] The probability distributions µ(n)(σn), n = 1, 2, . . ., in (2.2) are compatible iff for any
x ∈ V \ {x0} the following equality holds:

f(t, x) =
∏

y∈S(x)

∫ 1

0
exp(Jβξtu)f(u, y)du∫ 1

0
exp(Jβξ0u)f(u, y)du

. (2.5)

Here, and below f(t, x) = exp(ht,x − h0,x), t ∈ [0, 1] and du = λ(du) is the Lebesgue measure.
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From Proposition 2.1, it follows that for any h = {hx ∈ R[0,1], x ∈ V } satisfying (2.5) there exists a unique
Gibbs measure µ and vice versa. However, the analysis of solutions to (2.5) is not easy. Let ξtu be a continuous
function. We put

C+[0, 1] = {f ∈ C[0, 1] : f(x) ≥ 0}, C+
0 [0, 1] = C+[0, 1] \ {θ ≡ 0}.

We define the operator Rk : C+
0 [0, 1]→ C+

0 [0, 1] by

(Rkf)(t) =

(∫ 1

0
K(t, u)f(u)du∫ 1

0
K(0, u)f(u)du

)k
, k ∈ N,

where K(t, u) = exp(Jβξtu), f(t) > 0, t, u ∈ [0, 1].
We will solve the equation (2.5) in the class of translational-invariant functions f(t, x), i.e f(t, x) = f(t) for

any x ∈ V . For such functions, equation (2.5) can be written as:

Rk(f)(t) = f(t). (2.6)

Note that equation (2.6) is not linear for any k ∈ N. For every k ∈ N we consider Hammerstein’s integral
operator Hk acting in the cone C+[0, 1] as

(Hkf)(t) =

1∫
0

K(t, u)fk(u)du, k ∈ N.

We denote
M0 = {f ∈ C+[0, 1] : f(0) = 1}.

Lemma 2.2. [4] Let k ≥ 2. The equation

Rkf = f, f ∈ C+
0 [0, 1] (2.7)

has a nontrivial positive solution iff the Hammerstein’s equation

Hkf = λf, f ∈ C+[0, 1] (2.8)

has a positive solution in M0 for some λ > 0.

Let k ≥ 2. Then, we can easily verify that: if the number λ0 > 0 is eigenvalue of the operator Hk, then an
arbitrary positive number is an eigenvalue of the operator Hk (see [4]). Consequently, we obtain:

Lemma 2.3. Let k ≥ 2. The equation (2.7) has a nontrivial positive solution iff the Hammerstein’s operator Hk

has a nontrivial positive fixed point. Moreover, the number of nontrivial positive fixed points of the operator Rk
is equal to the number of nontrivial positive fixed points of the Hammerstein’s operator Hk.

Note, that if there is more than one nontrivial positive fixed point for the the Hammerstein’s operator, Hk,
then there is more than one translation-invariant Gibbs measure for the model (2.1) corresponding to these fixed
points. We say that a phase transition occurs for the model (2.1), if the Hammerstein’s operator Hk has more than
one nontrivial positive fixed point. The number of the fixed points depends on the parameters of the model (2.1)
and the order of Cayley tree Γk.

3. A model on Cayley tree with logarithmic potential

We consider Hamiltonian H on the Cayley tree Γk by rule:

H(σ) = −
∑
〈x,y〉∈L

ln
(
1 + 4θ

(
σ(x)− 1

2

) (
σ(y)− 1

2

))
β

, σ ∈ ΩV , (3.1)

where θ is a coupling constant and 0 < θ < 1, i.e. in the (2.1) function of potential is defined by the formula:

ξt,u =
ln
(
1 + 4θ

(
t− 1

2

) (
u− 1

2

))
Jβ

.

The main aim of this paper is to study translation-invariant Gibbs measures for model (3.1) on the Cayley
tree Γk. We define Hammerstein’s operator Hk on C[0, 1] by the equality:

(Hkf)(t) =

1∫
0

(
1 + 4θ

(
t− 1

2

)(
u− 1

2

))
fk(u)du. (3.2)
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We set:

k1 =

{
k, if k is even,
k − 1, if k is odd,

and

k2 =

{
k, if k is odd,
k − 1, if k is even.

We define operator P on R2 by the rule:

P (x, y)→ (x′, y′),

where

x′ =

k1/2∑
j=0

(2θ)2j

2j + 1
A2j
k x

k−2jy2j ,

y′ =

(k2+1)/2∑
j=1

(2θ)2j−1

2(2j + 1)
A2j−1
k xk−2j+1y2j−1.

Here

Amn =
n!

m!(n−m)!
.

Lemma 3.1. Let k ≥ 2. The Hammerstein’s operator Hk (3.2) has a nontrivial positive fixed point iff the operator

P has a fixed point (x0, y0), such that x0 > 0 and f0(t) = x0 + 4θy0

(
t− 1

2

)
> 0 for all t ∈ [0, 1], moreover

the function f0(t) = x0 + 4θy0

(
t− 1

2

)
is a positive fixed point of the Hammerstein’s operator Hk.

Proof. Necessity. We set:

c1 =

1∫
0

fk(u)du (3.3)

and

c2 =

1∫
0

(
u− 1

2

)
fk(u)du. (3.4)

It is clear, that c1 > 0. Let the Hammerstein’s operator Hk (3.2) has a positive fixed point f(t). Then, for the
function f(t), the equality:

f(t) = c1 + 4θc2

(
t− 1

2

)
(3.5)

is holds.
Consequently, for the parameter c1, from the equality (3.3), we have:

c1 =

1∫
0

(
c1 + 4θc2

(
u− 1

2

))k
du =

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1∫
0

(
u− 1

2

)j
du =

=

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1/2∫
−1/2

ujdu =

k1/2∑
j=0

(2θ)2j

2j + 1
A2j
k c

k−2j
1 c2j2 .

Analogously, for the parameter c2, by equality (3.4), we get:

c2 =

1∫
0

(
u− 1

2

)(
c1 + 4θc2

(
u− 1

2

))k
du =

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1∫
0

(
u− 1

2

)j+1

du

=

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1/2∫
−1/2

uj+1du =

(k2+1)/2∑
j=1

(2θ)2j−1

2j + 1
A2j−1
k ck−2j+1

1 c2j−1
2 .
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Therefore, the point (c1, c2) is a fixed point of the operator P .
Sufficiency. We assume that x0 > 0 and the point (x0, y0) is a fixed point of the operator P, i.e. the following

equalities for numbers x0 and y0 numbers are satisfied:
k1/2∑
j=0

(2θ)2j

2j + 1
A2j
k x

k−2j
0 y2j

0 = x0,

(k2+1)/2∑
j=1

(2θ)2j−1

2(2j + 1)
A2j−1
k xk−2j+1

0 y2j−1
0 = y0.

We can simply prove that the function f0(t) = x0 + 4θy0

(
t− 1

2

)
is a fixed point of the Hammerstein’s

operator Hk, i.e. Hkf0 = f0. This completes the proof. �

Proposition 3.2. For each k ∈ N, the function f0(t) ≡ 1 is a fixed point of the Hammerstein’s operator Hk.

Proof. One can clearly see that:

(Hk)f0(t) =

1∫
0

(
1 + 4θ

(
t− 1

2

)(
u− 1

2

))
du ==

1∫
0

du+ 4θ

(
t− 1

2

) 1/2∫
−1/2

udu = 1 = f0(t).

�

4. Uniqueness of translation-invariant Gibbs measures for the model (3.1)

In [12], a Hamiltonian with an uncountable set of spin values (with the set [0, 1] of spin values) on the Cayley
tree Γk was considered for a continuous potential ξt,u. For k = 1, it was shown that the model (2.1) with the
continuous potential function has a unique translation-invariant splitting Gibbs measure. This statement holds for
the model (3.1). We study translation-invariant splitting Gibbs measure for the model (3.1) for the case k ≥ 2.

Theorem 4.1. The model H (3.1) on the Cayley tree of order two has a unique translation-invariant Gibbs
measure.

Proof. Let be k = 2. Then, the operator P assumes the following simple form:

P (x, y) =

(
x2 +

4

3
y2,

2

3
θxy

)
.

For a fixed point (x, y) of the operator P , we have the following system of algebraic equations:
x2 +

4

3
y2 = x,

2

3
θxy = y.

It follows that, the operator P has a unique nontrivial fixed point (1, 0), as θ ∈ (0, 1). By lemma 3.1, the
Hammerstein’s operator H2 has a unique nontrivial positive fixed point f0(t) ≡ 1. Therefore, by lemma 2.3, the
model H (3.1) on the Cayley tree of order two has a unique translation-invariant Gibbs measure. �

Theorem 4.2. The model H (3.1) on the Cayley tree of order three has the unique translation-invariant Gibbs
measure.

Proof. Let k = 3. Then, the operator P assumes the following form:

P (x, y) =

(
x3 + 4θ2xy2, θx2y +

4

5
θ3y3

)
.

For a fixed point (x, y) of the operator P , we have the following system of algebraic equations: x3 + 4θ2xy2 = x,

θx2y +
4

5
θ3y3 = y.

It follows that, the point (1, 0) is a fixed point of the operator P . Consequently, by lemma 3.1, the function
f0(t) ≡ 1 is a fixed point of the Hammerstein’s operator H3. Conversely, for the case x > 0, y 6= 0, the last
system of algebraic equations is equivalent to the following system of algebraic equations: x2 + 4θ2y2 = 1,

θx2 +
4

5
θ3y2 = 1.
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We find x2 = 1− 4θ2y2. Hence, for y, we have:(
1− 4θ2y2

)
θ +

4

5
θ3y2 = 1,

i.e.

y2 =
5(θ − 1)

16θ3
.

This is impossible, as θ ∈ (0, 1).
Thus, the operator P has a unique nontrivial fixed point (1, 0). Therefore, by lemmas 3.1 and 2.3, the

model H (3.1) on the Cayley tree of order three has a unique translation-invariant Gibbs measure. �

5. A phase transition for the model (3.1)

In this section, we consider the model (3.1) on the Cayley tree Γ4. In the case k = 4, the operator P is acting
on R2 by the rule:

P (x, y) =

(
x4 + 8θ2x2y2 +

16

5
θ4y4,

4

3
θx3y +

16

5
θ3xy3

)
.

Theorem 5.1. Let k = 4. Then:
(a) for all θ ∈ (0, 3/4] the model H (3.1) on the Cayley tree Γk has a unique translation-invariant Gibbs

measure;
(b) for all θ ∈ (3/4, 1) the model H (3.1) on the Cayley tree Γk has three translation-invariant Gibbs

measures.

Proof. Let k = 4. For a fixed point (x, y) of the operator P , we have the following system of algebraic equations:
x4 + 8θ2x2y2 +

16

5
θ4y4 = x,

4

3
θx3y +

16

5
θ3xy3 = y.

In the case x > 0, y = 0, the above system of algebraic equations has the solution (1, 0). We assume that
y 6= 0. Then, we have x 6= 0 and from the second equation of the last system of equations, we obtain:

y2 =
5(3− 4θx3)

48θ3x
. (5.1)

This means that:

0 < x <
3

√
3

4θ
. (5.2)

From the first equation of the system of equations, for a fixed point of the operator P , we obtain:

16

9
x6 +

3θ − 5

3θ
x3 − 5

16θ2
= 0. (5.3)

We set z = x3. Then, z > 0 and for the unknown variable z, by the equality (5.3), we have the quadratic
equation:

16

9
z2 +

3θ − 5

3θ
z − 5

16θ2
= 0. (5.4)

One clearly sees that equation (5.4) has two roots:

z1 = z1(θ) =
−1 + 5

3θ −
√
D

32
9

< 0, z2 = z2(θ) =
−1 + 5

3θ +
√
D

32
9

> 0,

where

D = D(θ) =

(
1− 5

3θ

)2

+
20

9θ2
.

Therefore, for x, by the lemma 3.1 and the inequality (5.2), we obtain x = x1 = x1(θ), where

x1(θ) = 3
√
z2(θ) <

3

√
3

4θ
.
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The question then arises: does the inequality (5.2) hold for x1(θ) for all values of the parameter θ ∈ (0, 1)?

To this end, we consider the inequality x1(θ) <
3

√
3

4θ
. This is equivalent to the inequality:

−1 + 5
3θ +

√
D

32
9

<
3

√
3

4θ
. (5.5)

Hence, it follows that
√
D < 1 +

1

θ
. It means(

1− 5

3θ

)2

+
20

9θ2
<

(
1 +

1

θ

)2

.

From the last inequality, we get θ >
3

4
. Thus, for the case

3

4
< θ < 1, by equality (5.1), the operator P has

three fixed points:
(1, 0), (x1(θ), y1(θ)) , (x1(θ),−y1(θ)) ,

where

y1(θ) =
1

4θ

√
5(3− 4θx3

1(θ))

3θx1(θ)
> 0.

We note that if 0 < θ ≤ 3

4
, then the operator P has a unique fixed point: (1, 0). Consequently, by lemmas 2.3

and 3.1, for all θ ∈
(

0,
3

4

]
the model H (3.1) on the Cayley tree Γ4 has a unique translation-invariant Gibbs

measure. In the case
3

4
< θ < 1 by the lemma 3.1, the Hammerstein’s operator H4 has three positive fixed points:

f0(t) ≡ 1, f1(t) = x1(θ) + 4θy1(θ)

(
t− 1

2

)
, f2(t) = x1(θ)− 4θy1(θ)

(
t− 1

2

)
.

Because fi(t) > 0 for all t ∈ [0, 1], where i = 1, 2. Therefore, By lemma 2.3 for all θ ∈ (3/4, 1) the
model H (3.1) on the Cayley tree Γ4 has three translation-invariant Gibbs measures. This completes the proof. �

Finally we note that in the case θ ∈
(

3

4
, 1

)
for the model H (3.1) on the Cayley tree Γ4 there is a phase

transition.
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