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We consider the family of operator matrices H(K), K € T? := (—;7]? acting in the direct sum of zero-, one-
and two-particle subspaces of the bosonic Fock space. We find a finite set A C T? to establish the existence
of infinitely many eigenvalues of H(K) for all K € A when the associated Friedrichs model has a zero energy
resonance. It is found that for every K € A, the number N (K, z) of eigenvalues of H(K) lying on the left of z,
z < 0, satisfies the asymptotic relation zl—i>n—10 N(K, z)|log|z||™' = Uy with 0 < Uy < oo, independently on the
cardinality of A. Moreover, we show that for any K € A the operator H(K) has a finite number of negative
eigenvalues if the associated Friedrichs model has a zero eigenvalue or a zero is the regular type point for positive
definite Friedrichs model.
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1. Introduction

One of the important problems in the spectral theory of Schrodinger operators and
operator matrices in Fock space is to study the finiteness or infiniteness (Efimov’s effect) of the
number of eigenvalues located outside the essential spectrum. The Efimov effect for the three-
particle continuous Schrodinger operator has been discussed in [5]. A rigorous mathematical
proof of the existence of this effect was originally carried out by Yafaev [14] and then many
works devoted to this subject, see for example [12, 13].

It was shown in [1,2,7] that for the three-particle discrete Schrodinger operator H,,(K),
the Efimov effect exists only for the zero value of the three-particle quasi-momentum (/' = 0)
and for some value © = pg > 0 of the interaction energy of two particles. Moreover, the
operator H,(K) has only a finite number of eigenvalues for all sufficiently small nonzero
values of K and p > 0. An asymptote analogous to [12,13] was obtained in [1,2] for the
number of eigenvalues of H,(K).

In all above mentioned papers devoted to the Efimov effect, the systems where the
number of quasi-particles is fixed have been considered. In solid-state physics theory [10],
quantum field theory [6] and statistical physics [9] some important problems arise where the
number of quasi-particles is finite, but not fixed.

In the present note, we consider the family of 3 x 3 operator matrices H(K), K € T3,
associated with the lattice systems describing two identical bosons and one particle, another
nature in interactions, without conservation of the number of particles. We find a finite set
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A C T? and under some smoothness assumptions on the parameters of a family of Friedrichs
models h(k), k € T3, we obtain the following results: if 1(0) has a zero energy resonance, then
for the number N (K, z) of eigenvalues of H(K) lying on the left of z, z < 0, we establish the
asymptotics N (K, z) ~ Up|log |z|| with 0 < Uy < oo for all K € A.

We show the finiteness of negative eigenvalues of H(K) for K € A, if the operator
h(0) has a zero eigenvalue or a zero is the regular type point for A(0) with h(0) > 0.

We point out that the operator H (K') has been considered before in [3,4,8] for X' = 0 and
n = 1, where the existence of Efimov’s effect has been proven. Moreover, similar asymptotics
for the number of eigenvalues was obtained in [3].

2. Family of 3 X 3 operator matrices and main results

We denote by T? the three-dimensional torus, the cube (—m,7]® with appropriately
identified sides equipped with its Haar measure. Let H, := C be the field of complex numbers,
H, := Lo(T?) be the Hilbert space of square integrable (complex) functions defined on T*
and H, := L5((T?)?) be the Hilbert space of square integrable (complex) symmetric functions
defined on (T?)?. The spaces Ho, H1 and H, are called zero-, one- and two-particle subspaces
of a bosonic Fock space F;(La(T?)) over Ly(T?), respectively.

Let us consider the following family of 3 x 3 operator matrices H(K), K € T acting
in the Hilbert space H := Ho ® H1 ® Hs as :

HOO(K) Hy; 0
H(K) = H{,  Hn(K)  Hip ,
0 Hi, HQQ(K)

with the entries:

Hoo(K)fo = wo(K)fm Ho f1 = /UO(S)fl(S)dS> (H11(K)f1)(p) = wl(K;p)fl(p)a

'H‘3

(Hi2f2)(p) :/UI(S)fQ(p7 s)ds,  (Haa(K)f2)(p,q) = wa(K;p, q) f2(p. ),
T3
where f; € H;, i = 0,1,2; wy(-) and v;(+), i = 0,1 are real-valued bounded functions on T3,
the functions wy(+;-) and wy(+; -, ) are defined by the equalities:

wy (K;p) = lLe(p) +le(lK —p) + 1, we(K;p,q) = lLe(p) + he(q) + le(K —p—q),

respectively, with /1,1, > 0 and
3
8(q) = Z(l _ Cos(nq(l)))’ q — <q(1)7 q(Q), q(3)) E T3’ n e N
i=1

Here, H;; (i < j) denotes the adjoint operator to H;; and

(Hpfo)(p) = vo(p) fo, (Hiaf1)(p,q) = %(vl(p)fl(q) +v1(q) f1(p)), fi € Hi, i=0,1.

Under these assumptions, the operator H(K') is bounded and self-adjoint.

We remark that the operators H(; and Hi, resp. Hj; and H7, are called annihilation
resp. creation operators [6], respectively. In this note, we consider the case where the number
of annihilations and creations of the particles of the considering system is equal to 1. It means
that H;; = 0 for all | — j| > 1.
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We denote by 0ess(+) and ogise (), respectively, the essential spectrum, and the discrete
spectrum of a bounded self-adjoint operator.

To study the spectral properties of the operator H(K'), we introduce a family of bounded
self-adjoint operators (Friedrichs models) h(k), k € T3, which acts in Ho & H; as follows:

bl B
") "< by hnuf))’

hoo(k) fo = (Le(k) + 1) o, horfy = % / 01() fu(s)ds,

where

(hu(k)f1)(q) = Ex(@) fi(a),  Ewlq) = helq) + Le(k —q).
It is easily to seen that oo (h(0)) = [0;6(11 + 12)].
The following theorem describes the location of the essential spectrum of operator H (K)
by the spectrum of the family A(k) of Friedrichs models.

Theorem 2.1. For the essential spectrum of H(K), the equality
Oess(H(K)) = U {oaise(M(K — p)) + lie(p) } U [mc; Mi]

pEeT3
holds, where the numbers my and My are defined by:

my = min wy(K;p,q) and My = max wy(K;p,q).
p,qET3 p,qeT3

Let us consider the following subset of T :
, 2 4 !
A= {(p(l),p(z),p(g)) p® e {O, e e (ST :tzﬂ'} Ull,, i = 1,2,3} ,
n n n

where

, n—2, if n is even {r}, if n is even
= d II, = . .
" { n—1, if n is odd an { 0, ifnis odd

Direct calculation shows that the cardinality of A is equal to n?. It is easy to check
that for any K € A, the function wo(K; -, -) has non-degenerate zero minimum at the points of
A x A, that is, my = 0 for K € A.

The following assumption we needed throughout the note: the function v;(-) is either
even or odd function on each variable and there exists all second order continuous partial
derivatives of v;(-) on T2,

Let us denote by C(T?) and L,(T?) the Banach spaces of continuous and integrable
functions on T3, respectively.

Definition 2.2. The operator h(0) is said to have a zero energy resonance if the number 1 is
an eigenvalue of the integral operator given by:

@) = g D [y ye oy

T3
and at least one (up to a normalization constant) of the associated eigenfunction 1 satisfies
the condition ¥ (p') # 0 for some p' € A. If the number 1 is not an eigenvalue of the operator
G, then we say that z = 0 is a regular type point for the operator h(0).
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We note that in Definition 2.2, the requirement for the existence of an eigenvalue 1 of
G corresponds to the existence of a solution of 2(0)f = 0 and the condition ¢ (p’) # 0 for some
p’ € A implies that the solution f of this equation does not belong to Hy ® H;. More precisely,
if the operator h(0) has a zero energy resonance, then the solution (-) of G = 1 is equal to
v1(+) (up to constant factor) and the vector f = (fo, f1), where

U1 (Q)fo
V2(lh +lp)e(q)’

obeys the equation h(0)f = 0 with f; € Ly(T?) \ Lo(T?). If the operator h(0) has a zero
eigenvalue, then the vector f = (fo, f1), where f, and f; are defined by (2.1), again obeys the
equation 1(0)f = 0 and f; € Lo(T?).

Denote by 7T (/) the bottom of the essential spectrum of H(K) and by N(K, z) the
number of eigenvalues of H(K') on the left of 2z, z < 7 (K).

Note that if the operator /(0) has either a zero energy resonance or a zero eigenvalue,
then for any K € A and p € T? the operator h(K — p) + l1e(p)I is non-negative, where I is
the identity operator in Hy & H;. Hence Theorem 2.1 and equality my = 0, K € A imply that
Tess(K) = 0 for all K € A.

The main results of the present note are as follows.

fo=const 0, fi(q) =—

2.1)

Theorem 2.3. Let K € A and one of the following assumptions hold:
(i) the operator h(0) has a zero eigenvalue;
(i1) h(0) > 0 and a zero is the regular type point for h(0).
Then the operator H(K) has a finite number of negative eigenvalues.

Theorem 2.4. Let K € A. If the operator h(0) has a zero energy resonance, then the operator

H(K) has infinitely many negative eigenvalues accumulating at zero and the function N (K, )
obeys the relation:

N(K, z)

===0 |log |z]]

= Zlb, 0< Uy < 0. (2.2)
Remark 2.5. The constant Uy does not depend on the functions vy(-), vi(-) and the cardinality
of the set A. It is positive and depends only on the ratio l5/l;.

Remark 2.6. Clearly, by equality (2.2), the infinite cardinality of the negative discrete spectrum
of H(K) follows automatically from the positivity of Uy.

3. Sketch of proof of the main results

For any k € T3, we define an analytic function A(k;-) (the Fredholm determinant
associated with the operator h(k)) in C \ [Ewmin(k); Emax(k)] by:

A(k; ) :125(@“_2_%/$7

where the numbers i, (k) and Ey..(k) are defined by
Enin(k) == min Ex(q) and Ep.x(k) :== max Ex(q).

Set
S(K) = | {oase(h(K = p)) + lie(p)} U [mc; M.

peT3
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Let us consider 2 x 2 block operator matrix T(K, z), z € C \ $(K) acting on Ho & H;
as
f(K, z) — ZOO(Ka Z) ?\01(—’(7 z) :
Tl()(K, Z) Tll(K7 Z)
with the entries ﬁj(K, 2):H; = Hi,i,j=0,1:
fOO(Ka z)go = (1 + 2z — wo(K))go, fm(K, z) = —Hoy;

= vo(P) 9o

Tho(K =— :

( 10( 72)90>(p) A(K—p,z—lls(p))’

vi(p) / vi(s)g1(s)ds
2A(K —p;z—lLie(p) J we(K;p,s) —

'I[‘3

(T\n(K7 2)g1)(p) =

The following lemma is an analog of the well-known Faddeev’s result for the operator
H(K) and establishes a connection between eigenvalues of H(K) and T'(K, z).

Lemma 3.1. The number z € C\ X.(K) is an eigenvalue of the operator H(K) if and only if

the number \ = 1 is an eigenvalue of the operator f(K ,2). Moreover, the eigenvalues = and
1 have the same multiplicities.

The inclusion 3(K) C oes(H(K)) in the proof of Theorem 2.1 is established with
the use of a well-known Weyl criterion. An application of Lemma 3.1 and analytic Fredholm
theorem (see, e.g., Theorem VI.14 in [11]) proves inclusion o (H(K)) C X(K).

To find conditions which guarantee for the finiteness or infiniteness of the number of
eigenvalues of H(K), K € A, we establish in which cases the bottom of the essential spectrum
of h(0) is a threshold energy resonance or eigenvalue.

Lemma 3.2. (i) The operator h(0) has a zero eigenvalue if and only if A(0;0) = 0 and
v1(¢") =0 for all ¢' € A;

(ii) The operator h(0) has a zero energy resonance if and only if A(0;0) = 0 and
v1(¢") # 0 for some ¢’ € A.

Since A(K — p;z —lie(p)) > 0 for any K,p € T3 and 2z < Tes(K), one can define a

symmetric version of the operator T'(K, z) for z < 7.s(K), which is important in our analysis
of the discrete spectrum of H(K), K € T3. So, we consider the self-adjoint compact 2 x 2
block operator matrix T'(K, z), z < Tess(K) acting on Hy @ H; as follows:

| Too(K,2) Tu(K,2)
K 2) = ( To(K,z) Tu(K,>2) ) !

with the entries 7}; (K, z) : H; — H;, 1,7 =0,1:

Too(K, 2)go = (1 4+ 2z — wo(K))go, Toi(K, 2)g / VAK UO— S ZS)—dZ&?( ))7
o n(5)gu(5)ds
(T (K, 2)g1)(p) = 2\/A (K —p; 2_115 \/A —s;z—llﬁ(S))(wz(K;p7S)—Z);

gi € H;, 1 =0,1.
To prove Theorem 2.3, first we show N(K,z) = n(1,T(K,z)) (so-called Birman-
Schwinger principle for the operator H (X)), where n(1, A) is the number of the eigenvalues
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(counted multiplicities) of the compact operator A bigger than 1. Then, under the conditions of
Theorem 2.3, we prove that the operator 7'(K, z) is continuous from the left up to z = 0 and
T(K,0) is a compact operator. Using the Weyl inequality,

n(A1 + Ao, Ap + Az) <n(Ay, Ar) +n(Xg, Az)
for the sum of compact operators A; and As, and for any positive numbers A; and A3, we have
n(1,T(K,z)) <n(1/2,T(K,0)) +n(1/2,T(K,z) — T(K,0))
for all z < 0. Hence, zl—i>n—10N(K’ z) = N(K,0) <n(1/2,T(K,0)) < o0.

The study of the behavior of T'(K, z), K € A, that is, proof of Theorem 2.4, is based on
the analysis of the behavior of A(K —p;z—l1e(p)) as z — —0 and |p—p'| — 0 for K,p’ € A.
Set

Ao :={qd € A:v(¢") #0}.

Lemma 3.3. Let the operator h(0) have a zero energy resonance and K,p' € A. Then, the
following decomposition:

27'('2 2 l% +2l1[2 2z
AK —p;z—lLe(p) = W<Z 'Ul(q/)> \/m\p 4 2

q'€No
+O0(lp = p'[*) + O(l21),
holds for |p — p'| — 0 and z — —0.

By applying Lemma 3.3, we single out the principal part of the operator T(K, z) K € A
as z — —0, which is unitarily equivalent to the compact integral operator Sg, R = 1/2|log |z||
in Ly((0, R), L(S?)) with the kernel

1 (lp 4 1p)? 1

4m? | /12 4 2141, (I + 12) coshy + [ot’

where S? be the unit sphere in R3; y = 2 — 2/, z,2” € (0, R) and t = (£, ) is the inner product
of the arguments &, n € S2.

The eigenvalue asymptotics for the operator Si have been studied in detail by Sobolev [12],
by employing an argument used in the calculation of the canonical distribution of Toeplitz op-
erators.

S(y,t) =
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