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The equations describing the transient and steady stages of size and composition evolution for a gas bubble which

grows or shrinks due to the diffusion of several gases dissolved in liquid solution have been derived. The diffusion

fluxes for gases in the liquid mixture caused by the bubble growth or dissolution were assumed to be quasi-

stationary and the mixture of the gases in the bubble was treated as ideal. The analytical solutions for the obtained

evolution equations have been found for bubbles of any size with an arbitrary number of components in the case

of equal products of diffusivities and solubilities of dissolved gases in the liquid solution, and for sufficiently large

binary bubbles for which capillary effects can be neglected.
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1. Introduction

This paper presents several analytical results in the theoretical description for the growth
or dissolution kinetics of a single gas bubble in a supersaturated or undersaturated gas-liquid
solution in the case when the bubble is comprised of several gases. Evidently, finding such de-
scription is a fundamental issue because it turns to be a necessary element for the general theory
on the decay of multicomponent metastable liquid solutions [1, 2]. As discussed previously, the
formation of gas bubbles is widely applied in technological processes for the creationc of new
porous materials and nano- and microcontainers [3, 4]. The rapid, explosive growth of water
vapor and accompanying dissolved gas bubbles in magmatic melt is one contributing mecha-
nism for volcanic eruptions [5–7]. The control of gas bubble growth and dissolution in blood
and biological tissues is a very important issue for those undergoing decompression [8]. These
examples highlight how the problem of theoretically describing bubble growth or dissolution is
still very relevant.

The diffusion growth of single-component bubbles in a supersaturated solution of gas in
liquid has been previously considered under the assumption of a quasi-stationary state for
the concentration fields of dissolved gas in the vicinity of bubble and with the use of a
self-similar solution for the non-stationary diffusion equation [9–13]. Quasi-steady-state dif-
fusion approaches to the description of multicomponent bubble evolution were considered by
Ramos [14, 15] and Cable and Frade [16]. In particular, it was reported in [15, 16] that large
enough bubbles reach a state of stationary growth with fixed composition and growth rate
and may demonstrate a nonmonotonic change in their radius during the initial stage of their
evolution. Formulation of the theory of non-stationary self-similar growth of a binary bubble
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with stationary composition in the case of high supersaturation had been done by Gor and
Kuchma [17].

Recently, we have formulated and analyzed a set of equations for the size, compo-
sition and temperature of a droplet consisting of a binary or multicomponent solution, which
non-isothermally condenses or evaporates under a quasi-steady-state diffusion regime in a multi-
component mixture of vapors and non-condensable carrier gas [18–22]. Some of these equations
have been analytically solved. The problem of a multicomponent droplet growing or evapo-
rating in the diffusion regime in the vapor-gas mixture is similar to the problem of growth or
dissolution of a multicomponent bubble in the liquid solution with several dissolved gas. In this
paper, we will extend the analytical approach which was useful for a small droplet to the case
of a multicomponent bubble.

2. General relations

We consider a multicomponent spherical bubble of radius R which grows or shrinks due
to the diffusion of several gases dissolved in liquid solution at fixed absolute temperature T and
pressure P . Under mechanical equilibrium of the bubble and the solution, the total pressure
Ptot (R) in the bubble depends on its radius R and pressure P in the solution according to the
formula:

Ptot (R) = P +
2σ

R
, (1)

where σ is the surface tension at the bubble-liquid interface. Let ni be the volume concentration
of the molecules of i-th gas (i = 1, 2, . . . , k) within the bubble, then the total gas concentration n
in the bubble equals:

n =
k∑
i=1

ni. (2)

Assuming the gas mixture in the bubble is ideal, we have:

n =
Ptot
kBT

=
P

kBT

(
1 +

2σ

PR

)
= n̄

(
1 +

R∗
R

)
, (3)

where kB is the Boltzmann constant, and we have introduced the new notation:

n̄ ≡ P

kBT
, R∗ ≡

2σ

P
. (4)

For characterization of the composition of the bubble, we will use the molecular frac-
tions xi of i-th component determined as:

xi =
ni
n

=
Ni

N
(i = 1, 2, . . . k), (5)

where Ni is the number of molecules of i-th gas and N =
∑k

i=1 Ni is the total number of
gas molecules in the bubble. Because

∑k
i=1 xi = 1, only k − 1 molecular fractions xi can be

considered to be independent. In light of Eqs. (3) and (4), the total number N of molecules in
the bubble can also be expressed as:

N =
4π

3
nR3 =

4π

3
n̄R3

(
1 +

R∗
R

)
=

4π

3
n̄R2 (R +R∗) . (6)
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The emission and absorption of gas molecules by the bubble produce the diffusion
profiles of each component around the bubble in a liquid solution. We denote the local vol-
ume concentration of i-th component at distance r ≥ R from the center of the bubble as
ρi (r, t). Correspondingly, the initial bulk volume concentration of the i-th component in liquid
is ρi0 = ρi (r →∞, t). We will assume that the concentration ρi (R, t) at the boundary of the
bubble is determined by conditions of chemical equilibrium for the i-th component in the bub-
ble and solution and is related in this way with the volume concentration ni within the bubble.
Henry’s law gives:

ρi (R, t) = sini = sixin (i = 1, 2, . . . k), (7)

where si is the solubility of i-th component of the gas mixture in the liquid solution.

3. The equations governing the evolution of the composition and size of the bubble

Differentiating both sides of definition (5) with respect to time gives:

ẋi =
Ṅi

N
− xi

Ṅ

N
(i = 1, 2, . . . k), (8)

where the dot over the quantity marks the time derivative or rate of the corresponding quantity.
The expression for the rates Ṅi and Ṅ have the following form under assumption of stationary
diffusion of the dissolved gases in solution:

Ṅi = 4πRDi [ρi0 − ρi (R, t)] (i = 1, 2, . . . k), (9)

Ṅ = 4πR
k∑
i=1

Di [ρi0 − ρi (R, t)] , (10)

where Di is the diffusivity of i-th component of the gas mixture in the liquid solution. Sub-
stitution of Eqs. (9) and (10) into the right-hand side of Eq. (8) and using Eqs. (4) and (6)
yields:

ẋi =
3

n̄R (R +R∗)

(
Di [ρi0 − ρi (R, t)]− xi

k∑
j=1

Dj [ρj0 − ρj (R, t)]

)
(i = 1, 2, . . . k). (11)

Let us now introduce the i-th gas supersaturation in solution as:

ζi ≡
ρi0
sin̄
− 1 (i = 1, 2, . . . k). (12)

Eqs. (3) and (7) allows us to write:

ρi (R, t) = sixin̄

(
1 +

R∗
R

)
(i = 1, 2, . . . k). (13)

Substituting Eqs. (12) and (13) in Eq. (11) yields:

ẋi =
3

R (R +R∗)

[
Disi

(
ζi + 1− xi

(
1 +

R∗
R

))
− xi

k∑
j=1

Djsj

(
ζj + 1− xj

(
1 +

R∗
R

))]
(i = 1, 2, . . . k). (14)
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Analogously, differentiating both sides of definition (6) with respect to time and using
Eq. (3) gives:

Ṅ = 4πnR2Ṙ+
4π

3
ṅR3 = 4πn̄

(
1 +

R∗
R

)
R2Ṙ− 4π

3
n̄
R∗
R2
ṘR3 = 4πn̄RṘ

(
R +

2

3
R∗

)
, (15)

while substituting Eqs. (7) and (12) in Eq. (10) yields:

Ṅ = 4πRn̄
k∑
i=1

Disi

[
ζi + 1− xi

(
1 +

R∗
R

)]
. (16)

After comparing Eqs. (15) and (16), we obtain:

Ṙ

(
R +

2

3
R∗

)
=

k∑
i=1

Disi

(
ζi + 1− xi

(
1 +

R∗
R

))
. (17)

Finally, we have coupled evolution equations (14) and (17) for the bubble’s composition
and radius with initial conditions xi (t = 0) = xi0, R (t = 0) = R0. Note that in the case of a
single-component gas in solution and bubble (x1 = 1, ζi+ 1 = 0 at i ≥ 2), Eq. (17) is obviously
reduced to the equation for the bubble radius in the known form:

RṘ
R +Rσ

ζ1R−R∗
= D1s1, (18)

where

Rσ ≡
2

3
R∗. (19)

For a supersaturated gas-liquid solution, when ζ1 > 0, Eq. (18) can be rewritten:

RṘ
R +Rσ

R−Rc

= D1s1ζ1, (20)

where Rc =
R∗
ζ1

=
2σ

Pζ1

is the radius of the critical bubble (at R0 > Rc the size of the bubble

increases monotonically with time, while at R0 < Rc, the bubble dissolves irreversibly). The
growth dynamics of a supercritical bubble in a highly supersaturated (ζ1 >> 1) gas-liquid
solution, determined by Eq. (20), was studied in detail in [11]. If there is ζ1 ≤ 0, a bubble of
any initial size irreversibly dissolves.

4. Analytical solution of evolution equations in the case of equal products of
diffusivities and solubilities of dissolved gases

Let us now consider the conditions on the system parameters which allows us to find
analytical solutions for Eqs. (14) and (17). In the particular case when Disi ≡ Ds, for any
gas component, (i.e. when the diffusivity and solubility products for dissolved gases in liquid
solution are equal) Eqs. (14) and (17) take the form:

ẋi =
3Ds

R (R +R∗)

[
ζi + 1− xi

(
ζ̄ + 1

)]
(i = 1, 2, . . . k), (21)

RṘ
R +Rσ

R−R∗/ζ̄
= Dsζ̄, (22)
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where we have introduced new notation:

ζ̄ ≡
k∑
i=1

(ζi + 1)− 1. (23)

As is seen from Eqs. (20) and (22), changing the bubble size with time does not depend
in this particular case on the bubble’s composition and is described by the same equation as
in the case of single-component bubble. The role of supersaturation is played now by the
quantity ζ̄ , and we have R∗/ζ̄ instead of Rc. Proceeding by analogy with [11], taking into
account the initial value R (t = 0) = R0 and Eq. (19), we find for the bubble radius at ζ̄ 6= 0 :

R2 −R2
0

2
+

(
1 +

2ζ̄

3

)
R∗
ζ̄

(
R−R0 +

R∗
ζ̄

ln

∣∣∣∣ ζ̄R−R∗ζ̄R0 −R∗

∣∣∣∣) = Dsζ̄t. (24)

In the case ζ̄ = 0, it follows from Eq. (22) that the bubble radius satisfies the equation:

RṘ

(
R

R∗
+

2

3

)
= −Ds. (25)

It is clear from Eq. (25) that Ṙ < 0 and the bubble irreversibly dissolves in this case. Using the
initial condition for the bubble radius, we find the solution of Eq. (25) in the form:

1

3

(
R3 −R3

0

R∗
+R2 −R2

0

)
= −Dst. (26)

Setting R (td) = 0, we can find the time td of complete dissolution of the bubble of initial
radius R0 at ζ̄ = 0 as:

td (R0) =
R2

0

3Ds

R0 +R∗
R∗

. (27)

There is a special case when ζi + 1 = 0 for all gas components, and, correspondingly,
ζ̄ + 1 = 0. This case refers to the dissolution of a gas bubble in pure solvent. As follows
from Eq. (21), we have ẋi = 0 for each gas component within the bubble in this case, and the
composition of the bubble in the dissolution process remains unchanged. Such situation is fully
equivalent to the description of the single-component bubble dissolution in the pure solvent.
Substituting ζ̄ = −1 into Eq. (24), we find:

R2 −R2
0

2
− 1

3
R∗

[
R−R0 −R∗ ln

(
R +R∗
R0 +R∗

)]
= −Dst. (28)

As follows from Eq. (28), the time t̄d of complete dissolution of the bubble of initial radius R0

at ζ̄ = −1 is determined as:

t̄d (R0) =
1

Ds

[
R2

0

2
− 1

3
R∗

(
R0 −R∗ ln

(
R0

R∗
+ 1

))]
. (29)

In the case R0 << R∗, this time approximately equals:

t̄d (R0) ≈ R2
0

3Ds

(
1 +

R0

3R∗

)
. (30)

Let us now consider a relation between the bubble radius and composition. If ζ̄+ 1 > 0,
then we have from Eq. (21):

ẋi = −
3Ds

(
ζ̄ + 1

)
R (R +R∗)

(xi − xis) , (i = 1, 2, . . . k), (31)
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where:

xis ≡
ζi + 1

ζ̄ + 1
, (32)

is the stationary value of molecular fraction of i-th component of the gas mixture in the bubble.
With the help of Eq. (22), we can find from Eq. (31) the relation between differentials dxi and
dR:

dxi
xi − xis

= −
3
(
ζ̄ + 1

)
(R +Rσ) dR

(R +R∗)
(
ζ̄R−R∗

) (i = 1, 2, . . . k). (33)

The solution of Eq. (33) at ζ̄ 6= 0 and R (t = 0) = R0, xi (t = 0) = xi0 (i = 1, 2, . . . k) has the
form: ∣∣∣∣ xi − xisxi0 − xis

∣∣∣∣ =
R0 +R∗
R +R∗

∣∣∣∣ ζ̄R0 −R∗
ζ̄R−R∗

∣∣∣∣
2ζ̄ + 3

ζ̄
. (34)

Equation (34) shows that molecular fractions of all gas components in the bubble relax
to their steady-state values according to one and the same power law. If R >> R∗/

∣∣ζ̄∣∣ and
R0 >> R∗/

∣∣ζ̄∣∣, Eq. (34) simplifies as:

∣∣∣∣ xi − xisxi0 − xis

∣∣∣∣ =

∣∣∣∣R0

R

∣∣∣∣3
ζ̄ + 1

ζ̄ (i = 1, 2, . . . k), (35)

or

R2 = R2
0

(
xi0 − xis
xi − xis

)2

3

ζ̄

ζ̄ + 1 . (36)

In the case when ζ̄ = 0, the dependence xi (R) (i = 1, 2, . . . k) can be easily found by
two ways. First we can set ζ̄ = 0 just in Eq. (33) for xi and solve it to obtain:∣∣∣∣ xi − xisxi0 − xis

∣∣∣∣ =
R0 +R∗
R +R∗

exp

(
−3

R0 −R
R∗

)
(i = 1, 2, . . . k). (37)

The same result can also be obtained by taking the limit ζ̄ → 0 in the solution (34) and using
the relation:

∣∣∣∣ ζ̄R0 −R∗
ζ̄R−R∗

∣∣∣∣
2ζ̄ + 3

ζ̄
=

∣∣∣∣1− ζ̄R0/R∗
1− ζ̄R/R∗

∣∣∣∣
2ζ̄ + 3

ζ̄ ≈
(

1− ζ̄ R0 −R
R∗

)3

ζ̄ −−→
ζ̄→0

exp

(
−3

R0 −R
R∗

)
.

5. Analytical solution of evolution equations in the case of neglecting the capillary
contributions

For sufficiently large bubbles, when R0 >> R∗ and R >> R∗, we can neglect the
capillary contributions to the evolution equations (14) and (17) and write:

ẋi =
3

R2

(
Disi (ζi + 1− xi)− xi

k∑
j=1

Djsj (ζj + 1− xj)

)
, (38)

RṘ =
k∑
i=1

Disi (ζi + 1− xi) . (39)
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An analytical solution for this set of equations is possible for k = 2 (for a binary gas bubble).
In this case, Eqs. (38) and (39) are reduced to the form:

ẋ1 =
3

R2
f (x1) , (40)

f (x1) = −D1s1

[
(γ − 1)x2

1 + (ζ1 + γζ2 + 2)x1 − ζ1 − 1
]
, (41)

RṘ = g (x1) , (42)

g (x1) = D1s1 [ζ1 + 1 + γζ2 + x1 (γ − 1)] , (43)

where:

γ ≡ D2s2

D1s1

. (44)

This set of equations is similar to the set of equations describing the evolution of a two
component droplet in the gas mixture, which has been studied in [18].

Recognizing that the case of γ = 1 (when D2s2 = D1s1 = Ds) was completely described
in the previous section for multicomponent bubbles of any size, we consider further the situation
with γ 6= 1, assuming for definiteness γ > 1. It is convenient to rewrite Eq. (41) in the form:

f (x1) = −D1s1 (γ − 1) (x1 − x1s) (x1 − x̃1s) , (45)

where x1s and x̃1s are the roots of function f (x1):

x1s =
− (ζ1 + 2 + γζ2) +

√
[ζ1 + 2 + γζ2]2 + 4 (γ − 1) (ζ1 + 1)

2 (γ − 1)
, (46)

x̃1s =
− (ζ1 + 2 + γζ2)−

√
[ζ1 + 2 + γζ2]2 + 4 (γ − 1) (ζ1 + 1)

2 (γ − 1)
. (47)

As follows from Eq. (47), at γ > 1, the root x̃1s is negative, x̃1s < 0, and has no physical
meaning. The root x1s lies in the interval 0 < x1 < 1 and corresponds to the stationary

composition of the bubble. As follows from Eqs. (42) and (43), the stationary rate
(
RṘ
)
s
of

the changing the bubble size is determined as:(
RṘ
)
s

= g (x1s) = D1s1 [ζ1 + 1 + γζ2 + x1s (γ − 1)] , (48)

or, in view of Eq. (46), as:(
RṘ
)
s

=
γ

1 + (γ − 1)x1s

D1s1 (ζ1 + ζ2 + 1) . (49)

As one can see from Eq. (49), the size of the bubble increases monotonically in the stationary
case at ζ1 + ζ2 + 1 > 0. If the opposite inequality holds, the bubble dissolves.

Since function f (x1) monotonically decreases over the 0 < x1 < 1 interval, it then
follows from Eq. (40) that molecular fraction x1 tends monotonically with time to its stationary
value x1s. This allows us to use the current value x1 (t) as the independent variable for solving
the system of equations for the evolution of the composition and size of the bubble. Accordingly,
we find from Eqs. (40) and (42) the following differential equation:

dR2

R2
=

2

3

g (x1)

f (x1)
dx1, (50)
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the solution of which at R (t = 0) = R0, x1 (t = 0) = x10 has the form:

R2 (x1) = R2
0 exp

2

3

x1∫
x10

g (y)

f (y)
dy

 . (51)

Substituting Eq. (51) in Eq. (40) yields another differential equation:

dx1

dt
=

3

R2
f (x1) =

3

R2
0 exp

(
2

3

∫ x1

x10

g (y)

f (y)
dy

)f (x1) , (52)

the solution of which can be written as:

t (x1) =
R2

0

3

x1∫
x10

dy

f (y)
exp

2

3

y∫
x10

g (z)

f (z)
dz

 . (53)

It is convenient to transform expression (43) for function g (x1) as:

g (x1) = D1s1 (γ − 1) (x1 − x1∗) , (54)

where:

x1∗ =
ζ1 + γζ2 + 1

1− γ
. (55)

Using Eqs. (45) and (54) allows us to represent the ratio g(x1)/f(x1) in the form:

g(x1)

f(x1)
= − x1 − x1∗

(x1 − x1s) (x1 − x̃1s)
=

1

x1s − x̃1s

(
x̃1s − x1∗

x1 − x̃1s

− x1s − x1∗

x1 − x1s

)
, (56)

and to perform integration:

exp

2

3

x∫
x10

g(y)

f(y)
dy

 =

(
x10 − x1s

x1 − x1s

)2

3

x1s − x1∗

x1s − x̃1s

(
x1 − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s . (57)

Using Eq. (57) in Eqs. (51) and (53), we finally obtain for the square of the radius, R2(x) and
time, t(x) the following expressions:

R2(x1) = R2
0

(
x10 − x1s

x1 − x1s

)2

3

x1s − x1∗

x1s − x̃1s

(
x1 − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s , (58)

t(x1) =
R2

0

3f (x10)

x1∫
x10

dy

(
x10 − x1s

y − x1s

)2

3

x1s − x1∗

x1s − x̃1s

+ 1(
y − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s

− 1
. (59)

The dependence x1 (t) can be found by reversing the dependence t(x1) obtained with the help
of Eq. (59). Substituting the reversal function x1 (t) in Eq. (58) determines the dependence
R2 (t).

Let us now consider the possibility of nonmonotonic behavior for rate RṘ as a function
of system parameters and an initial bubble composition. As is clear from Eqs. (42) and (54),
a nonmonotonic growth or dissolution of the bubble becomes possible when the parameter x1∗,
determined by Eq. (55), appears within the 0 < x1∗ < 1 interval, and the concentration x1 (t)
passes during the bubble evolution through the value x1 = x1∗. In such a case, we have Ṙ > 0
at x1 < x1∗ and Ṙ < 0 at x1 > x1∗. According to Eq. (55), the condition 0 < x1∗ < 1 is
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reached if the double inequality 1 − γ < ζ1 + γζ2 + 1 < 0 is fulfilled. Moreover, if we have
0 < x1∗ < x1s < 1 and x10 < x1∗, then the bubble radius will diminish at the initial stage of its
evolution until the concentration x1 = x1∗ is reached and then grow monotonically after that.
Note that, as follows from Eqs. (46) and (55), inequality x1∗ < x1s fulfils at ζ1 + ζ2 + 1 > 0.

To control our results, we will check the case when γ → 1 in Eq. (58). Setting γ → 1
in Eqs. (46), (47) and (55) and recognizing with the help of Eq. (23) that ζ̄ ≡ ζ1 + ζ2 + 1 in the
case of two dissolved gases, we find:

x1s →
ζ1 + 1

ζ̄ + 1
, x̃1s ∼ −

ζ̄ + 1

γ − 1
→∞, x1∗ ∼ −

ζ̄

γ − 1
→∞, (60)

x1s − x1∗

x1s − x̃1s

→ ζ̄

ζ̄ + 1
,

(
x1 − x̃1s

x10 − x̃1s

)2

3

x̃1s − x1∗

x1s − x̃1s → 1. (61)

Using Eqs. (60) and (61) in Eq. (58), we obtain R2(x1) −−→
γ→1

R2
0

(
x10 − x1s

x1 − x1s

) 2
3

ζ̄
ζ̄+1

. As

expected, this result coincides with Eq. (36) for the case when D1s1 = D2s2 ≡ Ds and
R >> R∗/

∣∣ζ̄∣∣ , R0 >> R∗/
∣∣ζ̄∣∣ which was considered in section 3.
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