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Fluid flow in a nanotube, caused by a moving soliton-like perturbation of its wall, is considered. We use a

crystallite model for nanotube flow. A picture of the flow is described. The formula for crystallite velocity

is derived, allowing one to find fluid flux through a nanotube.
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1. Introduction

Fluid flow in nanotubes were intensively investigated in our previous studies. This
was inspired by the intriguing prospects for the possible applications to nanomembrane,
nanoreactor, nanoaccumulator, etc. It should be mentioned that nanotube flow obeys a set
of remarkable peculiarities, distinguishing it from classical tube flow [1-6]. It poses a problem
of theoretical description of such flows. Creation of new nanodevices based on nanoflows
is impossible without theoretical models giving prediction of flow character. Currently,
there is no general theory for nanoflow. One has only particular models, describing some
specific nanoflow features. (see, e.g., [7,8]). In the present paper, we consider fluid flow in
nanotube caused by mechanical waves propagating in its walls. Such flows were actively
studied in recent years [9-11]. Such deformation may be caused by mechanical action on the
nanotube [12]. We consider the problem in the framework of crystallite model of nanoflow,
suggested in [13,14]. The model was developed theoretically [15]. The existence of ice-like
clusters, resembling a solid, was observed in earlier experiments [3]. Additional confirmation
for this hypothesis was given by experiments with multi-component flow through nanotubes.
The authors observed structure separation predicted by the crystallite model.

2. Model description

We consider cylindrical nanotube filled by liquid. The smallness of the Reynolds
number for the nanotube flow allows us to use Stokes’ approximation [15]. We treat the
problem in the framework of the crystallite model. Correspondingly, we assume that the
nanotube contain solid-like part of the liquid concentrated near the nanotube axis. It is
separated from the nanotube boundary by liquid layer (usually, one refers to this layer as
the non-autonomous phase) [18]. One can note that due to thermodynamics arguments,
we can conclude that both the crystallite and the non-autonomous phase layer have some
equilibrium size (radius, which depends on the temperature, type of the liquid, etc. These
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two factors are competitive in the nanotube, leading to some correlation between their widths
in particular cases.

Thus, we have the following equations for the flow of the liquid layer (non-autonomous
phase) in the nanotube under the assumption of an axisymmetric character for the flow ((r, z)
are the cylindrical coordinates):
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where t is time, vr and vz are radial and longitudinal components of the velocity, p is the
pressure, µ is the fluid viscosity. Note that the last equation is the continuity equation. We
assume that the central part of the nanotube is occupied by a crystallite of radius Rc, R is
the cylindrical nanotube radius. We assume that there is moving wall soliton, i.e. moving
boundary perturbation. In our model, the nanotube is assumed to be cylindrical. To take
into account the soliton, we pose the following non-homogeneous boundary condition at the
cylinder boundary r = R:

vz|r=R = 0, vr|r=R =
∂h

∂t
≡ −V ∂h

∂z
. (2)

Here, h = h(z, t) is the radial perturbation of nanotube wall due to the soliton, V
is the soliton velocity (given). As for the internal cylinder (crystallite-fluid boundary), the
following boundary conditions are assumed:

vz|r=Rc
= Vc, vr|r=Rc

= 0. (3)

Here, Vc is the crystallite velocity, which is not predetermined. We consider the
equilibrium state and determine the crystallite velocity using conditions of vanishing friction
force (crystallite-fluid). One can present the velocity in the layer between the wall of the
nanotube and the crystallite in the following form:
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Substituting (4) into (1), one obtains the equation for Ψ. We present Ψ in the
following form: Ψ = ψ + ψ0, where ψ0 has the form:
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Then, the solution : ψ satisfying boundary conditions (2), (3) has the following form:
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where
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,

q1 = (U21 (R) I0 (kR) + U22 (R)K0 (kR)) ,

p1 = (U11 (r) I1 (kr) + U12 (r)K1 (kr)) ,
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q2 = (U11 (R) I0 (kR) + U12 (R)K0 (kR)) ,

p2 = (U21 (r) I1 (kr) + U22 (r)K1 (kr)) .

Here,
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where I0 (x), K0 (x), I1 (x), K1 (x) are, correspondingly, the modified Bessel function and
the modified Neumann function of the 0th and the 2nd orders.

Fig. 1 shows the pattern of the flow in the nanotube between the crystallite (on the
left) and the nanotube wall (on the right).

Fig. 1. Picture of the streamlines in the nanotubes

Fig. 2 shows the pattern of the flow in the nanotube. The streamlines form reflects
the impact of the soliton in the right part of the figure.

Note that at present, our solution has a free parameter Vc (velocity of the crystal-
lite). To calculate the speed of the crystallite, we use the condition of vanishing viscous
friction force applied to the crystallite (more precisely, linear force density, i.e. the force,
corresponding to the unit length). Then, we have:
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where L — crystallite length, hk is the Fourier transform of h. Incorporating this formula
with the expression for the stream function, one obtains the fluid flux through the nanotube.
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Fig. 2. Picture of the streamlines in the nanotubes
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