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The scattering of elastic waves is studied in the vicinity of a vacuum-medium boundary. The Green’s function

for a half-space is re-derived within the mixed 2D-Fourier representation, which is convenient for studying

layered media. Monte-Carlo simulations of elastic wave scattering from random inhomogeneities within a

simplified scalar model are performed, accounting for a boundary-induced term in the Green’s function. The

multiply scattered elastic waves’ radiation is shown to decay with distance from the source much slower in

vicinity of boundary than in an infinite medium, due to the boundary condition requirements.
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1. Introduction

We consider the problem of scattering for radiation generated by a point-like source
of harmonic oscillations in an elastic half-space. The field of the point-source, known as the
Green’s function of the wave equation, is fundamental for the theory of the single-, as well
as multiple- scattering in random media ( [1]).

The problem of the displacement field generated by a point-like source in an elastic
bounded medium has been considered for more than 150 years, beginning with [2], and [3].
This problem is nevertheless still relevant today ( [4–6]).

There is considerable interest in coda waves, which were interpreted in [7] as scattering
from lithospheric heterogeneities (see, e.g., [8–11]). Great attention has been paid in the last
few decades to the multiple scattering of waves of different physical natures in random media (
[12]). In particular, remarkable progress has been achieved in multiple light scattering (see,
i.g., [13]). Subsequent methods elaborated for light scattering in random media were applied
to the investigation of elastic field scattering, mainly for seismic issues ( [14–20]).

Previously, the multiple scattering of elastic waves were studied using the Monte
Carlo method ( [14, 21, 22]) for a one-mode scalar model. Such a one-mode model can be
justified with the elastic waves transfer equation ( [23]), which assumes the shear mode to be
dominant. Realistically accounting for the mode conversions allowed the authors ( [18]) to
show that the shear mode becomes dominant very rapidly in the coda. Detailed Monte Carlo
simulations were performed in ( [24]), taking into account mode conversions and considering
multiple scattering in an infinite space.
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In the case of an electromagnetic field, the larger share of the wave refracting at the
boundary with vacuum escapes from the medium due to small reflectivity; the reflected share
of radiation is on the order of several percent for most dielectric materials. In contrast, for
elastic wave radiation, there occurs a total reflection at the boundary of an elastic medium
with a vacuum, requiring that the radiation incident upon the boundary should be com-
pletely returned back to the medium. Thus, while the corrections to the Green’s function
caused by the boundary can be neglected for the light scattering, for acoustic radiation, the
specific boundary contributions to the acoustic Green’s function should turn out to be quite
important.

In earlier simulations of multiple light scattering, we developed the semi-analytic
Monte-Carlo approach ( [25]) for a scalar model based upon the Bethe-Salpeter equation,
successively describing a number of correlation and coherent phenomena in random media
optics. Here, we generalize this approach for the multiple scattering of elastic waves, also
in the scalar one-mode approximation. We perform the elastic wave multiple scattering
simulation, describing radiation transfer in the framework of a simplified Bethe-Salpeter
equation, within the one-mode approximation. A crucial distinction of the present approach
is that calculating the iterative expansion terms for the Bethe-Salpeter equation in scattering
demands we use the exact form of the scalar Green’s function for the half-space geometry,
thus explicitly accounting for boundary conditions at the vacuum-elastic medium boundary.
To the best of our knowledge, such an approach to the boundary effect problem in multiple
scattering has not been applied before. We perform the Monte Carlo simulation for multiple
scattering of waves propagated from a point-like radiation source to a point-like receiver.
For comparison, we present the simulation results obtained using Green’s function for an
unbounded space. We found that using the exact Green’s function for a half-space and the
Green’s function for an infinite space gave rather different results. The simulations have
shown that multiply scattered radiation, obtained with proper accounting for the boundary,
propagates in the vicinity of vacuum-medium boundary for much longer distances than would
be the case for a simplified approach, wherein one neglects the boundary effect on the Green’s
function.

The paper is organized as follows: sction 2 contains general equations of elastic wave
theory; section 3 presents the Green’s function for a half-space within the 2D-Fourier repre-
sentation; in the fourth section the Monte Carlo procedure accounting for boundary effect
is described; section 5 contains results of simulations, and section 6 contains conclusions.

2. Generals

The elastic field, described as displacement vector u(r, t) dependent on space r and
time t ( [26]), in an homogeneous medium satisfies the wave equation:

∂2u/∂2t− c2tΔu+
(
c2t − c2l

)
grad divu = 0, (1)

where ct =
√

μ/ρ and cl =
√
(K + 4μ/3)/ρ are the velocities of transverse and longitudinal

elastic waves, respectively; ρ is the density, μ and K are the shear and the compression
moduli. The boundary conditions at the vacuum-medium interface B are defined as:

σn|B = 0, (2)

where n is the normal vector to surface B, and σ(r, t) is the stress tensor, with components

σij = (K − 2μ/3) δij divu+ μ

(
∂ui

∂rj
+

∂uj

∂ri

)
. (3)
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We consider harmonic fields with the temporal dependence of the form ∝ exp(−iωt),
where ω is the frequency. For the harmonic point-source with frequency ω, the displacement
field is described by the tensor Green’s function G(r, r′;ω) which satisfies the equation:

ρ
[(
c2t − c2l

)∇⊗∇− I
(
ω2 + c2tΔ

)]
G(r, r′, ω) = Iδ(r− r′), (4)

where I is the identity tensor, ⊗ denotes the tensor product, r′ and r are the source and
receiver positions. Further, for brevity, we omit the argument ω � 0.

For an infinite homogeneous medium, the Green’s function G(r, r′) = G0(R) with
R = r−r′ due to translational invariance. This Green’s function in the (r, ω)-representation
is known to be (see, i.g. [4], Eq. (4.43)):

G0(R) =
1

ρc2t

eiktR

4πR

[(
I− R⊗R

R2

)
+

(
i

ktR
− 1

k2
tR

2

)(
I− 3

R⊗R

R2

)]
+

+
1

ρc2l

eiklR

4πR

[
R⊗R

R2
−

(
i

klR
− 1

k2
l R

2

)(
I− 3

R⊗R

R2

)]
, (5)

where kl = ω/cl and kt = ω/ct are the longitudinal and transverse wave numbers respectively.
The radiation condition adds to kt,l infinitesimal damping Im (kt,l) = +i0. Forbidding waves
to propagate from infinity to the source requires that the Green’s function should satisfy the
Sommerfield radiation condition. As can easily be seen, the near-field asymptotics G0(R) ∝
R−1, whereas terms of the form R−3 and R−2 cancel each other out in the short distance
limit, R → 0, in contrast with the electromagnetic field, containing ( [27]) asymptotic term
R−3.

For a half-space medium, the 2D Fourier transform over transversal variables x,
y turns to be an effective method for solution of the wave equation due to its cylindrical
symmetry ( [4,28]). Thus, in this (q⊥, z)-representation, the wave equation (1) for temporally
harmonic displacement takes the form:(

K2∂
2/∂z2 + iK1∂/∂z + K0

)
u(q⊥, z) = 0, (6)

where K2, K1 = K1(q⊥) and K0 = K0(q⊥) are the 3× 3-matrices,

K0 =
(
ω2 − c2t q

2
⊥
)
I− (

c2l − c2t
)
Q⊗Q, K1 =

(
c2l − c2t

)
(Q⊗ n+ n⊗Q) ,

K2 = c2t I+
(
c2l − c2t

)
n⊗ n,

(7)

and the transversal vector q⊥ is presented formally as the 3D-vector Q = (q⊥, 0).
There are six independent solutions of Eq. (6):

u±
j (q⊥, z) = e±j (q⊥)e±iκj(q⊥)z, j = 1, 2, 3, (8)

where κ1,2(q⊥) = κt(q⊥), κ3(q⊥) = κl(q⊥),

κt =
√
k2
t − q2⊥, κl =

√
k2
l − q2⊥, (9)

are the eigenvalues and

e±1 (q⊥) = q⊥ × n/q⊥, e±3 (q⊥) = q±
l

(
q2⊥ + |κl|2

)−1/2
,

e±2 (q⊥) = (±κt(q⊥)q⊥/q⊥ − q⊥n)
(
q2⊥ + |κt|2

)−1/2
(10)

— eigenvectors of the second order matrix differential operator in Eq. (6), with

q±
l = (q⊥,±κl(q⊥)) (11)
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being the 3D wave vector. The waves with superscripts “±” propagate along axis z in
directions z → ±∞, respectively. These normal waves have simple physical interpretation:
u±
1,2(q⊥, z) are the transverse waves with wave vectors q±

t and u±
3 (q⊥, z) are the longitudinal

waves with wave vectors q±
l . Unit vectors e

±
j are the polarizations of these waves.

It should be noted that due to the equality κ1 = κ2, one can take as a set of eigen-
vectors e±1,2 any pair of linear independent vector satisfying to the orthogonality condition

e±1,2 ⊥ q±
t . We have fixed the choice requiring supplementarily the orthogonality relations

e±1 ⊥ n, e±1 ⊥ q⊥ and e±1 ⊥ e±2 should be fulfilled. Then, the subscript j = 1 corresponds to
SH-wave, j = 2 — to SV-wave, and j = 3 — to the P-wave.

3. The Green’s function in a Half-Space

Let an elastic medium occupy the half-space z > 0. There have been several deriva-
tions beside the classic ones for the Greens function in an elastic half-space; our approach is
quite close to that used by Johnson. The Green’s function within the (q⊥, z) -representation
with the δ-form source obeys the equation:

ρ
(
K2∂

2/∂z2 + iK1∂/∂z + K0

)
G(q⊥; z, z′) = Iδ(z − z′). (12)

The solution of Eq. (12) supplemented with boundary conditions at z = 0 can be sought as
a sum of two terms

G(q⊥; z, z′) = G0(q⊥; z − z′) + GB(q⊥; z, z′), (13)

where G0 is the Green’s function for the infinite homogenous medium and GB, being the
solution of the homogeneous wave equation(

K2∂
2/∂z2 + iK1∂/∂z + K0

)
GB(q⊥; z, z′) = 0, (14)

satisfies to the boundary condition.
The first term, the Green’s function for an infinite homogeneous medium (5), can be

written in the form:

G0(q⊥, z − z′) = i
(
2κtρω

2
)−1

[
κ

−1
t eiκt|z−z′| (k2

t I− q±
t ⊗ q±

t

)
+ κ

−1
l eiκl|z−z′|q±

l ⊗ q±
l

]
, (15)

where superscripts “+” must be chosen for z − z′ > 0 and “−” for z − z′ < 0 in q±
t,l.

Since components of the tensor Green’s function can be interpreted as matter dis-
placements, induced by the point source, the boundary conditions (2) give:

(B1∂/∂z + iB0)G(q⊥; z, z′)|z=0 = 0, (16)

where z′ is an arbitrary point inside the medium, z′ > 0,

B0 = μQ⊗ n+ (K − 2μ/3)n⊗Q, B1 = μI+ (K + μ/3)n⊗ n. (17)

Additionally, one should require there should be no wave propagation from infinity,
+∞, to the source. Since, for the body term G0(q⊥; z, z′), this requirement is fulfilled, it
should also be fulfilled for the term GB(q⊥; z, z′).

The solution for matrix equation (14), containing no wave propagation from infinity,
can be written as:

GB(q⊥; z, z′) =
3∑

j,m=1

Cjmu
+
m(q⊥; z)⊗ u−

j (q⊥;−z′), (18)

where Cjm = Cjm(q⊥) are the coefficients determined by the set of boundary conditions (16),

(B1∂/∂z + iB0)GB(q⊥; z, z′)|z=0 = − (B1∂/∂z + iB0)G0(q⊥; z, z′)|z=0 . (19)
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Physically, the (j,m) term describes wave u−
j incident upon the boundary and reflected

as wave u+
m, propagating from boundary to receiver. We schematically illustrate in Fig. 1

the propagation of waves, constituting the Green’s function G(r′, r), in a half space with
boundary B, from the source to receiver.

B
Vacuum

Elastic 
medium

Source

Receiver

r'

r

z = 0 

z

Fig. 1. Schematic source and receiver arrangement in the half-space geometry.
The solid and dash circular arcs represent waves G0 and GB, respectively, and
B is the boundary of the medium-vacuum.

Substituting Eqs. (18) and (15) into (19), we obtain a set of algebraic equations for
nine coefficients Cjm with solution in the form:

Cjm = −iamj

(
2ρc2jκjD

)−1
, (20)

where j, m = 1–3; c1,2 = ct, c3 = cl, and

a11 = D, D = 4κtκlq
2
⊥ + E2, E = k2

t − 2q2⊥, a22 = a33 = D − 2E2,

a23 = −4clc
−1
t κlq⊥E, a32 = −a23c

2
t c

−2
l κtκ

−1
l , a1j = aj1 = 0 (j = 2, 3).

(21)

Performing the inverse Fourier transform we present the boundary induced term GB

in the physical space as follows:

GB(R⊥; z, z′) = − i

2ρ

3∑
j,m=1

c−2
j

∫
dq⊥
(2π)2

amj

Dκj
eiq⊥·R⊥ei(κmz+κjz

′)e+m(q⊥)⊗ e−j (q⊥). (22)

The 2D-integrals are expressed through 1D-integrals for the Bessel functions. The (j,m)-
term in this sum can be described as an input for the transformation of the j-mode incident
wave into the m-mode generated wave. The zero values for coefficients a12, a21, a13, a31
correspond to the well-known selection rules ( [4]).

Various contributions to integrals (22) over q⊥ reproduce the known types of elastic
waves of different physical nature. The vicinity of stationary phases in exponentials of
Eq. (22) yields the known formulas of geometrical acoustics describing all pairs of different
modes of incident and reflected waves. The pole singularity due to the zero of determinant
D(q⊥) in the integrand, gives rise to surface Rayleigh waves. The zeros of κj at q⊥ = kt,l,
being the branch points of the integrands, give rise to head waves.

In the far-field zone, q⊥R⊥+zκm+z′κj � 1, the integrands in Eq. (22) contain rapidly
oscillating exponents and the method of stationary phase can be applied. The relevant
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contribution to each integral comes from the range of the stationary point qjm
st = qjmR⊥/R⊥,

(0 � qjm < kt,l), which can be found as the root of equation:

z′qjmκ−1
j (qjm) + z qjmκ

−1
m (qjm) = R⊥. (23)

As a result, this contribution can be presented as follows:

Gst
B(R⊥; z, z′) ∼ −

3∑
j,m=1

1

ρc2j
Fjm(qjm)

eiΦjm(qjm)

4πRjm(qjm)
e+m(q

jm
st )⊗ e−j (q

jm
st ), (24)

where

Rjm =
√(

Rj
inkj +Rm

refkmκ
2
jκ

−2
m

)
R⊥q−1

jm , (25)

and Rj
in(qjm) and Rm

ref(qjm) can be interpreted as the geometric acoustic path of an elastic
wave traveling from the source to the boundary in the form of the j-th mode and reflected
from the boundary to the receiver as the m-th mode, and:

Φjm = qjmR⊥ + κm(qjm)z + κj(qjm)z
′ (26)

is the total phase, and Fjm(qjm) = amj(qjm)/D(qjm) are the generalized reflection coefficients.
Coefficient Fjm describes conversion of the j-th incident mode into the m-th reflected mode
at the medium-vacuum boundary. It also accounts for phase shifts and the solid angle
transformation occurring at reflection of spherical waves (see Sec. 6 in [4], cf. in optics [29,
30]).

It should be noted that the terms of asymptotic formula (24) can be interpreted as
five spherical waves generated by three imaginary sources.

The near-field zone asymptotics of the Green’s function, described by (22), as well as
the Rayleigh wave contribution, were considered within the approach outlined in [31].

There have been several derivations for the Green’s function in an elastic half-space,
however, our approach is quite similar to that used in ( [28]).

4. Multiple scattering in a half-space

In addition to the coherent wave propagating from a source in a heterogeneous elastic
medium, scattered waves also appear. The radiation is scattered from fluctuations of density
ρ(fl)(r) as well as material parameters, which are generally described with the fourth rank
tensor C(fl)(r). For a locally-isotropic medium, it can be written as:

C
(fl)
αβγζ(r) = K(fl)(r)δαβδγζ + μ(fl)(r)

(
δαγδβζ + δαζδγβ − 2

3
δαβδγζ

)
, (27)

where K(fl)(r) and μ(fl)(r) are the random, or fluctuating compression and shear modules.
We present the material parameters as

ρ(fl)(r) = ρ+ δρ(r), C(fl)(r) = C+ δC(r), (28)

where δρ(r) and δC(r) are random fluctuations with respect to the average values for ρ and
C.

The wave equation for the Green’s function G(fl) in a random medium in the (r, ω)-
representation can be written as:[

ρ(fl)(r)δαγω
2 +

∂

∂rβ

(
C

(fl)
αβγζ(r)

∂

∂rζ

)]
G(fl)

γη (r, r
′) = −δαηδ(r− r′). (29)
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For an homogeneous non-fluctuating medium, it returns to (4). The differential
equation (29) can be written in the form of an integral equation (see [32]):

G(fl)(r, r′) = G(r, r′) + ω2

∫
G(r, r1)δρ(r1)G

(fl)(r1, r
′) dr1−

−
∫

∂G(r, r1)

∂r1
δC(r1)

∂G(fl)(r1, r
′)

∂r1
dr1. (30)

Here, G(r, r′) is the Green’s function of an homogeneous medium occupying the half-space.
Our aim is to study the effect of the boundary on multiple scattering. Multiple

scattering has been studied in detail for the case of an electromagnetic field for some time.
However, the boundary conditions turn to be quite different for elastic or electromagnetic
fields. Namely, for the case of elastic waves and a medium-vacuum boundary, the scattered
radiation remains in the medium, in contrast with the electromagnetic field, which permits
us to disregard a reflection at the dielectric-vacuum boundary.

In order to illustrate the influence of boundaries on the multiple scattering of elastic
waves we introduce a number of simplifying assumptions.

First, we will neglect the tensorial character of the wave equation (30). Then, the
Green’s function for a half-space takes the form of sum of two spherical scalar waves:

G(r, r′) = G0(r− r′) +GB(r; r
′); (31)

here, the first term is the field of the point-source in an infinite medium:

G0(r− r′) = 1/(4πρc2) |r− r′|−1
exp (ik |r− r′|) , (32)

and the second one:
GB(r; r

′) = −G0(r− r′M) (33)

can be interpreted as the field of the source’s mirror image, located at point r′M = (x′, y′,−z′)
where r′ = (x′, y′, z′) and c is the velocity of the considered wave mode. (Formally the tensor
equations (13), (5) and (24) are reduced to scalar ones, (31)–(33), if cl = ct = c; this
condition is non-physical for an elastic medium, but simplifies greatly the mathematical
aspects of multiple scattering analysis and simulation.) The wave number k = k′ + ik′′

contains both the real part, k′ = ω/c, as well as the imaginary part, k′′ = 1/(2l), where l
is the extinction length; the extinction is contributed by elastic scattering and adsorption,
namely l−1 = l−1

a + l−1
s where ls is the scattering mean free path and la is adsorption length.

A similar scalar model has been used in a number of Monte-Carlo simulations for seismic
problems (see, e.g., [22, 33]).

Secondly, we will neglect fluctuations of elastic moduli as compared with the density
fluctuations. This approach corresponds to the widely-known assumption that the fluctu-
ations of thermodynamic variable derivatives are to be smaller than those of the variables
themselves; thus we neglect the second integral term in (30).

As a result, we arrive at the one-mode scalar approximation for the considered wave-
scattering problem. In particular, we neglect the difference in reflection for the specific modes
of different types and do not consider the non-trivial transformation of the longitudinal and
transverse waves under scattering. These effects are significant, and thus, require special
consideration. Note also that with these simplifications, the simulation of the elastic field
transfer turns to be exactly the same as simulations of light radiation in a random medium in
the scalar field approach framework ( [25]). Additionally, to make the boundary conditions
as distinct as possible from that of light scattering, we presently add a term accounting for
the contribution of reflected radiation for every scattering event.
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The intensity of scattered radiation, Isc(r, r
′), transferred from the source in point r′

to receiver located in r, is proportional to the square of the Green’s function modulus:

Isc(r, r
′) ∝ ∣∣G(fl)(r, r′)

∣∣2 . (34)

Iterating the integral equation (30) and multiplying it by its complex conjugate, one presents
the quadratic form (34) as a series in orders of scattering.

For problems dealing with multiple scattering, all the contributions wherein the phase
shift between the pair of complex-conjugated fields is not compensated are known to be
neglected due to the random configuration of the medium’s inhomogeneities. As a result,
one can restricts oneself only with ladder contributions, wherein paths traveled by a pair of
complex-conjugated fields coincide. Thus, the multiple scattering intensity can be presented
as the series:

Isc(r, r
′) ∝

∑
σ0,1

∫
Λ(r, rσ1

1 )B
(
kσ1

(s)1 − kσ0

(i)0

)
Λ(r1, r

′σ0) dr1+

+
∑
σ0,1,2

∫
Λ(r, rσ2

2 )B
(
kσ2

(s)2 − kσ1

(i)1

)
Λ(r2, r

σ1
1 )B

(
kσ1

(s)1 − kσ0

(i)0

)
Λ(r1, r

′σ0) dr1dr2 + . . . , (35)

where the propagator in an infinite medium Λ(R,R′) describing the radiation transfer be-
tween two successive scattering events occurring at points rj+1 and rj is formed by the
product of pair of the Green’s function (31)

Λ(rj+1, r
σ
j ) =

∣∣G0

(
rj+1 − rσj

)∣∣2 . (36)

The cross-terms G0G
∗
B, G

∗
0GB are omitted due to chaotic randomization of phase shifts over

the inhomogeneities.
Subscripts j = 1, 2, . . . , n enumerate the scattering events, therewith indices j = 0

and j = n + 1 refer to the source and receiver , r0 = r′, rn+1 = r, respectively, (Fig. 2a);

B Vacuum

Elastic medium 
Source

Receiver

r

r1

r2 r3

rn −1

r j

rn

rj +1
 

d

r'

rj −1

a)

B

rj +1

 

rj −1

r jM

r j-1M

r j+1M

k (s) j −1
σ=1

k  (i) j 
σ=0 k (s) j −1

σ=0
= k (s) j 

σ=0 k (i) j +1
σ=0

=

k (i) j 
σ=1 k (s) j 

σ=1 k (i) j +1
σ=1

rj 

b)

Fig. 2. a) The stochastic trajectory presented as the path traveled by a
“phonon packet” undergoing a sequence of n scattering events. b) Wave vec-
tors of incident, kσ

(i)j , and scattered, kσ
(s)j , elastic waves involved in the j-th

scattering event. Superscripts σ = 0 and σ = 1 correspond to the direct prop-
agation of the beam and to propagation with intermediate reflection, respec-
tively.

rσj =

{
rj , σ = 0,

rjM , σ = 1,
(37)
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points rj and rjM are the positions of the j-th scatterer and its mirror image, r0M rn+1,M

are the mirror images of the source and the receiver (Fig. 2b). Wave vectors of incident,
kσ
(i)j , and scattered, kσ

(s)j , elastic waves in j-th scattering event are

kσ
(i)j = k′ (rj − rσj−1

)
/
∣∣rj − rσj−1

∣∣ , kσ
(s)j = k′ (rσj+1 − rj

)
/
∣∣rσj+1 − rj

∣∣ . (38)

Summing over σ0, σ1, . . . in Eq. (35), we account for reflections of incident and
scattered beams of all scattering orders. Thus, accounting for the boundary effect doubles
the number of terms of Eq. (35) with the scattering order increasing per unit.

The phase function B(q) is the Fourier transform of the density correlation function

B(q) =

∫
〈δρ(R)δρ(R′)〉e−iq(R−R′) dR,

where q is the momentum transfer q = k(s)−k(i). For the isotropic scattering phase function,
B(q) is constant; for anisotropic scattering, it depends on the scattering angle θ through wave
vectors of incidence k(i) and k(s), q = 2k′ sin(θ/2).

Accounting for the explicit form of the Green’s function of a scalar field for a half-
space (31), (32), the propagator, describing the radiation transfer between two successive
events of scattering in Eq. (35), can be written as follows:

Λ
(
rj+1, r

σ
j

)
=

(
4πρc2

∣∣rj+1 − rσj
∣∣)−2

exp
(− ∣∣rj+1 − rσj

∣∣ /l) . (39)

The exponential decay factor comes from the imaginary part of the wave number in Eq. (32).

Within the Monte-Carlo method, one simulates a stochastic trajectory (Fig. 2). The
average over these trajectories gives the scattered radiation intensity.

A random trajectory is constructed recurrently. Let rj be the position of the j-th
scattering event. We define the position of the next scattering event as rj+1 = rj+r. Let U1,
U2, and U3 be three independent random variables uniformly distributed within the interval
(0; 1); one determines spherical coordinates of vector r with rj as polar axis, namely the
distance r = |r|, and polar and azimuthal angles, θ and φ, via these random variables, as
follows.

The distance r =
∣∣rj+1 − rσj

∣∣ is generated using the substitution r = −l lnU1. In
this way, the inverse transform sampling method is realized (see, i.g., [34]) which takes into
account the exponential decay in Eq. (39).

The azimuthal φ is distributed uniformly, φ = 2πU2.

The angle θ in the own coordinate frame for vector rj is generated using the substi-
tution θ = F−1 (U3), where F−1 is the inverse transform of function:

F (x) =

(∫ π

0

B (2k′ sin(θ/2)) dθ
)−1 ∫ πx

0

B (2k′ sin(θ/2)) dθ.

The (j+1)-th scatterer position rj+1 and superscript σj are defined as follows. If the
point rj + rn is located inside the elastic half space (i.e. rjz + rnz � 0) then rj+1 = rj + rn
and we take σj = 0. Otherwise, the point rj + rn is reflected: rj+1 = (rj + rn)M and we
take σj = 1.

The number of scattering events, nmax, are determined with the requirement that the
numerical data become stable. In our simulations nmax did not exceed several hundreds.
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5. Results of simulation

We performed the Monte-Carlo simulation for elastic radiation transfer in the vicinity
of a boundary with vacuum for a scalar scattering model for distances far exceeding the char-
acteristic extinction. The approach based on the radiative transfer theory requires that the
wavelength should be small, as compared to the extinction length. Performing calculations,
we take the sound velocity as c = 2.5× 103 m/s, and the radiation frequency as f = 102 Hz,
which produces the wavelength of λ = 25 m. We then take the extinction length, range as
l = 200 m to l = 1000 m.

To account for scattering anisotropy, we apply the Henyey-Greenstein phase function

B (2k′ sin(θ/2)) ∝ (1− g2)(1 + g2 − 2g cos θ)−3/2. (40)

containing the unique parameter, the mean cosine of scattering angle, g = 〈cos θ〉. This
function, widely used in many radiation transfer problems ( [1]), is a particular realization
of the von Kármán phase function (see for example [35]):

B (q) ∝ (
1 + q2a2

)−3/2−κ

, (41)

well-known in geophysics, with the Hurst exponent κ = 0 and characteristic size of inhomo-
geneities a being specified as a = k−1√g/(1− g).

We have also used the optical theorem (see, e.g., [36,37]) which relates the extinction
length l and phase function B(q).

We have shown the intensity of multiply scattered radiation as a function of the
distance between the source and receiver. We present results for two positions of the source,
either at the surface, or at one kilometer deep d in the medium; the receiver is placed at the
boundary.

In Figs. 3a and 3b, the presented results for scattered intensity calculations were
shown to be dependent on the distance between the source and the receiver. In Fig. 3a results
are presented for isotropic scattering, g = 0, and in Fig. 3b — for anisotropic scattering,
g = 0.8.

For isotropic scattering, the plots of intensity for multiply-scattered radiation, shown
in the same units as function of the source-receiver distance, turn out to be quite close for
both geometries. For small distances it can be explained by equal values for the ballistic
“phonon” inputs which are dominant at this spatial range, while with increased distances,
the depth of the source positions becomes negligible in comparison to the distance along the
surface.

For anisotropic scattering, the picture is different. The intensity of multiply scattered
radiation turns to be noticeably smaller for the geometry with an imbedded source, as
compared to the surface-based source. For comparison, we show the simulation results
obtained for the model wherein the boundary of the medium is accounted for only in the
spatial integrals over half-space in the series over the scattering orders obtained by iterations
of integral equations like the Bethe-Salpeter equation Eq. (30). Such an approach was
specifically used in [14, 15]. The principal distinction of our approach is that we not only
account for the boundedness of the scattering medium by performing the spatial integrations,
but also the fact that the integrand itself, being the pair product of Green’s functions, varies
approaching the boundary range. For both geometries, the radiation intensity is seen to be
smaller for isotropic as well as anisotropic scattering, and decays with distance much faster.
Physically, this can be explained by the loss of “phonons” at the boundary due to the neglect
of reflection.
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Fig. 3. Intensity of multiply scattered radiation via distance between source
and receiver. The sampling volume N = 2 × 106. The receiver moves along
the surface, and the source is located: � and � — at the surface, � and ♦ —
at the depth of 1 km; For both plots: � — and ♦ — the reflection of radiation
at the boundary is neglected thoroughly, for � and � the total reflection at
the boundary is supposed. a) isotropic scattering, g = 0, scattering mean free
path ls = 1000 m. b) anisotropic scattering, g = 0.8, scattering mean free
path ls = 200 m, adsorption length la = 10000 km for both figures.

In media with an anisotropic scattering indicatrix, the transport length ltr = ls(1 −
〈cos θ〉)−1, is known ( [1]) to take part of the universal spatial scale for multiple scattering
instead of the scattering mean free path ls. Thus, we plot the distance between source and
receiver in units of ltr. This permits us to compare results for simulations of acoustic as well
as optical models with quite different spatial dimensions.

This effect is especially pronounced within the boundary region, when the source and
receiver are both near the surface. It should be noted that the curves, plotted in terms
of transport length, would appear to be quite non-sensitive to anisotropy of the scattering
cross-section. This verifies the widely acknowledged assumption regarding the validity of the
diffusion mechanism for radiation transfer independently of the physical nature of radiation.

6. Conclusion

Thus, numerical simulations performed for a quite simplified model of an elastic
medium exhibit the important role boundary conditions play in the description of multiple
scattering; we have shown that proper accounting for the boundary requires that the form
of the Green’s function itself should be modified due to the boundary conditions.

Simulating the elastic random wave transfer, we have used a previously-developed ap-
proach for the study of multiple scattering of light in random media. However, the boundary
conditions for elastic waves highlight a fundamental distinction from that of light scattering.
The boundary brings about reflected and refracted waves; for dielectric media, the reflected
light radiation, in most cases, can be neglected, since it leads to small radiation amount
dependent on the reflectivity mismatch. In contrast, for an elastic medium at the boundary
with a vacuum, the total radiation is returned back; thus the boundary effect turns out to
be much stronger for an elastic waves as compared with optics.
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The results obtained permit us to conclude that under similar conditions, multiply
scattered elastic waves travel much longer on an acoustic path, than the light waves, over
relevant extinction scales.

For the scalar model considered presently the effect of boundary is simply accounted
for due to the fact that the boundary-induced term of the Green’s function long-range
asymptotics takes the form of a spherical wave generated by a single virtual mirror image
source. For a more sophisticated problem of elastic wave multiple scattering, one is to take
into account the tensorial character of the Green’s function. The boundary-induced term
specifically describes, in the far field zone, non-trivial transformations at the vacuum-medium
boundary of three incident elastic wave modes into three reflected ones as inputs of different
mirror image sources for different types of incident-reflected modes pairs. Near the boundary,
above all, the Rayleigh surface waves’ input must also be taken into account. We hope that
the simulations performed here can be generalized, accounting for all elastic wave modes.
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