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The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator

having the form S = A ⊗ IT + IA ⊗ T where the operator A is symmetric and the operator T is bounded

and self-adjoint. The formula for the γ-field and the Weyl function corresponding the the boundary triplet

ΠS is obtained in terms of the γ-field and the Weyl function corresponding to the boundary triplet ΠA.
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1. Introduction

The spectral theory of differential operators is very important for mathematics and
has many applications in quantum physics (see, e.g., [1]. The theory of self-adjoint operators
and especially of self-adjoint extensions of symmetric operators occupies a special place in the
operator theory [2]. In many interesting problems of quantum physics (like the interaction of
photons with electrons) the operators take on the form of the sum of tensor products [3], [4].
From general position, the extensions are usually described in terms of so-called boundary
triplets [5]. Up to now, there is no boundary triplets method for obtaining all self-adjoint
extensions of such an operator.

In particular, we consider a closed densely defined symmetric operator

S = A⊗ IT + IA ⊗ T (1.1)

where A is a closed densely defined symmetric operator on the separable Hilbert space HA

and T is a bounded self-adjoint operator acting on the separable infinite dimensional Hilbert
space HT . Notice that the deficiency indices of S are infinite even if A has finite deficiency
indices.

Our aim is to describe all self-adjoint extensions of S using the boundary triplet
approach. More precisely, assuming that ΠA = {HA,Γ

A
0 ,Γ

A
1 } is a boundary triplet for A∗ we

construct a boundary triplet ΠS = {HS,Γ
S
0 ,Γ

S
1 } for S∗. In addition, using the γ-field γA(·)

and the Weyl function MA(·) of the boundary triplet ΠA we express the γ-field γS(·) and
Weyl function MS(·) of ΠS.

The present note generalizes results of [6]. In [6] on the Hilbert space H = L2(R+,H)
the operator

(Sf)(x) = − d2

dt2
f(t) + Tf(t),

f ∈ dom (S) := {f ∈ W 2,2(R+,H) : f(0) = f ′(0) = 0}.
(1.2)
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was considered where T is a bounded self-adjoint operator. One easily checks that the
operator (1.2) has the form (1.1) where A acts on L2(R+) and is given by

(Af)(t) = − d2

dt2
f(t), f ∈ dom (A) := {W 2,2(R+) : f(0) = f ′(0) = 0}.

In [6] it was verified that ΠS = {H,Γ0,Γ1}
Γ0f := f(0), Γ1f = f ′(0), f ∈ dom (S∗) = W 2,2(R+,H).

defines a boundary triplet for S∗. The corresponding Weyl function is given by MS(z) =
i
√
z − T , z ∈ C±.

Notation. Let H and H be separable Hilbert spaces. The set of bounded linear
operators from H1 to H2 is denoted by [H1,H2]; [H] := [H,H]. By Sp(H), p ∈ (0,∞], we
denote the Schatten-v.Neumann ideals of compact operators on H; in particular, S∞(H)
denotes the ideal of compact operators in H.

By dom (T ), ran (T ) and σ(T ) we denote the domain, range and spectrum of the
operator T , respectively. The symbols σp(·), σc(·) and σr(·) stand for the point, continuous
and residual spectrum of a linear operator. Recall that z ∈ σc(H) if ker (H − z) = {0} and

ran (H − z) �= ran (H − z) = H; z ∈ σr(H) if ker (H − z) = {0} and ran (H − z) �= H.

2. Preliminaries

2.1. Linear relations

A linear relation Θ in H is a closed linear subspace of H ⊕H. The set of all linear

relations in H is denoted by C̃(H). Denote also by C(H) the set of all closed linear (not
necessarily densely defined) operators in H. Identifying each operator T ∈ C(H) with its

graph gr (T ) we regard C(H) as a subset of C̃(H).

The role of the set C̃(H) in extension theory becomes clear from Proposition 2.3.
However, its role in the operator theory is substantially motivated by the following circum-

stances: in contrast to C(H), the set C̃(H) is closed with respect to taking inverse and adjoint
relations Θ−1 and Θ∗. The latter are given by: Θ−1 = {{g, f} : {f, g} ∈ Θ} and

Θ∗ =
{(

k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
.

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.

2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts regarding boundary triplets. Let S be a densely
defined closed symmetric operator with equal deficiency indices n±(S) := dim(N±i), Nz :=
ker (S∗ − z), z ∈ C±, acting on some separable Hilbert space H.

Definition 2.1.
(i) A closed extension S̃ of S is called proper if dom (S) ⊂ dom (S̃) ⊂ dom (S∗).
(ii) Two proper extensions S̃ ′, S̃ are called disjoint if dom (S̃ ′) ∩ dom (S̃) = dom (S) and

transversal if in addition dom (S̃ ′) + dom (S̃) = dom (S∗).

We denote by ExtS the set of all proper extensions of S completed by the non-proper
extensions S and S∗ is denoted. Any self-adjoint or maximal dissipative (accumulative)
extension is proper.
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Definition 2.2 ( [7]). A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary Hilbert space
and Γ0,Γ1 : dom (S∗) → H are linear mappings, is called a boundary triplet for S∗ if the
”abstract Green’s identity”

(S∗f, g)− (f, S∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom (S∗). (2.1)

is satisfied and the mapping Γ := (Γ0,Γ1)
� : dom (S∗) → H⊕H is surjective, i.e. ran (Γ) =

H⊕H. ♦

A boundary triplet Π = {H,Γ0,Γ1} for S∗ always exists whenever n+(S) = n−(S).
Note also that n±(S) = dim(H) and ker (Γ0) ∩ ker (Γ1) = dom (S).

In general, the linear maps Γj : H −→ H, j = 0, 1, are neither bounded nor closed.
However, equipping the domain dom (S∗) with the graph norm

‖f‖2S∗ := ‖S∗‖2 + ‖f‖2, f ∈ dom (S∗), (2.2)

one gets a Hilbert space, which is denoted by H+(S
∗), and regarding the maps Γj : H −→ H,

j = 0, 1, as acting from H+(S
∗) into H it turns out that that the operators Γj : H+(S

∗) −→
H, j = 0, 1, are bounded. In the following work we denote the operator Γj : H+(S

∗) −→ H
by Γ̂ j : H+(S

∗) −→ H, j = 0, 1. From surjectivity it follows that ran ( Γ̂ ) = H⊕H, where

Γ̂ := ( Γ̂ 1, Γ̂ 1). Notice that the abstract Green’s identity (2.1) can be written as

( Ŝ∗ f, g)− (f, Ŝ∗ g) = ( Γ̂ 1f, Γ̂ 0g)− ( Γ̂ 0f, Γ̂ 1g), f, g ∈ dom (S∗). (2.3)

where Ŝ∗ denotes the operator S∗ regarded as acting from H+(S
∗) into H.

With any boundary triplet Π one associates two canonical self-adjoint extensions
Sj := S∗ � ker (Γj), j ∈ {0, 1}. Conversely, for any extension S0 = S∗

0 ∈ ExtS there exists a
(non-unique) boundary triplet Π = {H,Γ0,Γ1} for S∗ such that S0 := S∗ � ker (Γ0).

Using the concept of boundary triplets one can parameterize all proper extensions of
A in the following way.

Proposition 2.3 ( [8, 9]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗. Then the
mapping

ExtS � S̃ → Γdom (S̃) = (Γ0f,Γ1f)
� : f ∈ dom (S̃)} =: Θ ∈ C̃(H) (2.4)

establishes a bijective correspondence between the sets ExtS and C̃(H). We write S̃ = SΘ if

S̃ corresponds to Θ by (2.4). Moreover, the following holds:

(i) S∗
Θ = SΘ∗, in particular, S∗

Θ = SΘ if and only if Θ∗ = Θ.

(ii) SΘ is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).

(iii) The extensions SΘ and S0 are disjoint (transversal) if and only if there is a closed
(bounded) operator B such that Θ = gr (B). In this case (2.4) takes the form

SΘ := Sgr (B) = S∗ � ker (Γ1 − BΓ0). (2.5)

In particular, Sj := S∗ � ker (Γj) = SΘj
, j ∈ {0, 1}, where Θ0 := {0} × H and

Θ1 := H × {0} = gr (O) where O denotes the zero operator in H. Note also that C̃(H)
contains the trivial linear relations {0} × {0} and H × H parameterizing the extensions S
and S∗, respectively, for any boundary triplet Π.
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2.3. γ-field and Weyl function

It is well known that Weyl functions are important tools in the direct and inverse
spectral theory of Sturm-Liouville operators. In [8, 11] the concept of Weyl function was
generalized to the case of an arbitrary symmetric operator S with n+(S) = n−(S) � ∞.
Following [8], we briefly recall basic facts on Weyl functions and γ-fields associated with a
boundary triplet Π.

Definition 2.4 ( [8, 11]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗ and S0 = S∗ �
ker (Γ0). The operator valued functions γ(·) : ρ(S0) → [H,H] and M(·) : ρ(S0) → [H]
defined by

γ(z) :=
(
Γ0 � Nz

)−1
and M(z) := Γ1γ(z), z ∈ ρ(S0), (2.6)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary
triplet Π.

Clearly, the Weyl function can equivalently be defined by

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(S0).

The γ-field γ(·) and the Weyl function M(·) in (2.6) are well defined. Moreover, both γ(·)
and M(·) are holomorphic on ρ(S0) and the following relations

γ(z) =
(
I + (z − ζ)(S0 − z)−1

)
γ(ζ), z, ζ ∈ ρ(S0), (2.7)

and

M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), z, ζ ∈ ρ(S0), (2.8)

hold. Identity (2.8) yields that M(·) is [H]-valued Nevanlinna function (M(·) ∈ R[H]), i.e.
M(·) is [H]-valued holomorphic function on C± satisfying

M(z) = M(z)∗ and
Im(M(z))

Im(z)
� 0, z ∈ C+ ∪ C−.

It also follows from (2.8) that 0 ∈ ρ(Im(M(z))) for all z ∈ C±.

2.4. Krein-type formula for resolvents

Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗, M(·) and γ(·) the corresponding
Weyl function and γ-field, respectively. For any proper (not necessarily self-adjoint) exten-

sion S̃Θ ∈ ExtS with non-empty resolvent set ρ(S̃Θ) the following Krein-type formula holds
(cf. [8, 11, 12])

(SΘ − z)−1 − (S0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(S0) ∩ ρ(SΘ). (2.9)

Formula (2.9) extends the known Krein formula for canonical resolvents to the case of any
SΘ ∈ ExtS with ρ(SΘ) �= ∅. Moreover, due to relations (2.4), (2.5) and (2.6) formula (2.9)
is connected with the boundary triplet Π. We emphasize, that this connection makes it
possible to apply the Krein-type formula (2.9) to boundary value problems.

2.5. Operator spectral integrals

Let us recall some useful facts regarding operator spectral integrals. We follow in
essentially [10, Section I.5.1].
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Definition 2.5. Let E(·) be a spectral measure defined on the Borel sets B of the real
axis R. Let us assume that the support supp (E) is a bounded set, i.e. supp (E) ⊂ [a, b),
−∞ < a < b < ∞. Further, let G(·) : [a, b) −→ B(H) be a Borel measurable function. Let
Z be a partition of the interval [a, b) of the form [a, b) = [λ0, λ1) ∪ [λ1, λ2) ∪ · · · ∪ [λn−1, λn)
where λ0 = a and λn = b, and put Δm := [λm−1, λm), m = 1, . . . , n. Thus [a, b) =

⋃n
m=1 Δm

and the intervals Δm are pairwise disjoint. Let |Z| := maxm |Δm| and let

FZ(G) :=
n∑

m=1

G(xm)E(Δm), xm ∈ Δm.

If there is an operator F0 ∈ B(H) such that lim|Z|→0 ‖FZ(G) − F0‖ = 0 independent of Z
and {xm}, then F0 is called the operator spectral integral of G(·) with respect to E(·) and
is denoted by

F0 =

∫ b

a

G(λ)dE(λ).

Remark 2.6. Similarly the operator spectral integral
∫ b

a
dE(λ)G(λ) can be defined as above.

If f(·) : [a, b) −→ H is a Borel measurable function, then the vector spectral integral∫ b

a
dE(λ)f(λ) can be defined similarly.

Let us indicate some properties of the operator spectral integral.

(i) If G(λ) := g(λ)I where g(·) ∈ C([a, b]), then
∫ b

a
G(λ)dE(λ) exists and coincides with

scalar spectral integral
∫ b

a
g(λ)dE(λ).

(ii) If
∫ b

a
G(λ)dE(λ) exists and h(·) ∈ C([a, b]), then also

∫ b

a
h(λ)G(λ)dE(λ) exists and

one has ∫ b

a

h(λ)G(λ)dE(λ) =

∫ b

a

G(λ)dE(λ)

∫ b

a

h(λ)dE(λ).

Proposition 2.7 (Proposition I.5.1.2 of [10]). Let G(·) be defined on [a, b) and assume the
existence of the derivative G′(λ) with respect to the operator norm on [a, b). Further, let

G′(·) be Bochner integrable on [a, b) and assume that A(λ) = A(a) +
∫ λ

a
G′(x)dx. Then∫ b

a
G(λ)dE(λ) exists and the estimate∥∥∥∥∫ b

a

G(λ)dE(λ)

∥∥∥∥ � ‖G(a)‖+
∫ b

a

‖G′(λ)‖dλ

is valid.

Similar existence theorems can be proven for the other types of spectral integrals.
For instance the vector spectral integral exists if f(·) is strongly continuous, strongly dif-
ferentiable on [a, b] and if f ′(·) is also strongly continuous. In particular, the operator and
vector spectral integrals exist if the integrands G(·) and f(·) are holomorphic.

3. Main results

Let A be a closed symmetric operator with equal deficiency indices acting in the
separable Hilbert space HA and let T be a bounded self-adjoint operator acting in the
separable Hilbert space HT . We consider the operator S = A ⊗ IT + IA ⊗ T . To define
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the operator S we first consider the operator A⊗ IT . The operator A⊗ IT is defined as the
closure of the operator A� II defined by

dom (A� IT ) :=

{
f =

r∑
k=1

gk ⊗ hk : gk ∈ dom (A), hk ∈ HT , r ∈ N

}
and

(A� IT )f =
r∑

k=1

Agk ⊗ hk, f ∈ dom (A� IT ).

One can easily check that A � IT is a densely defined symmetric operator which yields
that A ⊗ IT is a densely defined closed symmetric operator. By H+(A) we denote Hilbert
space which is obtained equipping the domain dom (A) with the graph norm of A, cf. (2.2).
dom (A⊗ IT ) = H+(A)⊗HT . By Proposition 7.26 of [2] we have (A⊗ IT )

∗ = A∗ ⊗ IT . Its
domain is given by dom (A∗ ⊗ IT ) = H+(A

∗)⊗HT .
Similarly, the operator IA ⊗ T can be defined. IA ⊗ T is found to be a bounded

self-adjoint operator with norm ‖T‖. The operator S := A ⊗ IT + IA ⊗ T is a well-defined
closed symmetric operator with domain dom (A⊗ IT ). Notice that

S = A� IT + IA � T = A� IT + IA ⊗ T.

Its adjoint is given S∗ = A∗ ⊗ IT + IA ⊗ T .

Let Γ̂ j := Γ̂A
j ⊗IT : H+(A

∗)⊗HT −→ HA⊗HT , j = 0, 1. Since ran ( Γ̂A ) = HA⊕HA

we have ran ( Γ̂ ) = (HA ⊗ HT ) ⊕ (HA ⊗ HT ) where Γ̂ := ( Γ̂0 , Γ̂1 ). Let us consider
the embedding operator J : H+(A

∗) ⊗ HT −→ HA ⊗ HT . We introduce the operator
Γj : dom (A∗ ⊗ IT ) −→ HA ⊗HT by setting

ΓjJ f̂ := Γ̂ j f̂ , f̂ ∈ H+(A
∗)⊗HT , j = 0, 1. (3.1)

Notice that ran (J) = dom (A∗ ⊗ IT ). Since ran ( Γ̂ ) = (HA ⊗ HT ) ⊕ (HA ⊗ HT ) we get
ran (Γ) = (HA ⊗ HT ) ⊕ (HA ⊗ HT ) where Γ = (Γ0,Γ1). Let us introduce the triplet Π =
{H,Γ0,Γ1} where H := HA ⊗HT and Γj are given by (3.1).

Proposition 3.1. If ΠA = {HA,Γ
A
0 ,Γ

A
1 } is a boundary triplet for A∗, then Π = {H,Γ0,Γ1}

is a boundary triplet for S∗

Proof. First, we are going to show that Π is a boundary triplet for (A ⊗ II)
∗ = A∗ ⊗ IT .

The surjectivity of Γ = (Γ0,Γ1) was already shown above. Next, we check that the ”Green’s

identity” holds Let gk, g
′
k ∈ H+(A

∗), hk, h
′
k ∈ HT so that f =

N∑
k=1

gk ⊗ hk and f ′ =
M∑
j=1

g′j ⊗ h′
j.

We have(
(A∗ ⊗ IT )J

N∑
k=1

gk ⊗ hk, J

M∑
j=1

g′j ⊗ h′
j

)
−

(
J

N∑
k=1

gk ⊗ hk, J(A
∗ ⊗ IT )

M∑
j=1

g′j ⊗ h′
j

)

=
N∑
k=1

M∑
j=1

(hk, h
′
j)
[
(A∗JA∗gk, JA∗g′j)− (JA∗gk, A

∗JA∗g′j)
]

=
N∑
k=1

M∑
j=1

(hk, h
′
j)
[
(ΓA

1 JA∗gk,Γ
A
0 JA∗g′j)− (ΓA

0 JA∗gk,Γ
A
1 JA∗g′j)

]
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where JA∗ : H+(A
∗) −→ HA is the embeding operator. Similarly we get(

Γ1J

N∑
k=1

gk ⊗ hk,Γ0J

M∑
j=1

g′j ⊗ h′
j

)
−

(
Γ0J

N∑
k=1

gk ⊗ hk,Γ1J

M∑
j=1

g′j ⊗ h′
j

)

=
N∑
k=1

M∑
j=1

(hk, h
′
j)
[
(ΓA

1 JA∗gk,Γ
A
0 JA∗g′j)− (ΓA

0 JA∗gk,Γ
A
1 JA∗g′j)

]
.

Hence we get(
(A∗ ⊗ IT )J

N∑
k=1

gk ⊗ hk, J
M∑
j=1

g′j ⊗ h′
j

)
−

(
J

N∑
k=1

gk ⊗ hk, J(A
∗ ⊗ IT )

M∑
j=1

g′j ⊗ h′
j

)

=
(
Γ1J

N∑
k=1

gk ⊗ hk,Γ0J
M∑
j=1

g′j ⊗ h′
j

)
−
(
Γ0J

N∑
k=1

gk ⊗ hk,Γ1J
M∑
j=1

g′j ⊗ h′
j

)
which yields(

(A∗ ⊗ IT )J
N∑
k=1

gk ⊗ hk, J
M∑
j=1

g′j ⊗ h′
j

)
−

(
J

N∑
k=1

gk ⊗ hk, (A
∗ ⊗ IT )J

M∑
j=1

g′j ⊗ h′
j

)

=
(
Γ̂1

N∑
k=1

gk ⊗ hk, Γ̂0

M∑
j=1

g′j ⊗ h′
j

)
−
(
Γ̂0

N∑
k=1

gk ⊗ hk, Γ̂1

M∑
j=1

g′j ⊗ h′
j

)

Since elements of the form f =
N∑
k=1

gk ⊗ hk and f ′ =
M∑
j=1

g′j ⊗ h′
j are dense in H+(A

∗) the

equality can be closed which gives(
(A∗ ⊗ IT )Jf, Jf

′
)
−
(
Jf, (A∗ ⊗ IT )Jf

′
)
=

(
Γ̂1 f, Γ̂0 f

′
)
−
(
Γ̂0 f, Γ̂1 f

′
)

for f, f ′ ∈ H+(A
∗)⊗HT which immediately yields the abstract Green’s identity for A∗ ⊗ IT .

Hence Π is a boundary triplet A∗ ⊗ IT . Since TA ⊗ T is a bounded self-adjoint operator
one proves that Π is a boundary for S∗. Indeed, since dom (A∗ ⊗ IT ) = dom (S∗) one
immediately verifies the abstract Green’s identity and Γdom (A∗ ⊗ IT ) = Γdom (S∗) shows
the surjectivity. �

Let us also mention that S0 := S∗ � ker (ΓS
0 ) admits the representation

S0 = A0 ⊗ IHT
+ IHA

⊗ T. (3.2)

Let ET (λ), λ ∈ R, be the spectral measure of the self-adjoint operator T . Obviously,

ÊT (λ) := IA ⊗ ET (λ), λ ∈ R,

defines a spectral measure on HA ⊗HT .

Proposition 3.2. Let ΠA be a boundary triplet for A∗ with γ-field γA(z). If ΠS is the bound-
ary triplet of Proposition 3.1 of S∗, then the γ-field γS(·) of ΠS admits the representation

γS(z) =

∫ b

a

dÊT (λ) γA(z − λ)⊗ IHT
=

∫ b

a

γA(z − λ)⊗ IHT
dÊT (λ) (3.3)

z ∈ C± where σ(T ) ⊂ [a, b).
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Proof. We set G(λ) := γA(z − λ)⊗ IT , λ ∈ [a, b). From (2.7) we get

G′(λ) = (A0 − ζ)(A0 − z + λ)−2γA(ζ)⊗ IT , λ ∈ R.

Since
∫ b

a
‖G′(λ)‖ dλ < ∞ the operator spectral integral

D(z) :=

∫
R

γA(z − λ)⊗ IHT
dÊT (λ) (3.4)

exists by Proposition 2.7. We will show that ran (D(z)) ⊆ H+(S
∗ − z). Let Z be a partition

of [a, b) and let us consider the Riemann sum

DZ(z) :=
n∑

k=1

γA(z − λk)⊗ IT ÊT (Δk), λk ∈ Δk. (3.5)

For every z ∈ C± one has lim|Z|→0 ‖DZ(z) − D(z)‖ = 0. Obviously, for each Z we have

DZf ∈ H+(S
∗), f ∈ H. Let us estimate the operator norm of (γA(z− λk)⊗ IT ) ÊT (Δk) with

respect to the Hilbert space H+(S
∗ − z). Obviously we have

(S∗ − z)(γA(z − λk)⊗ IT ) ÊT (Δk)

= (A∗ − z)γA(z − λk)⊗ ET (Δk) + γA(z − λk)⊗ TET (Δk).

which yields

(S∗ − z)(γA(z − λk)⊗ IT ) ÊT (Δk) = γA(z − λk)⊗ (TET (Δk)− λkET (Δk))

Hence we find

‖(S∗ − z)(γA(z − λk)⊗ IT ) ÊT (Δk)‖ � ‖γA(z − λk)‖ ‖TET (Δk)− λkET (Δk)‖.
Since ‖TET (Δk)− λkET (Δk)‖ � |Δk|, where | · | is the Lebesgue measure of the set Δk, we
find

‖(S∗ − z)(γA(z − λk)⊗ IT ) ÊT (Δk)‖ � ‖γA(z − λk)‖ |Δk|.
Using that CγA(z) := supλ∈[a,b) ‖γA(z − λ)‖ < ∞ we immediately get the estimate

‖(S∗ − z)DZ(z)‖ � CγA(z)(b− a), z ∈ C±. (3.6)

In particular we get ‖(S∗ − z)D(z)‖ � CγA(z)(b− a), z ∈ C±. Let us show that the integral
D(z) also exists in the strong sense in H+(S

∗ − z).

(S∗ − z)DZ(z)g ⊗ h = ((A∗ − z)⊗ IT )DZ(z)g ⊗ h+ (IA ⊗ T )DZ(z)g ⊗ h

= ((A∗ − z)⊗ IT )
n∑

k=1

γA(z − λk)g ⊗ ET (Δk)h+ (IA ⊗ T )
n∑

k=1

γA(z − λk)g ⊗ ET (Δk)h

=
n∑

k=1

−λkγA(z − λk)g ⊗ ET (Δk)h+
n∑

k=1

γA(z − λk)g ⊗ TET (Δk)h

=
n∑

k=1

γA(z − λk)g ⊗ (TET (Δk)− λkET (Δk))h

=
( n∑

k=1

γA(z − λk)g ⊗ (TET (Δk)− λkET (Δk))h
)
.

Hence

‖(S∗ − z)DZ(z)g ⊗ h‖ =
n∑

k=1

‖γA(z − λk)g ⊗ (TET (Δk)− λkET (Δk))h‖,
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we have

‖(S∗ − z)DZ(z)g ⊗ h‖ �
n∑

k=1

‖γA(z − λk)g‖ ‖(TET (Δk)− λkET (Δk))h‖. (3.7)

Finally we obtain

‖(S∗ − z)DZ(z)g ⊗ h‖ � ‖h‖
n∑

k=1

‖γA(z − λk)g‖ |Δk| . (3.8)

Let Z′ be a refinement of Z, that Z′ = {Δ′
k′}n′

k′=1 where for each k′ there is always a k such
that Δ′

k′ ⊆ Δk. This yields the estimate

‖(S∗ − z)(DZ(z)−DZ′(z))g ⊗ h‖ � ‖h‖
n′∑

k′=1

‖(γA(z − λ′
k′)− γA(z − λk))g‖ |Δ′

k′ | . (3.9)

where λ′
k′ ∈ Δk′ ⊆ Δk � λk. Hence |λ′

k′ − λk| � |Δk| � |Z|. Using (2.7) we find

‖γA(z − λ′
k′)g − γA(z − λk)‖ � 1

Im(z)
sup

λ∈[a,b)

∥∥∥∥ S0 − ζ

S0 − z + λ

∥∥∥∥ ‖γA(ζ)‖ |Z|

which yields the estimate

‖(S∗ − z)(DZ(z)−DZ′(z))g ⊗ h‖ � (b− a)‖h‖ ‖g‖ 1

Im(z)
sup

λ∈[a,b)

∥∥∥∥ S0 − ζ

S0 − z + λ

∥∥∥∥ ‖γA(ζ)‖ |Z| .
(3.10)

Hence the Riemann sums DZ(z) converge strongly in H+(S
∗ − z) as |Z| → 0. Since the

Hilbert spaces H+(S
∗) and H+(S

∗ − z), z ∈ C±, are isomorph the Riemann sums converge
strongly in H+(S

∗).
It remains to show that (S∗ − z)D(z) = 0. Recall that

(S∗ − z)DZ(z)g ⊗ h =
n∑

k=1

((A∗ − z)γA(z − λk)g ⊗ ET (Δk)h+ γA(z − λk)g ⊗ TET (Δk)h)

=
n∑

k=1

γA(z − λk)g ⊗ (TET (Δk)− λkET (Δk))h.

For instance,

‖(S∗ − z)DZ(z)g ⊗ h‖ =
n∑

k=1

‖γA(z − λk)g ⊗ (TET (Δk)− λkET (Δk))h‖ �

n∑
k=1

‖γA(z − λk)g‖‖(T − λk)ET (Δk)h‖

To the degree that ‖γA(z − λk)‖ is bounded, we have ‖(S∗ − z)DZ(z)g ⊗ h‖ → 0 as |Z| → 0

for any g ⊗ h. For the element of the form f =
n∑

k=1

gk ⊗ hk obviously the same result holds.

Then, we use that the set of f =
n∑

k=1

gk ⊗ hk is dense in H+(S
∗) �

Proposition 3.3. Let ΠA be a boundary triplet for A∗ with Weyl function MA(·). If ΠS is
the boundary triplet of Proposition 3.1 of S∗, then the Weyl function MS(·) of ΠS admits
the representation
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MS(z) =

∫ b

a

dÊT (λ) MA(z − λ)⊗ IHT

=

∫ b

a

MA(z − λ)⊗ IHT
dÊT (λ),

(3.11)

z ∈ C± where σ(T ) ⊂ [a, b). In particular, if n±(A) = 1, then MA(·) is scalar, HS = HT

and
MS(z) = MA(z − T ), z ∈ C±. (3.12)

Proof. We set G(λ) := MA(z − λ)⊗ IT , λ ∈ [a, b). From (2.7), (2.8) we get

G′(λ) = −γA(ζ)
∗γA(z− λ) + (z− λ− ζ)γA(ζ)

∗(A0 − ζ)(A0 − z + λ)−2γA(ζ)⊗ IT , λ ∈ R.
(3.13)

Since
∫ b

a
‖G′(λ)‖ dλ < ∞ the operator spectral integral

D(z) :=

∫
R

γA(z − λ)⊗ IHT
dÊT (λ) (3.14)

exists by Proposition 2.7.
Analogously to Proposition 3.2, we can prove that the integral exists in the strong

sense in H+(S
∗ − z) and in H+(S

∗), as the spaces are isomorph.

Let us note DZ(z) =
n∑

k=1

γA(z − λk)⊗ IT ÊT (Δk). Then,

ΓS
1DZ(z) = ΓS

1

n∑
k=1

γA(z − λk)⊗ IT ÊT (Δk) =

n∑
k=1

ΓA
1 γA(z − λk)⊗ ET (Δk) =

n∑
k=1

MA(z − λk)⊗ ET (Δk) = LZ(z)

As far as LZ(z) and DZ(z) converge in a strong sense in H+(S
∗) and ΓS

0 is bounded in H+(S
∗),

we get the estimate. �
Note: In case T has pure point spectrum, the formula (3.11) becomes simpler

MS(z) =
∑
λ

MA(z − λ)⊗ ξλ, (3.15)

where ξλ is an eigenvector of T , corresponding to λ

4. Example 1

In this section we will describe a simple example. Let’s consider the symmetric
operator A = − d2

dx2 with the domain

dom (A) = {f ∈ W 2
2 (0; +∞) : f(0) = f ′(0) = 0}

in the Hilbert space L2(R). Notice that n±(A) = 1. Let’s consider the following bounded
self-adjoint operator

T =

(
1 0
0 −1

)
acting on HT = C

2. We introduce the operator S = A ⊗ IT + IA ⊗ T defined in HA ⊗HT .
Our goal is to get the γ-field and the Weyl function corresponding to H in terms of γ-field
and the Weyl function, corresponding to A, using the results described above.
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Obviously, operator A∗ has the deficiency indices (1; 1), so it’s deficiency subspace
is one-dimensional. Let us calculate the boundary form of the operator A∗. Integrating by
parts, we get:

(A∗f, g)− (f, A∗g) = −
+∞∫
0

f ′′ḡdx = −f ′ḡ|+∞
0 + f ḡ′|+∞

0 −
+∞∫
0

f ḡ′′dx.

So,

(A∗f, g)− (f, A∗g) = −f ′ḡ|+∞
0 + f ḡ′|+∞

0 .

Recall that an element f from the domain of the adjoint operator also satisfies the condition
f(+∞), f ′(+∞) = 0. Hence, we have:

(A∗f, g)− (f, A∗g) = −f(0)ḡ′(0) + f ′(0)ḡ(0).

Now we can obtain the boundary operators, corresponding to A∗:

ΓA
0 f = f(0), ΓA

1 f = f ′(0)

Recalling the result of Proposition 3.1, we introduce the boundary operators for H∗:

ΓS
0 f = f(0)⊗ I,ΓS

1 f = f ′(0)⊗ I.

Let us calculate the γ-field, corresponding to A∗. The deficiency element of the operator A∗,
corresponding to the point z, has the form: ei

√
zx (we choose the branch of the square root

in such a way that �√z > 0). Applying ΓA
0 , we have:

ΓA
0 e

i
√
zx = 1

so that

γA(z) = 1.

Let us describe the γ-field, corresponding to S∗. As far as T is self-adjoint, the spectral
decomposition holds:

T = P1 − P2,

where P1 and P2 are the projectors onto the invariant subspaces of the operator T , cor-
responding to the eigenvalues 1 and −1, respectively. The projectors have the following
forms:

P1 =
(

1 0
0 0

)
, P2 =

(
0 0
0 1

)
.

Using the result of Proposition (3.2), we have:

γS(z) = γA(z − 1)⊗ P1 + γA(z + 1)⊗ P2 =
(

1 0
0 1

)
.

The corresponding Weyl function is obviously as follows:

MA(z) = ΓA
1 γA(z) = i

√
z.

Using the result of Proposition (3.3), we have:

MS(z) = MA(z − 1)⊗ P1 +MA(z + 1)⊗ P2 =
(

i
√
z − 1 0
0 i

√
z + 1

)
.
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5. Example 2

In this example we consider an operator S = A⊗ IT + IA ⊗ B defined in HA ⊗HT ,
HA = L2(a, b),HT = C

2. Let us take the symmetric operator A as negative Laplacian

A = − d2

dx2 with the domain dom (A) = {φ ∈ W 2,2[a; b]|φ(a) = φ(b) = φ′(a) = φ′(b) = 0} and
a self-adjoint operator T be the same as in previous example. Let us obtain the γ-field for S.

The boundary operators for A∗ are:

Γ̂0f =
(

f ′(b)
f(a)

)
, Γ̂1f =

(
f(b)
f ′(a)

)
Then, the boundary operators for the operator S∗ are:

Γ0f =
(

f ′(b)
f(a)

)
⊗ I, Γ1f =

(
f(b)
f ′(a)

)
⊗ I (5.1)

Due to the fact that the deficiency elements of A corresponding to the point z are

ei
√
zx, e−i

√
zx, (5.2)

we obtain the γ-field γA(z) for A
∗ in the form

γA(z) =
−i

2
√
z cos(

√
z(b− a))

(
e−i

√
za i

√
ze−i

√
zb

−ei
√
za i

√
zei

√
zb

)
(5.3)

So, using the result of Proposition 3.3., we have:

γS(z) = γA(z − 1)⊗
(
1 0
0 0

)
+ γA(z + 1)⊗

(
0 0
0 1

)
. (5.4)

Direct calculation of the Weyl function for A∗ gives us

MA(z) =
1√

z cos(
√
z(b− a))

·
(
sin(

√
z(b− a))

√
z√

z
√
z sin

√
z(b− a)

)
. (5.5)

Then,

MS(z) = MA(z − 1)⊗
(
1 0
0 0

)
+MA(z + 1)⊗

(
0 0
0 1

)
(5.6)

6. Concluding remarks

In this paper we considered the γ-field and the Weyl function corresponding to the
boundary triplet ΠS for the operator S = A⊗IT +IA⊗T where the operator A is symmetric
and the operator T is bounded and self-adjoint. We obtained the formulas in terms of
the γ-field and the Weyl function corresponding to the boundary triplet ΠA. The result
can be immediately applied to the scattering theory due to the relation between the Weyl
function and the scattering matrix (see, e.g., [13]). There is an interesting question about
the case when the operator T is unbounded (it is well known that this case has many specific
features [14]). We will present the corresponding result in the next paper.
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[10] H. Baumgärtel, M. Wollenberg. Mathematical scattering theory, volume 59 of Mathematical Textbooks
and Monographs, Part II: Mathematical Monographs. Akademie-Verlag, Berlin (1983).

[11] V. A. Derkach, M. M. Malamud. On the Weyl function and Hermite operators with lacunae. Dokl.
Akad. Nauk SSSR, 293 (5), P. 1041–1046 (1987).

[12] V. A. Derkach, M. M. Malamud. The extension theory of Hermitian operators and the moment problem.
J. Math. Sci. 73 (2), P. 141–242 (1995).

[13] J. Berndt, M. M. Malamud, H. Ntidhardt. Scattering matrices and Weyl functions. Proc. London Math.
Soc. 97 (3), P. 568–598 (2008).

[14] A. N. Kochubei. On extensions of symmetric operators and symmetric binary relations. Mat. Zametki.
17, P. 41-48 (1975).


