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1. Introduction

Noncollinear magnetic states are of great importance, not only because the stable states
of many systems are noncollinear, as has been demonstrated in recent experimental measure-
ments of nano-scale islands [1] and thin layers [2,3], but also because magnetic systems driven
out of equilibrium by some external perturbation such as a magnetic field, spin-polarized cur-
rent or thermal fluctuation, as well as spin dynamics at finite temperature necessarily involve
configurations where the magnetic momenta can be far from parallel to each other. In particular,
a proper description of non-stationary, noncollinear magnetic states is important in studies of
thermally activated magnetic transitions. Within harmonic transition state theory (TST) [4], min-
imum energy paths (MEPs) in a configuration space connecting stable states have to be found.
Following an MEP means rotating the magnetic momenta in an optimal way so as to minimize
the energy with respect to all degrees of freedom perpendicular to the path. Of particular im-
portance for estimating the rate are the maxima along the path which correspond to first order
saddle points on the energy surface. These define the activation energy for transitions between
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stable magnetic states and give the temperature dependence of the transition rate. Being a path
of maximal statistical weight, an MEP also gives a detailed description of the optimal transition
mechanism. Even if the stable states of the system are collinear, the configurations along the
MEP can be noncollinear, representing complex, non-uniform rotations of the spins [5-7].

The basic physical quantity from which most magnetic properties of an electronic system
can be derived is the electron density, which becomes a 2 x 2 matrix in a noncollinear, spin-

polarized theory:
N N 1
p(r) - —t (7 = I ( )
p~t(F) p(7)

where + and — denote the spin projections. The sum of the diagonal elements of p(7) gives the
charge density while their difference gives the projection of the spin density on the quantization
axis. The off-diagonal elements of the matrix (1) determine in quasi-classical framework the
components of the magnetization density perpendicular to the quantization axis. In general, at
any point in space, the expectation value of magnetization density can be calculated from

(F) = Tr, [60(7)]. @)
Here, ¢ = (0,,0,,0,) are the Pauli matrices and Tr, means the trace operation in spin space. A
continuous vector field of magnetization density can be calculated using, for example, density
functional theory (DFT) [8-10], for many important magnetic materials including 3d-transition
metals and rare-earth magnets. But, in most cases, the magnetization density is highly localized
on atomic sites. An atomic moment approximation can then be used where the orientation
of the magnetization within a region surrounding each atom is considered to be fixed and the
magnetization density is assumed to be zero in the interstitial regions between the atomic sites.
A magnetic configuration is then defined by a set of magnetic momentum vectors, one vector
associated with each of the magnetic atoms.

A further approximation can be made based on the hierarchy of relaxation times. The
relaxation of charge and magnitude of the magnetic moments is assumed to be much faster than
the relaxation of the orientation of the magnetic vectors [11]. The fast degrees of freedom,
charge and magnitude of magnetic moments, are assumed to adjust instantaneously to changes
in the slow degrees of freedom, the direction of the magnetic moments as defined by polar and
azimuthal angles 6 and ¢. The magnetic properties of a system, including the total energy,
are then completely characterized by the slow degrees of freedom only. This is analogous to
the Born-Oppenheimer approximation in atomic systems where the fast degrees of freedom are
associated with the electrons while the positions of the nuclei are the slowly varying degrees of
freedom.

Within the atomic moment and adiabatic approximations, spin dynamics simulations as
well as iterative searches for stable magnetic states and MEPs between them can be viewed as
navigation on the systems energy surface as a function of the angles defining the orientation
of the magnetic moments. Efficient navigation requires efficient evaluation of not only the
energy but also the changes in energy with orientation, that is the ‘forces’, or ‘torques’ acting
on the magnetic moments. The energy surface can in principle be characterized within the
tight-binding approach [12] and DFT [13, 14]. Such calculations are, however, complicated and
computationally intensive. In order to describe nonstationary magnetic states, local constraining
fields are needed to orient the magnetic vectors in the predefined orientations [15]. These local
fields are not known a priori, so an additional iterative cycle needs to be added to the self-
consistency procedure to find them. As a result, the calculation of an arbitrary, nonstationary,
noncollinear state in a system of several non-equivalent magnetic moments is a challenging task
within DFT and tight-binding methods.
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In most cases, the evolution of extended magnetic systems is described using simple,
phenomenological models, in particular Heisenberg-type models, where the total energy and
gradients of the energy can be obtained analytically. However, in order to describe magnetic
systems accurately enough, the model Hamiltonian may need to include several phenomenolog-
ical terms. In addition to the usual magnetic exchange, anisotropy and dipole-dipole interaction,
more elaborate interactions, such as biquadratic exchange and Dzyaloshinsky-Moriya interac-
tion have been invoked to reproduce experimental observations accurately enough [2]. The
magnitude of the magnetic moments and interaction parameters in such Heisenberg-type models
are typically kept unchanged as the magnetic vectors rotate. This approach can be accurate
enough for small deviations from collinear stable states, but is expected to fail for large rota-
tion angles in itinerant electron systems [16] where the magnitude of the magnetic moments
and coupling parameters depend on the relative orientation of the moments. While additional
parameters and elaborate expressions for the dependence of the parameters on the orientation of
the magnetic moments can, in principle, be used to make a Heisenberg-type model reproduce
any magnetic system, the transferability of the parameter values obtained in this way may be
quite limited. Models that better describe the underlying physics and rely on only a few, well
defined parameters are then preferable.

The Alexander-Anderson (AA) model [17, 18] describes the interaction of magnetic im-
purities in a system containing itinerant electrons. It includes two electronic bands: a quasilocal-
ized band of d-electrons and a band of itinerant s(p)-electrons. A noncollinear extension of the
AA model (NCAA) has been developed within mean-field approximation as well as an efficient
implementation of the self-consistency calculations for an arbitrary number of non-equivalent
magnetic impurities using the recursive Green function method [19,20] and analytical trans-
formations of the density of states [21-23]. The NCAA model can be applied to large and
complex magnetic systems where a self-consistent calculation of the number of d-electrons and
magnitude of the magnetic moments is carried out for a given orientation. For an arbitrary,
stationary or non-stationary orientation, only the number of d-electrons and magnitude of the
magnetic moments are modified during the self-consistency calculations. The orientation of
the magnetic vectors remains unaffected, i.e. in the NCAA model, changes in orientation are
completely decoupled from the self-consistency procedure. This is different from DFT calcu-
lations, where the orientation of the magnetic moments at a non-stationary point is modified
during self-consistency calculations unless local constraining fields fixing the orientation of the
magnetic moments to the predefined direction are included [15].

In our recent paper [23], a magnetic force theorem for the NCAA model has been derived
which makes it possible to calculate the energy gradient without repeated self-consistency
calculations and also provides analytic expression for the force acting on the orientation of
the magnetic moments. This theorem is particularly important for large scale simulation of
dynamics, calcualtion of minimum energy paths, or, in general, navigation on the energy surface
of a magnetic system.

The NCAA model, however, does not describe the band structure of an itinerant mag-
net in detail. Similar to the Heisenberg-type models, the NCAA model only focuses on the
energetics due to magnetic interactions. But, unlike Heisenberg-type models, the NCAA model
correctly accounts for the itinerant nature of 3d-transition metal systems: both the magnitude
of the magnetic moments and the interatomic exchange parameters (analogous to exchange
parameters in a Heisenberg Hamiltonian), are predicted to vary upon rotation of the magnetic
momentum vectors. The NCAA model has, for example, been used successfully to describe
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magnetism of 3d-metal surfaces and interfaces [22]. Moreover, a noncollinear ordering of mag-
netic moments in nanoclusters of 3d-metal atoms was obtained in calculations using the NCAA
model [24-26], and this prediction was later confirmed by DFT calculations [27,28].

This article is organized as follows. In the following section, the NCAA model is
described as well as the method used in the self-consistency calculations. In Sec. III, the
magnetic force theorem is presented and an expression given for the magnetic force. In Sec. 1V,
the method is applied to magnetic trimers and to a simple model of a magnetic tip of a scanning
tunneling microscope (STM) interacting with a dimer adsorbed on a metal surface. In Sec. V,
the finite range approximation is discussed as well as an application to Fe-atoms adsorbed on a
W(110) surface, as both a full monolayer and a large island. Section VI gives a summary.

2. Noncollinear Alexander-Anderson model

The AA model [18] extended to multiple-impurities and noncollinear magnetic ordering
has been described elsewhere [21,24]. However, we present here a comprehensive description
of the model and its implementation for completeness.

The electronic structure of a 3d transition metal system is approximated by an itinerant
s(p)-electron band and five degenerate, quasi-localized d-orbitals. The Hamiltonian is as follows:

H= Z ExNka Tt Z 6?7%& + Z <Uz’kd;’racka + UkiCLadm)

k,Cl{ i7a k>i’a

—+ Z Uijdzadja + % Z Uiniani—oca

1], 1,00

3)

where only one of the five d-orbitals is considered explicitly. Here, d (d;,) and ¢ (ciq) are
creation (annihilation) operators for d-electrons localized on atom 7 and itinerant s(p)-electrons
with the wave vector Kk, respectively; n;,, = d;radia, Nka = cLacka are the corresponding
occupation number operators. Greek indices denote spin projection («, 5 = %). The energy of
non-interacting s(p) electrons, €y, and d-electrons, €Y, hybridization parameters, v, hopping
parameters, v;;, and Coulomb repulsion between electrons with opposite spin projection, U;,
are spin independent. The last term in the Hamiltonian, U;n;,n; o, describes the interaction
between d-electrons localized on atom .

This Hamiltonian is invariant with respect to the choice of quantization axis. In order
to describe noncollinear magnetic states, a mean field approximation is invoked at each site ¢
for the d-electron operators, Jja and azm, where the quantization axis, z;, is chosen to be along
the local magnetic moment associated with atom ¢. The last term in Eqn.(3) is transformed
according to

ﬁiaﬁi—a ~ 77Lioc<ﬁi—oz> + <ﬁia>ﬁi—a - <ﬁio¢><ﬁi—a>~ (4)
Operators with a tilde correspond to a local reference frame associated with the quantization
axis z; and angular parentheses denote expectation values of operators. The last term in Eqn. (4)
represents the double counting term. The mean-field Hamiltonian is rewritten in terms of d,
and d;, whose quantization axis is the laboratory 2 axis, the same for all sites i. Creation
(annihilation) operators are transformed using the spin-% rotation matrix [29]:

div\ _ ¢ (i
(£)-o()
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where U is given by:

U- [ P (ip;/2) cos (6;/2)  exp (—i¢;/2)sin (0;/2) ©)
-~ \ —exp (ig;/2) sin (6;/2) exp (—ig;/2) cos (6;/2) ]

Here, the polar angle #; and the azimuthal angle ¢; define the direction of ¢th magnetic moment

with respect to the laboratory quantization axis z. After performing the operations (4) and (5)

for each site i, the mean-field Hamiltonian is given by:

:H:MF - Z ExNka T Z 5 Njo + Z (Uzkdzacka + Ukzckadza>

o ™
+ Z 7L)':“BdT 5—12@ (N? -
i, i
where
eF =€) + % (N; — accos ;M) (8)
i = % (097 = 1) 65 exp (—aigy) sin 6; M; + (1 = 6;5) 6* vy 9)

The number of d-electrons, /N;, and the magnitude of the magnetic moments, M;, in Egs. (7)-(9)
are defined in terms of the expectation value of occupation number operators:

N; = (dl diy) + (di_di) = (Fr) + (i), (10)

M; = (dlydiy) — (dl_d;-) = (fiy) — (7). (11

In this model, the magnetic structure of a system consisting of P 3d-metal atoms
supported on a metallic substrate is described by a set of values of N; and M;, 1 = 1,..., P,

which need to be found from self-consistency iterations for any given orientation of the magnetic
moments. The number of d-electrons, /V;, and the magnitude of the magnetic moments, M;, can
be obtained from the Green’s function, G(e — is) = [e — is — Hasp] ', s = +0. Equations for
the matrix elements of the Green function are derived from

(E—Hur)9(E) =1, (12)
where
& =¢€—is. (13)
This gives the following:
(€ - a) Sy Z’Uklgh =0, (14)
(€ =) G5 (€) = Y vi"S(€) = Y vacSiy (€) = 6,6, (15)
Ly k

By substituting the matrix elements 9%3 (€) derived from Eqn. (14) into Eqn. (15), an equation
for the matrix elements of the d-electron Green function can be obtained as:

(e-a- 2 g )avee) - z(+z) 5i/e)
+ Z Ua’yg’YB = 5ij5aﬁ.

(16)

The magnetism of 3d-transition metal systems is mostly determined by the d-electrons.
Therefore, only the Green function for d-electrons, G(€) = G@ (&), will be considered explicitly
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in what follows. According to Eqn. (16), G(€) is a resolvent of an effective, mean field

Hamiltonian for the d-electrons, H = J-CS&OF, with parameters that are renormalized due to the
influence of the itinerant s(p)-electrons. This Hamiltonian is given by:

1
o af gt
H= ZE Nia + Zﬁ Vi dlydss — < Z U; (N? — M?) (17)
2,7, %
where
Ui
E~ :E?—l—E(NZ-—acosQl-Mi), (18)
yes - Ui (67 — 1) &;j exp (—aigh;) sin 6;M; + (1 — 6;;) 6°°Vy; (19)
i = 5 ij €XP al1Q; ) SIN G, V1 ; ij ij -
Here, E? is a renormalized energy of unperturbed d-states:
Uik Vki
E} = Re 20
el + Z " (20)

which now acquires non-zero width due to the s(p)-d hybridization and the width parameter, I,

is given by
Uik Uki
r=I E . 21
m d E e (21)

' is included in the argument of the Green function when computing the density of states [17].
The V; are referred to as hopping parameters. They represent both a direct exchange between
d-states localized on sites ¢« and j and as well as a contribution from indirect d-s(p)-d coupling
through the conduction band

Uik Vk
szvw—l—zg_; (22)

Following [18], it is assumed that the on-site s(p)-d coupling is stronger than d-s(p)-d interaction
of d-electrons at different sites and, hence, the imaginary part of Vj; is neglected. EY, U;, V;;
and T" are assumed to be constant parameters for the model. The choice of values for E? and
U; depends mainly on the type of atom ¢, while the hopping parameters V;; also depend on the
geometry of the system, in particular the distance between atoms ¢ and j.

The number of d-electrons, N;, and the magnitude of the magnetic moments,V/;, defined
in Egs. (10) and (11), are expressed in terms of the Green function in the local frame of
reference, G/(€), using the following standard relations:

0

1 _
N, = - / deTm Tt Gyg(e — iD), 23)
T
0
1 ~ )
M, = — / de Im Tr |:O'ZGZ'Z'<€ — i) . (24)
T

Here, Gi(e — i) is a 2x2 matrix with elements G’ (e — il') and o, is the z component of
the Pauli spin matrix. It is assumed that the magnetic system is in contact with a bath of
s(p)-electrons which fixes the Fermi level. The zero of energy is set to be at the Fermi level

(€F = 0)
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In order to be able to use Egs. (23) and (24) in self-consistency calculations, the Green
function has to be transformed from the local reference frame to a global one using the spin—%
rotation matrix U, Eq. (6):

G(&) =UG(&e)ut. (25)
By substituting this relation into Egs. (23) and (24), one obtains the following:

0

N; = 1 / delm [Gf T (e —il') + G;;~ (e — )], (26)
m

0
1
M, =— / de Im [GZTL(E —il') — G, (e — if‘)} cos b;

™

- @7)

+ 1 / deIm |G~ (e — D) + G5 (e — i)e™ %] sin 6.
7-{-700

Since the matrix elements of the Green function depend on N and M, Eqns. (26)
and (27) should be solved self-consistently for a given orientation of the magnetic vectors
starting from some initial estimate for the number of d-electrons and magnitude of the magnetic
moments. If the system consists of more than one atom, the self-consistency procedure contains
two nested loops. The inner loop involves finding the constrained solution of Eqns. (26) and (27)
for each individual atom, while the number of d-electrons and magnitude of magnetic moments
at all other atoms are kept fixed. Values of N and M found in the output of the inner loop
are then used as the revised constraints for the next iteration of the outer loop. The iterations
are repeated until N and M change by less than a predefined magnitude in an iteration. The
implementation of the self-consistency procedure is illustrated in Fig. 1.

It is important to realize that this procedure is the same for both stationary and non-
stationary orientations of the magnetic momentum vectors and that only the number of d-
electrons and magnitude of the magnetic moments are modified during the self-consistency
calculation. The orientations of the magnetic vectors remain unaffected, i.e. spin rotations
are completely decoupled from the self-consistency procedure in the NCAA model. This is
different from DFT calculations, where the orientations of magnetic moments at a non-stationary
point are modified during self-consistency calculations, unless local constraining fields are
introduced [15].

After self-consistency has been achieved, the total energy of d-electrons can be found

from:
0

5 * . UZ %2 *2
E—W/deeImTrG(e i) 5; 4 (N2 — M2, (28)
where the factor of 5 is due to the five-fold degeneracy of the d-orbitals. Quantities marked
with an asterisk correspond to self-consistent values.

In practice, the procedure described above implies that integration over the density of
d-states needs to be carried out repeatedly (see Egs. (26) and (27)). An efficient approach for
this has been described in the literature [19-21]. It is reviewed in Appendices A and B for
completeness. Initially, the recursive Green’s function method is applied in order to represent
the Green function in terms of a continued fraction (see §3 in [19] and §2 in [20]). Then, the
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F1G. 1. An illustration of the self-consistency procedure. The magnetic system
consists of P atoms whose magnetic moments are denoted by arrows. The
direction of the magnetic vectors is fixed. Self-consistent values of the magnitude,
M*, of the magnetic moments and the number of d-electrons, N*, are found using
the nested loop scheme. In the inner loop, the constrained solution of Eqns. (26)
and (27) is found for each atom separately, keeping the number of d-electrons
and magnitude of the magnetic moments for all other atoms fixed. After the k-th
iteration, the inner loop produces a set of N*) and M *¥) values that are then
used as revised constraints in iteration (k+/) of the outer loop. Self-consistency
is reached when all the N; and M, do not change upon further iterations.

continued fraction is expanded in a series of partial fractions [21]. A matrix element of the
Green function then takes the form (see Appendix B)

G2 (e) Z Pk (29)

E—Qk

where the numbers px, gr depend on the orientation of the magnetic moments as well as on
indices i, j, a and 8. The density of states is expressed in terms of Lorentzian functions and
the integration then carried out analytically. Namely, since the d-levels contain an imaginary
part, il", integrands in Egs. (26) and (27) include the terms

Imz IF_FZ E—C]k —|—F2

that can be integrated analytically to give

/deFZ

—0o0

€ —qr —

4k
—|—F2 _Zpkarccot<r>

The total energy of the system is also expressed analytically in terms of parameters of
the self-consistent Hamiltonian as:

E—Qk

9 2P P
Ezi/deez r2 —5Z%(Ni*2—Mi*2)
TI e (e—e) +I7 il (30)

5 2P & T
. * *2 *2
_;Eﬂ leﬂarccotfu—i-zl (“ +1>}—5§ (N2 = M7,
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where €}, are the eigenvalues of /7*. Integral in Eq. (30) diverges at the lower limit. However,
this infinite contribution is the same for all magnetic states and, therefore, can be omitted.

In the self-consistency procedure, the number of d-electrons and the magnitude of the
magnetic moments are found for a given orientation of the magnetic momentum vectors. This
assumes a hierarchy of relaxation times. The relaxation of the diagonal components of the spin
density matrix, which give the number of d-electrons and magnitude of the magnetic moments,
is assumed to be much faster than the relaxation of the off-diagonal components which give the
orientation of the magnetic momentum vectors [11]. Thus, /V and M, are treated as fast degrees
of freedom that adjust instantaneously to changes in the orientation of the magnetic moments,
the slow degrees of freedom. This is analogous to the Born-Oppenheimer approximation for
electronic and nuclear degrees of freedom.

3. Magnetic force theorem

Gradients of the energy with respect to the orientation of the magnetic momentum
vectors, i.e. magnetic forces, can be used to guide the search for minimum energy configurations
of the magnetic moments, identify minimum energy paths, and to simulate dynamics of magnetic
systems. A simple approach for evaluating the energy gradient is to approximate it by finite
differences where the energy is evaluated self-consistently for slightly different orientations.
However, this is inefficient for large systems as at least 2P + 1 self-consistency calculations
need to be carried out for a system with P magnetic moments each time the force is evaluated.

Below, a method is presented for evaluating all components of the energy gradient
without having to perform any additional self-consistency calculations. The method is based on
a magnetic force theorem (MFT) for the NCAA model. The theorem states that for an arbitrary
orientation of the magnetic vectors, stationary or non-stationary, the energy as a function of the
fast degrees of freedom, N and M, reaches an extremum at the self-consistent values, N* and
M*

oF 0 and OF
ON; | N=N~ OM; | N=N~
M=M"* M=M*
This simplifies greatly the calculation of the gradient and speeds up exploration of the energy
surface of the system.

Two lemmas for the Green function that are proved in Appendix C are needed to derive

the MFT:

Vi:

= 0. (31)

OTrGle) U 0

o~ 5 (Gal (O +Gi(9), 32)
and
0TrG U, 0
(‘)IT@ =3 5 [(GET(e) — Gy (€)) cos b 3)
+ (G ()™ + G (e)e™) sinb;] .

According to eqns. (28) and (32)

0
OE 5 0 : Ui
N~ x / dee Im N, TrG(e —il') — 55Ni

—00

I
o
[\3|g

0
l/alelm (G (e—il) + G;; (e —il)) — Ny |,
m
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where integration by parts has been invoked. According to Eqn. (26), the expression in square
brackets is equal to zero when self-consistency has been reached.

The equation for the derivative of the energy with respect to M; in Eq. (31) is proved
in the same way. Using (28) and (33), we obtain the following:

—0o0

E .
0 :éfdeelm 0 TrG(e—iF)+5%Mi

2 s

—0o0

0
:5%{—l / de Im [(G;T’(e —iI'") — G, (e — iF)) cos 0;

+ (G;g_(e —il)e" + Gy (e — iF)e_i‘b") sin 911 + MZ}

Due to Eqn. (27), the expression in curly brackets vanishes when M has the self-consistent
value, M*.

By using the MFT, the computational effort involved in the calculation of magnetic
forces in NCAA is significantly reduced. According to the MFT, the energy change due to
the infinitesimal rotation of magnetic vectors does not contain a contribution from the variation
of the number of d-electrons and the magnitude of the magnetic moments, i.e. fast degrees
of freedom. In particular, this means that in the finite difference scheme, the energy of the
perturbed spin state obtained by a small rotation of magnetic vectors from a particular orientation
can be approximated using the same values for the fast degrees of freedom as those calculated
self-consistently for the unperturbed spin state and, therefore, no additional self-consistency
calculations are needed.

A simple finite difference scheme is, however, problematic because it involves evalu-
ating the difference between two numbers of similar magnitude. This procedure can lead to a
significant loss of accuracy. Instead, first order perturbation theory can be used to derive an
expression for the magnetic force in terms of the self-consistent values. According to the MFT,
a derivative of the energy, F = E(\), with respect to any adiabatic parameter A (a slow degree
of freedom) can be computed from the explicit A dependence only, without having to include
implicit dependence

0
dE(N)  OE(\) 5 0G*(e —il; \)
N - o = / dee Im Tr B . (34)
Here, 0G™(e — iI"; A\) /O can be found by using the resolvent identity
0G(&A) _ o OHN) o
o = CleA)——Ge ), (35)
which, together with Eqn. (34), gives
0
dE(\) 5 o OH A e
I 7T/de.sImTr {G (e —il; \) B\ G*(e — il )
- (36)
zﬁ/deImTr G*(e—if;)\)aH ) :
T oA

—0o0
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that is, the derivative of the total energy with respect to a parameter coincides with the expecta-
tion value of the derivative of the Hamiltonian with respect to that parameter. This is analogous
to the Hellmann-Feynman theorem.

In practice, it is convenient to calculate the trace in Eqn. (36) using the basis in which
H*(\) and G*(¢; \) are diagonal

(o H V] - &
Tr[(; (6 ) =755 }_;m (37)

where £, are the diagonal elements of 9H*(A)/0A in the relevant basis. The integral in Eqn. (36)
can then be evaluated analytically leading to

dE(N) 5 <A e
W:%z:lfuarccot F“ . (3%8)

H=

With A =60, or A = ¢, and 7 = 1,..., P, this gives the gradient of the energy with respect to
the angles defining the orientation of the magnetic moments.

The procedure for evaluating the energy gradient is as follows: First, derivatives of the
self-consistent Hamiltonian, 0H* (0, ¢)/00; and 0H*(0, ¢)/0¢;, which are given explicitly by

* af
(M) = %5]15]ﬂUZM: [0450‘6 sin 91 + (5a6 - 1) exXp (—Oé1¢1> COS 92] s (39)

* af 3
<8H % d))) = (1= 8°%) 300U M €% sin 6, (40)
a(bz kj 2

are transformed to a basis where H*(8, ¢) is diagonal. Then, their diagonal matrix elements,
5;(01-), 5;(@-), are inserted into Eqn. (38) and the derivatives with respect to ¢ and ¢ evaluated.

The MFT significantly reduces the computational effort involved in calculations of the
first derivatives of the energy with respect to § and ¢. Second derivatives of the energy are also
important, because they are used to calculate magnetic exchange interaction parameters, J;j,
between magnetic moments ¢ and j. However, the MFT is not valid for the second derivatives.
One cannot neglect the change in the fast degrees of freedom when computing the second
variation of the energy.

4. Applications
4.1. Trimers adsorbed on a metallic substrate

Trimers of 3d transition metal atoms supported on a metallic surface are good test sys-
tems for studying noncollinear magnetism at the atomic scale. Noncollinear magnetic ordering
in Cr, Mn, Fe trimers was predicted theoretically using a model Hamiltonian approach [24-26]
and was later obtained in ab initio calculations [27,28,30,31]. The angles formed between the
magnetic moments in the stable magnetic states depend on the type of atoms in the trimer and
the geometrical arrangement of the atoms. Without spin-orbit interaction, the configuration and
spin spaces are uncoupled. For coplanar magnetic ordering, two angles completely determine
the configuration of the three magnetic momentum vectors. Therefore, the energy surface for
such systems can be visualized easily.

Within the NCAA model, the parameters E? and U; are determined mainly by the
chemical element whereas the hopping parameters V;; depend also on the arrangement of the
atoms in the trimer and the hybridization of the 3d-states with electronic states of the substrate.
The parameter associated with the width of the d-states, I, may depend on the position of the
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trimer on the surface as well as on the trimer geometry. The unit of energy is taken to be I' and
we give below the values chosen for the scaled energy parameters, U = U /T, E° = EO /T and
‘71'1' = Vz]/ L.

Magnetic ordering in the Cr, Mn and Fe trimers is expected to be quite different. To
illustrate this, we choose the Coulomb integral, U = 13, and the hopping parameters, Vis, Vis
and V23, to be the same for all the trimers, while the value of EY is chosen to ensure that the
number of d-electrons per atom in each case is the same as in the corresponding solid (/V ~ 5,
6 and 7, for Cr, Mn and Fe, respectively). The definitions of the two variables, the angles 6
and 63, are shown in Fig. 2.

FI1G. 2. A noncollinear magnetic state of a trimer of atoms adsorbed on a surface.
The definitions of the atom labeling, 1, 2 and 3, are shown as well as the two
angles, 6, and 03, specifying the two degrees of freedom. All three distances
between the atom pairs are different, leading to different values for the three
hopping parameters, ‘N/Z]

The calculated energy surfaces for the three trimers, Crs, Mns and Fes, are shown
in Fig. 3. The stable configurations of the magnetic momentum vectors, corresponding to
minima on the energy surface, are shown, as well as MEPs for transitions between these states
calculated using the climbing image nudged elastic band (NEB) method [32,33]. The MEP gives
the mechanism for low energy collective excitations of the magnetic trimers and the maximum
energy along the MEP gives the minimum energy needed for the transitions.

A Cr crystal has spin density wave magnetic structure with antiferromagnetic coupling
of near neighbor spins. In an equilateral Cr trimer, the ground state is noncollinear with angles
27 /3 between the magnetic momentum vectors [24-27]. However, a collinear ordering of the
magnetic moments is also possible for a different choice of distances between the Cr atoms
and, thereby, the hopping parameters VZ] Such a case is shown in Fig. 3a, where Va3 = 1.0,
Vis = 0.6 and Vi3 = 0.9. Maxima on the energy surface correspond to ferromagnetic ordering
of two of the magnetic moments, while the magnetic moment of the third atom is pointing in
the opposite direction. All minima on the energy surface correspond to the same magnetic state.
There are two different MEPs for transitions between these states, as shown in Fig. 3a. One of
the MEPs corresponds to an almost coherent rotation of the magnetic moments of atoms 2 and 3,
maintaining a nearly antiparallel ordering during the rotation. At the saddle point, both moments
have reversed their direction. The activation energy for this transition is 5.4 - 102 in I'-units.
Along the second MEP, the magnetic moment of atom 2 rotates monotonously by an angle
of 27, while the magnetic moment of atom 3 only rotates slightly from the initial orientation
and then returns. At the saddle point, the magnetic moment of atom 3 is aligned in the same
direction as in the ground state but the moment of atom 2 has been reversed. The activation
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F1G. 3. Energy surfaces of supported trimers: (a) Crs, (b) Mns and (c) Fes.
The zero of energy (red) is the energy for the lowest energy configuration of
the magnetic moments. White lines represent minimum energy paths and the
dots indicate positions of images in the NEB calculations. Minima are marked
with circles, while saddle points are indicated with crosses. The insets show the

magnetic momentum vectors at the minima and at the saddle points.
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energy is larger for this second mechanism, 7.8 - 1072 T, because of strong antiferromagnetic
coupling between atoms 2 and 3. Note that all minima and saddle points on the energy surface
correspond to collinear ordering of the magnetic moments.

For the Mn trimer, we obtain two distinct stable states, both corresponding to non-
collinear magnetic ordering, as shown in Fig 3b. Mn atoms often form noncollinear struc-
tures [24,26,28]. The two stable states have the same energy, but the MEPs between them are
quite different and give different activation energies. The saddle points correspond to collinear
magnetic ordering. The activation energy is 1.9 - 1072 I" for the saddle point at fy = 7, 65 = 7
1.7-1072 T for the saddle point at , = 7, 3 = 27 and 0.7 - 1072 T" for the saddle points at
92 = 0, 93 = .

For the Fe trimer, all the minima on the energy surface correspond to the same ferro-
magnetic state (see Fig. 3c). The saddle points between those states also correspond to collinear
magnetic ordering, but with one of the magnetic moments pointing in the opposite direction
to the other two. The energy surface for the Fe trimer is similar to the one for the Cr trimer,
but shifted by 7 along the 63 axis. There are also two possible MEPs between the states. The
MEP with the lower activation energy, 2.7 - 1072 I, corresponds to nearly coherent rotation of
the second and the third magnetic moments. The other MEP corresponds to relatively small
deviation of 65 from zero. The barrier for this transition mechanism is higher, 4.5 - 1072 T.

4.2. STM tip interacting with adsorbed dimer

The energy surface of a magnetic cluster can be modified by applying a local external
magnetic field. Another way to deform the surface is by hybridization with an additional atom
placed close enough to the cluster. The latter effect was recently demonstrated experimentally
by using magnetic atoms at the tip of a scanning-tunneling microscope (STM) [34]. The
magnetic tip was used to modify the energy barrier between two magnetic states of a magnetic
nanostructure on a non-magnetic substrate.

As a simple model of this experiment, we consider the isosceles Cr trimer, where atom 1
represents the STM tip and atoms 2 and 3 represent the dimer adsorbed on a non-magnetic
substrate. The hopping parameters between the tip atom and each one of the two dimer atoms
are set to be the same, Vig = ‘713 = f/, and are varied to mimic changes in the distance between
the tip and the dimer, while the third hopping parameter is kept fixed with a value of Va3 = 1.
For each value of V, the energy of the system is minimized with respect to the angles 6, and
03 defining the orientation of the magnetic moments in the dimer. Due to the symmetry of the
system, 0 differs from 63 by an angle of 7 at the minimum energy configuration. The value
obtained for one of the angles, 65, is shown as a function of V in Fig. 4. For small V the
magnetic moments of the dimer point in the opposite direction and are perpendicular to the
magnetic moment of the tip. However, when V' becomes larger than Va3, the magnetic moments
of the dimer tend to point in the same direction and opposite to the magnetic moment of the
tip. The energy surface of the system for three different values of V is shown in the insets of
Fig. 4.

S. Finite range approximation

In the self-consistency calculations, the computational effort of the tridiagonalization of
the NCAA Hamiltonian which is needed to evaluate the matrix elements of the Green function
scales as P3, where P is the number of magnetic atoms in the system. This operation has to
be performed for each magnetic atom, so the computational effort in each iteration of the self-
consistency procedure scales as P*. The number of iterations needed to reach self-consistency
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F1G. 4. Angle between the magnetic moment of an STM tip and the magnetic
moment of one of the Cr-atoms in a Cr, addimer as a function of the correspond-
ing hopping parameter. The three insets show the energy surface of the system
for the values indicated by the three gray circles on the curve. White and black
dots in the insets mark energy minima.

could also have some dependence on the system size, but is difficult to assess. The self-
consistency calculations become too demanding when the number of non-equivalent magnetic
atoms becomes large, on the order of thousands. One way of addressing this problem is to
use parallel computing as the self-consistency algorithm can be parallelized efficiently. Another
option is to use approximations in order to make the computational effort scale linearly with P.

One approach is to assume that the magnetic state of an atom is mostly affected by its
neighbors, while the effect of distant atoms can be neglected in the self-consistency calculations.
More specifically, when calculating the number of d-electrons and the magnitude of the magnetic
moment of a particular atom, only neighbors within a sphere of a certain radius, 7., centered
on the atom are included. The accuracy of this approximation can be controlled by varying
the radius, r.. Typically, the calculated results converge quite fast as r. increases. This is
demonstrated below in calculations for the electronic and magnetic structure of a monolayer
island of Fe-atoms on a W(110) surface.

The position of the Fe-atoms in the monolayer are determined by the atomic structure of
the W(110) substrate. Each Fe-atom has four nearest neighbors at a distance of /3 /2a, where
a is a lattice constant of the W-crystal (see Fig. 5(a)). For the Fe monolayer, the number of
atoms inside the sphere, V., changes stepwise as a function of r. as shown in Fig. 5(b). The

position of the steps, T’EC), ¢ =0,1,2,..., is defined by the distance between the neighbors.
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Any value of r. in the range [rﬁo; rﬁ“l)} will result in the same self-consistent values for the

number of d-electrons and magnitude of the magnetic moments. Below, we will refer to ( as
the number of shells of interacting neighbors and study how the choice of ¢ affects the results
of the self-consistency calculations.

35¢

25¢
o 20t

15¢

10+

o

re, A

F1G. 5. (a) Positions of Fe-atoms in a monolayer of Fe on a W(110) surface. (b)
Number of Fe atoms inside a coordination sphere of radius, 7., in a Fe monolayer
on a W(110) surface.

The parameters E° and U in the NCAA model were chosen to have values that are
typical for Fe: -12 and 13, respectively [7]. For simplicity, only nearest neighbor hopping

parameters were included and the value V' = 0.9 was chosen to reproduce DFT calculated
magnetization of an Fe overlayer on a W(110) surface [35].

A self-consistent calculation was carried out for a relatively large Fe island containing
17 x 17 atomic rows. Observe that due to the structure of the (110) surface the total number of
atoms in the island is not equal to the product of the number of atomic rows along [001] and
[110] directions. Reference values of N"¢/ and M"*/ at each Fe-atom were first calculated by
including all 144 atoms explicitly. Then, approximate calculations were carried out for the same
orientation of the magnetic vectors. The coordination sphere of a particular size was chosen
for each atom in the island and corresponding self-consistent values of NV and M evaluated and
compared with the reference values. Fig. 6(a) shows the deviation in the number of d-electrons
and the magnitude of the magnetic moments from the reference values as a function of the
number of coordination spheres included. For both N and M, the error drops rapidly as (
increases.

The MFT is a rigorous statement only when all atoms in the system are included
explicitly. When the coordination sphere approximation is used, the theorem is, strictly speaking,
not satisfied and the self-consistency state is no longer a stationary point of the energy as
a function of the number of d-electrons and magnitude of the magnetic moments. This is
illustrated in Fig. 6(b) where the derivative of the energy with respect to /N and M as a function
of ¢ is shown. The magnitude of the derivative, however, vanishes as ( increases.

Thus, the coordination sphere approximation can provide reasonably accurate results
while significantly reducing the computational effort. After the system becomes larger than the
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FI1G. 6. (a) Maximum deviation of the number of d-electrons (crosses, and left
vertical axis) and the magnitude of the magnetic momentum vectors (diamonds,
and right vertical axis) from the reference values, N ref and M"¢f, as a function
of the number of coordination shells included in the self-consistency calculation.
(b) Maximum derivative of the energy, £, with respect to N (crosses) and M
(diamonds), as a function of the number of coordination shells included in the
self-consistency calculation.

chosen number of coordination shells included in the self-consistency calculation, the computa-
tional effort increases only linearly with the system size. The level of approximation can readily
be increased by increasing (, i.e. including more coordination shells.

With this approximation, the NCAA model can be used to study large systems including
thousands of non-equivalent atoms.

6. Summary

A detailed description of the NCAA model and its implementation is given in this
article as well as an application to trimers of Cr, Mn and Fe adsorbed on a metal surface
and a simple model for STM tip interaction with a dimer. While the Cr and Fe trimers are
found to have collinear stable states, the former with antiferromagnetic ordering and the latter
ferromagnetic, the Mn trimer has two different stable states, both non-collinear. In all three
cases, the maximum energy configurations along the minimum energy path, i.e. first order
saddle points on the energy surface, correspond to collinear ordering. These simple systems
were chosen as illustrations of the method because the energy surface can be visualized easily.
A finite range approximation is also presented which leads to linear scaling of the computational
effort with the number of magnetic atoms in large systems. The theoretical approach described
here can be used in studies of magnetism in 3d-metal systems, including simulations of spin
dynamics and, in general, navigation on the energy surface characterizing such systems to find
stable state and transition state for magnetic transitions.
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APPENDIX

A. Recursion method and continued-fraction expansion of the Green function

An efficient algorithm for calculating the matrix elements of the Green function GG (in
this Appendix, a dependence of GG on € is implied) using the recursion method involves finding
a new orthonormal basis in which the Hamiltonian has a tridiagonal form, while the matrix
element to be evaluated, G%’B , remains unchanged.

We begin by discussing how diagonal matrix elements, G, = (x,|G|z,), can be
evaluated. Here, {|z1),...,|zop)} is an initial basis set and indices 1, v enumerate both
atomic site and spin projection. The first vector of the new basis is chosen so that |y;) = |z,).

Then, the diagonal matrix element of the Green function is given by:

Gup = (| Gly) = é117 (41)
where tilde indicates a quantity in the new basis. Other vectors of the new basis {|y1) , ..., |y2p) }
are found given that the Hamiltonian has a tridiagonal form:

aq b1 0 0 ... 0 0 0
b1 (45} bg 0 ... 0 0 0
0 b2 as bg ces 0 0 0
Hy=|: + & & : C | (42)
0 0 0 0 ... Aop—_9 bzp,Q 0
0 0 0 0 ... pr_Q Aop_1 bgp_l
0 0 0 0 ... 0 bgp_l Qaop
Not only basis vectors |y,) are found within the recursion scheme, but also elements
{ai,as,...,asp} and {by, bs, ..., bap_1} are successively calculated. From the equation:
H|y1) = a1 [y1) + bi [y) (43)
the second basis vector |y,) as well as a; and b; can be found as follows:
ar = (1| H [y1) , (44)
bi = H |y1) — a1 [yl , (45)
H —a
o) = 10 = ) (46)

Then, the Hamiltonian acts upon the second basis vector and the next portion of elements
of the tridiagonal matrix is found. This operation is reapplied until all elements of A in the

new basis have been calculated. For example, on the k-th step (k < 2P), when aq,...,a; 1,
bi,...,bg_1 and |y1),...,|yx) are known, we have:
ar = (yi| H [yi) , 47)
b = || H [yr) — bk—1|yr—1) — ax [yl , (48)
H — by_ 1) —
lysr) = ’?/k> k—1 |yk 1) ay |yk> (49)

b,
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Gy, is found in the following way. Let us introduce a notation:

Ak = <y1’ G ’Z/k) . (50)

The following set of equations is then valid for )y, which follows from the definition of the
Green function, (e — H) G = I:

(6 - CLl) )\1 — b1>\2 = 1,
(6 - CLk) >\k - bk—l/\k—l - bk)\k—i-l = 0, k 7é 1, k 7é QP,

(€ — azp) Aap — bap_1Aap_1 = 0.

After straightforward algebra, we obtain the representation of Gy, in the continued-fraction
form:

Gup =G = = (51)

The nondiagonal elements of the Green function can also be expanded in terms of
continued fractions. Namely, if G, u # v, is to be found, one has to perform tridiagonalization
four times, where the starting vectors are:

¢ —L T x
Y1) = \/§(| u>+’ V>)7
\%)—7 2) — |2)),

o = L x il
|y1>—\/§(\ w tilz)),
yi) = \iﬂu —ilzy)).

In each basis, matrix element C:'%l = <y§’ G ‘y% >, ¢ =a,b,c,d, is expanded in terms of contin-

ued fractions as described above. Continued-fraction representation of the real and imaginary
part of the nondiagonal element, G, is thus given by:

Re Gy = % (écﬁ - élﬁ) ) (52)

ImG,, = % (é‘fl . égl) . (53)

B. Partial-fraction expansion of the Green function

We proceed with the continued-fraction representation of the matrix element of the Green
function, Eqn. (51). Let us consider the last level of the continued fraction:

b2
f(l)(e) =€ —Qop_q — 271 (54)
€ — Qap
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If byp_y # 0, then the equation f(V)(¢) = 0 has two real roots, q§2) and qéQ), q%g) < qéQ), which

can be found either analytically or numerically. Then:

. (e _ qg)) (6 _ q§2)>

1 )
Ay

where q%l) = aop. As a result, the next level of the continued fraction acquires the form:

1
b3p_s (f - Q§ ))

(=) (c-a”)

The ratio of polynomials here can be transformed into a sum of two partial fractions:

b3p o (e — q%”) p§2) ) p;z)

(—a®) (=)

F®(€) =€ —azp_s —

where
2 1 2 1
(2)_b2 qi)—qi) (2)_b2 qé)—qg)
Pr = %pr2Tg @) Py =Y%p27Gy ()"
q1 " — 4o 94" —q

Thus, the function f?(¢) is represented in the form analogous to Eqn. (54):

Y Py
FO(e) = € —azpy — —15 = —F 5. (55)
€= €— 4
and the number of levels in the continued fraction is reduced by one.
The same technique is sequentially applied in order to transform the continued fraction

into a sum of partial fractions. For example, at the k-th step we have:

k (k)

f(k)(G) — € — Agp_k — Z p]—(k) (56)

j=1 € —4;

Zeros of the function f*)(¢) are well separated (see Fig. 7) and can be found numerically
without problems.
The function f**V(e) is then represented as follows:

kL (kD)
k+1) _ J
FEED(¢) —E—agp_k_l—Zw.
=1 €745
Here q§k+1), - ,q,g:l) are the roots of f*)(¢) =0 and pgkﬂ) are given by:
(k+1) (k))
d; - g
(k+1) _ 42 21;11 ( !
e k1) (D))
zl;ll <Qj —q; >
i#]

As a result, any continued fraction of the form (51) and thus an arbitrary element of the Green
function can be expanded in a sum of partial fractions (see Eqn. (29)).
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FIG. 7. Graphical solution of the equation f*)(¢) = 0. Exactly one root is
located between poles ¢!, ... ¢ of f®)(e).

C. Proof of lemmas (32) and (33)
We proceed with the equation for the matrix elements of the Green function:
(e = B G5 () = Y Vi G (e) = 67765, (57)
k.

This equation can be solved iteratively giving the following result for the diagonal elements of
the Green function:

oo _ 1 ‘/izvvkza
O = L B B0 B

¢ vk
LT Y2 Ynat 58
+ Z ‘/jikl Vklkz ""/;ﬂni + .. ( )
i, E—ER)(e— E7Y) .. (e = By ) (e — E7)
ki,....kn
where summation over ki, ks,...,k, and ~vi,7s,...,7, runs over all atomic sites and spin

projections, respectively. Each term in Eq. (58) can be considered as a sequence of vertices
forming a path with endpoints at («,):

Vi Vi Ve
(c— Bo)e— B (e~ B7)
(59)
Therefore, G%*(¢) can be thought of as the sum of all such closed paths. Each path describes
some multiple scattering process, where a single scattering event (‘hopping’) can be either an
on-site spin-flip or a non-spin-flip intersite transition. The sum of all possible paths of the same

(o, 1) = (1, k1) = (2, k2) = oo = (Vs k) — (ay1) =
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length and endpoints fixed at («, %) can be represented as:
Ve e oy
e = = |Go(e) VGy(e)V ...V G ‘= goe
2 B B BB~ GO Gl Y Gl i)

k1,..., kn n—+1 V-factors

(60)
Here, V' is a hopping matrix (see Eq. (19)) which contains information about all scattering events
in the system and Gy(¢) is the Green function for the non-interacting magnetic impurities. Gy(¢)
is diagonal and its matrix elements are given by:

aa 1
[Go(e)]ii™ = (e— E?) (61)

In order to prove lemmas (32)-(33), it is sufficient to derive corresponding identities for
the sum of the paths, S(e;n), for an arbitrary path length, n. The derivative of Tr S(¢; n) with
respect to IV; is given by:

0 L B 0Gy(e)
N, Tr S(e;n) = N, [Go(e)VGo(e)V ... VGy(e)] = Tr { N, VGo(e)V ... VG0<E>1
+ Tr |Go(e)V agjo\é )V VGy(e )] .+ Tr [GO(E)VGO(G)V. . V@g—;\ée)] .

(62)

8G0(E)
ON;
(18), they can be expressed in terms of derivatives with respect to € :
6G0(€) . _% 0G0(e)
8]\7% N 2 Oe v

Only two matrix elements of are non-zero (see Eq. (61)). According to Egs. (61) and

(63)

where 3V is 2P x 2P matrix defined so that only the elements (++, ) and (——, i) are equal
to unity, while the others are zero. Therefore, Eq. (62) takes the form:

0 U 0Gy(€) o
N, TrS(e;n) = _E{T [ e X VGo(e)V...VGy(e)
'n%%@vm?@xﬂﬁnvakﬂ (64)
€
4T [GO(G)VGO(G)V . va%o(e) zg} }
€
aG()(E) 0 . . .
The factor 3 2); found in every term in the curly brackets can be transformed into:
€
W50 = —(20Go(0), (65)
€
where use has been made of the identity
aGo(E)

5 = ~Gale), (66)
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as well as commutativity of Gy(€) and X?. Using Egs. (65) and (66) and invariance of a trace
under cyclic permutations, each term in Eq. (64) is transformed to obtain the following:

0 ' U; 100Gy (e)
N, (;n) = —?{T [E e VGy(e )V...VGO(E)]

86‘0(5)
Oe

+ Tr [E?GO(E)V V... VGO(E)]

+uwﬂ4wa¢W%@vmv“g§H:-%gguﬂakwg@vmv&@y:

U; 0 U; 0 __
= _?aTr [27S(e;n)] = 5 5 (S*(en) + S5~ (6n))
(67)
which proves Lemma (32).

Lemma (33) is proved in a similar way. However, when computing the derivative of
Tr S(e;n) with respect to M;, one needs to observe that both Gy(¢) and V' depend on M;. More

specifically:
8G0(e) UvZ 8G0( )

oM = 5 cos 0; e ¥z, (68)
gj\‘; = —% sin 0; (cos ¢; X7 + sin ¢;2Y) . (69)
The only nonzero matrix elements of X7, ¥ and X7 are defined as follows:
(Ef):;_ =1 (Ef>u =1, (70)
(=) =i (=) =1, (71)
()i =1 (ZH); =-1 (72)

Note that if only one magnetic impurity is present in the system, X7, ¥ and X7 coincide with
ordinary 2 x 2 Pauli matrices. This gives the following:

g, 9] ;
aM 5% Tr [X:Go(e)VGo(e)V ... VGy(e)] +

e sme 0 (cos 6 Tt [S2Go(€)VGo()V ... VGo(e)] + sin g, Tr [SYGo(e)VGo(e)V . .. vao(e)])

(e;m) = El cos b;

" e

= 58—{0056’ Tr [X7S(e;n)] + sin 6 (cos ¢ Tr [27S(e;n — 1)) + sing; Tr [XYS(e;n — 1)])}

U; 0 _ _ N Zbp\

58_[ (St*(e S;: (em)) cosb; + (S5 (0 — 1)e” + S; T (e;n — 1)e ) sin 011,
(73)

which proves lemma (33).

For large (or infinite) systems, the calculation of Green functions is often performed
approximately, using a finite range approximation (see Sec. 5) or by truncating the recursion
method (see appendix A) at a certain step. In this case, the scattering matrix V; may be different
for different sites ¢+ and Lemmas (32)-(33) and, therefore, the MFT, are strictly not valid. This
was demonstrated in Sec. 5 where direct calculations of the derivatives of energy with respect
to N; and M, for the self-consistent values /N and M were found not to equal zero because
of the finite range approximation. However, if any subsystem of atoms is chosen and the same
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set of hopping contributions are included for all the atoms of this subsystem, then the scattering
matrix will be the same for all atoms in the system and the proof of Lemmas (32)-(33) will
hold just as in the case when all atoms and hopping contributions are included. In particular,
one can choose as a subsystem the atoms included in one closed loop in Eqn.(59) and the
corresponding hopping contributions to form the scattering matrix V. Then, the MFT will be
valid for this subsystem. Formally, it is a consequence of the fact that all closed paths in
Eqn.(59) which make a contribution to the matrix element of the Green function G;;, make the
same contribution to any G; if the path in Eqn.(59) goes through site j. If, however, we try to
improve the calculation by taking into account additional atoms and hopping contributions that
are different for different atoms, as in the case of the finite range approximation described in
Sec. 5, then the MFT is violated.
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