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In the present paper simple analytical expressions connecting bulk moduli for fullerenes 𝐶20 and 𝐶60 with stiffness

of interatomic bond and geometrical characteristics of the fullerenes are derived. Ambiguities related to definition of

the bulk modulus are discussed. Nonlinear volumetrical deformation of the fullerenes is considered. Pressure-volume

dependence for the fullerenes under volumetrical compression are derived. Simple analytical model for volumetrical

vibrations of the fullerenes is proposed. The expression connecting frequencies of volumetrical vibrations for

fullerenes 𝐶20 and 𝐶60 with parameters of interatomic interactions are obtained.
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1. Introduction

The discovery of unique physical and mechanical properties of fullerenes in the end of
XXth century [1] have strongly increased scientific interest to these carbon nanostructures. The
fullerenes are closed spheroidal surfaces, made of pentagons and hexagon with carbon atoms in
tops. During the last several decades a great number of fullerenes have been synthesized [2, 3].
However it is notable that only two of them, 𝐶20 and 𝐶60, have perfect geometrical shape (dodec-
ahedron and truncated icosahedron respectively). Due to the small size of fullerenes experimental
investigation of their physical and mechanical properties is still a challenge problem for the mod-
ern physics. That is why only few characteristics of fullerenes can be measured. In the case when
experimental methods are not applicable, computer simulation becomes almost the only method
for investigation. The main methods for computer simulation of nanostructures are classical [4]
and ab initio [5] molecular dynamics (MD). A great number of papers is devoted to both classical
and ab initio MD simulation of fullerenes [6, 7]. Though computer simulations allow to over-
come many limitations of real experiment, they are still not a “panacea”. In particular, results
of computer simulations require verification and validation. In this situation simple analytical
models allowing to check the quality of the results are very important [8].

In the present paper simple analytical formulas for equivalent bulk moduli of fullerenes 𝐶20

and 𝐶60 are a derived. The following definition for bulk modulus is used. A bulk modulus of
the fullerene is a proportionality factor between the pressure exerted on the fullerene and relative
change of volume in case of small volumetric deformations [8]. The ambiguity of definition for
the pressure exerted on the fullerene is discussed. Three definitions of the pressure, differing in
the way of calculation of the equivalent surface area of the fullerene, are considered. Analytical
expressions connecting bulk moduli of fullerenes 𝐶20 and 𝐶60 with micro- parameters (bond
stiffness, bond length, etc.) are derived. The expressions are compared with a result of paper [8].
Bulk moduli of the fullerenes are calculated for different values of bond stiffness reported in
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literature. The dependence of pressure on volumetrical deformation of the fullerene is derived in
the case of large deformations. Linearized equation of volumetrical vibrations of the fullerenes
is presented. Corresponding eigenfrequency is calculated. The comparison with experimental
data [10] is discussed.

2. Linear volumetrical deformation of fullerenes 𝐶20 and 𝐶60

Let us assume that pressure exerted on the fullerene is carried out by the external forces
of magnitude 𝐹 acting on each carbon atom. Forces are directed to the center of the molecule.
Consider the case of small volumetrical deformations. In this case angles between atoms do not
change during the deformation. Then forces acting between atoms depend on interatomic dis-
tances only. Let us assume that atoms in the fullerene interact via pair central forces proportional
to deformation of the bond. From the symmetry reasons all atoms in the fullerene are equivalent.
Therefore the reasoning is carried out for one specific atom. Using symmetry one can show that
equation of equilibrium for the given atom in a projection to direction of corresponding external
force has the following form

𝐹 = −3𝑘𝑎0𝜀cos𝛼, (1)
where 𝛼 is an angle between the external force and direction of the bonds (𝛼 is identical for all
bonds of the given atom); 𝑘 is a stiffness of the bond; 𝜀 is a relative deformation of the bond;
𝑎0 is an equilibrium bond length. It is important to note that the angle 𝛼 doesn’t change in
the course of deformation. Let us use the expression connecting deformation of the bond 𝜀 and
volumetrical deformation Δ𝑉/𝑉0 = (𝑉 − 𝑉0)/𝑉0, where 𝑉 and 𝑉0 are volumes of the fullerene
in deformed and undeformed states. In the case of small deformations the expression has form

Δ𝑉

𝑉0

≈ 3𝜀. (2)

Substituting expression (2) into formula (1) one obtains

𝐹 = −𝑘𝑎0cos𝛼
Δ𝑉

𝑉0

. (3)

Let us define the pressure acting on fullerene as follows

𝑃
def
=

𝑁𝐹

𝑆
≈ −𝑁𝑘𝑎0cos𝛼

𝑆0

Δ𝑉

𝑉0
, (4)

where 𝑁 is a number of carbon atoms in the fullerene (𝑁=20 for 𝐶20 and 𝑁=60 for 𝐶60), 𝑆0

is an equivalent surface area of the fullerene in undeformed state. Thus, one have the following
expression for bulk moduli of fullerenes 𝐶20 and 𝐶60

𝐵 = 𝑁
𝑎0𝑘cos𝛼

𝑆0
. (5)

Note that equivalent surface area 𝑆0 in formulas (4), (5) is in principle not unique. Therefore in
the present paper three different definitions of 𝑆0 are considered: area of the inscribing sphere,
area of the circumscribing sphere and the surface area (the area of dodecahedron and truncated
icosahedron respectively). Geometrical characteristics of fullerenes 𝐶20 and 𝐶60 required for
calculation of the bulk modulus are presented in Table 1. Using the characteristics, bulk moduli
of the fullerenes are calculated for different values of 𝑆0 (see Table 2). The following value of
bond length is used: 𝑎0 = 0.1433 nm. Values of bond stiffness 𝑘, presented in Table 2, are taken
from the paper [8]. Different values corresponds to different types of experiments (see paper [8]
for details). Note that maximal difference between values of 𝑘 is approximately 17%. One can
see from Table 2 that bulk modulus 𝐵 of fullerene 𝐶20 is approximately twice larger than the
similar value for fullerene 𝐶60. The value of bulk modulus essentially depends on a choice of the
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Table 1. Geometrical characteristics of undeformed fullerenes 𝐶20 and 𝐶60. Here
𝑅𝑐, 𝑆

𝑐
0 are radius and surface area of the sphere circumscribed around the fullerene,

𝑅𝑖, 𝑆
𝑖
0 are radius and surface area of inscribed sphere, 𝑆𝑝

0 is a surface area of
corresponding polygon.

𝐶20 𝐶60

Formula Value Formula Value
𝑅𝑐 𝑎0/(2cos𝛼) 0.201 nm 𝑎0/(2cos𝛼) 0.355 nm

𝑅𝑖 𝑎0

√
10(25 + 11

√
5)/20 0.160 nm 3𝑎0

√
3(3 +

√
5)/12 0.325 nm

𝑆𝑐
0 4𝜋𝑅2

𝑐 0.507 nm2 4𝜋𝑅2
𝑐 1.58 nm2

𝑆𝑖
0 4𝜋𝑅2

𝑖 0.320 nm2 4𝜋𝑅2
𝑖 1.33 nm2

𝑆𝑝
0 3𝑎20

√
5(5 + 2

√
5) 0.424 nm2 15

(
2
√
3 + ctg

𝜋

5

)
𝑎20 1.49 nm2

cos𝛼
2√

3(1 +
√
5)

0.357

√
1+2cos 3

5
𝜋

10+2cos 3
5
𝜋

0.202

Table 2. Stiffness of the bond and bulk moduli of fullerenes 𝐶20 and 𝐶60

Area Bond stiffness, N/m bulk modulus 𝐵, GPa
fulleren 𝐶20 fulleren 𝐶60

circumscribed sphere 762 1538 834
708 1429 775
672 1356 736
660 1332 723
635 1282 695

inscribed sphere 762 2436 997
708 2263 926
672 2148 879
660 2110 863
635 2030 830

polyhedron 762 1838 887
708 1708 824
672 1621 782
660 1592 768
635 1532 739

equivalent surface area 𝑆0. Maximum difference between values 𝐵, calculated for different 𝑆0, is
37% for 𝐶20 and 16% for 𝐶60. Note that the values of bulk modulus of fullerene 𝐶60, presented
in Table 2, do not coincide with results of paper [8]. In paper [8] another definition for pressure
acting on the fullerene was used. It was assumed that pressure is carried by normal forces
distributed on a surface of the truncated icosahedron. Obviously the given way of loading can
not be realized in practice. Therefore physical meaning of the definition used in paper [8] is not
clear.

3. Nonlinear volumetrical deformation of fullerenes 𝐶20 and 𝐶60

Let us consider nonlinear deformation of fullerenes 𝐶20 and 𝐶60. Assume that compres-
sion of the bond is described by pair potential 𝑈 . Also assume that pressure is carried out by
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external forces of value 𝐹 , acting on all carbon atoms. Forces are directed to the center of the
molecule. Then the projection of equilibrium equation for some specific atom on the directions
of corresponding external force has the following form

𝐹 + 3𝑈 ′(𝑟)cos𝛼 = 0, (6)

where 𝑟 is a distance between the nearest neighbors in the fullerene. Resolving the given equation
with respect to 𝐹 and substituting the result onto definition for pressure (4) one obtains

𝑃

(
𝑉

𝑉0

)
= −3𝑁𝑎0cos𝛼

𝑆0

(
𝑉0

𝑉

) 2
3

𝑈 ′
(
𝑎0

(
𝑉

𝑉0

) 1
3

)
, (7)

Here the following identities are used 𝑟 = 𝑎0 (𝑉/𝑉0)
1
3 , 𝑆 = 𝑆0 (𝑉/𝑉0)

2
3 , where 𝑆 is a surface

area of the fullerene in the deformed state. Formula (7) defines pressure-volume dependence for
the fullerene in the case of large volumetrical deformations. For example, let us calculate this
dependence for Lennard-Jones potential

𝑈(𝑟) = 𝐷

[(𝑎0
𝑟

)12
− 2

(𝑎0
𝑟

)6]
, (8)

where 𝐷 is a bond energy, 𝑎0 is an equilibrium distance between atoms in the fullerene. Substi-
tuting (8) into (7) one obtains

𝑃

(
𝑉

𝑉0

)
=

𝑁𝑘𝑎0cos𝛼

2𝑆0

(
𝑉0

𝑉

)3
[(

𝑉0

𝑉

)2

− 1

]
, (9)

where the well-known relation between bond energy and stiffness for Lennard—Jones poten-
tial 𝐷 = 𝑘𝑎20/72 was used. Linearizing formula (9) for the case of small deformations one can
obtain the expression for bulk modulus that exactly coincides with formula (5).

4. Volumetrical oscillations of fullerenes 𝐶20 and 𝐶60

Let us calculate the frequency of small volumetrical vibrations of fullerenes 𝐶20 and 𝐶60.
Assume that atoms in the fullerene interacts via linear pair central forces. Only interactions
between the nearest neighbors are taken into account. Then equation of motion for some specific
atom in the fullerene has the following form

𝑚
..
r0= 𝑘

3∑
𝑖=1

(r𝑖 − r0), (10)

where 𝑚 is a mass of carbon atom, r0 and r𝑖 are radius-vectors of the specific atom and its neigh-
bor number 𝑖 with respect to the center of the fullerene. In the case of volumetrical vibrations
radius-vectors can be represented in the following form r𝑖 = 𝑟0e𝑖, 𝑖 = 0, .., 3. Substituting these
expressions into equation of motion (10) one obtains

𝑚
..
𝑟0 e0 = 𝑘𝑟0

3∑
𝑖=1

(e𝑖 − e0) ⇒ 𝑚
..
𝑟0= −3𝑘𝑟0(cos(2𝛼) + 1). (11)

where the identity e0 ⋅ e𝑖=− cos(2𝛼), 𝑖 = 1..3 was used. Then equation of motion takes simple
scalar form

𝑚
..
𝑟0 +6𝑘cos2𝛼𝑟0 = 0. (12)
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Therefore the eigenfrequency of volumetrical vibrations of the fullerenes is determined by the
following expression

𝜔 =

√
6𝑘

𝑚
cos𝛼. (13)

One can see that the only difference between values of 𝜔 for fullerenes 𝐶20 and 𝐶60 is in the value
of angle 𝛼. Let us calculate the frequencies assuming that 𝑚 = 1.994⋅10−26 kg, 𝑘 = 635 N/m [8].
Then one obtains 𝜔 = 156.0 THz for 𝐶20 and 𝜔 = 88.20 THz for 𝐶60. The experimental value of
the frequency of volumetrical vibrations of the fullerenes is not reported in literature. However
one can carry out the order of magnitude analysis. In paper [10] the first eigenfrequency of
fullerene 𝐶60 is determined using Raman spectroscopy. It is shown that the frequency is equal
to 8.19 THz. Obviously the frequency of volumetrical vibrations should be approximately one
order higher then the first eigenfrequency. Thus results of the present paper qualitatively coincide
with experimental data [10]. However more accurate comparison is required.

5. Conclusion

In the present paper simple analytical expressions connecting bulk moduli 𝐵 for fullerenes
𝐶20 and 𝐶60 with interatomic bond stiffness and geometrical characteristics of the fullerenes were
presented. It was shown that 𝐵 depends on a choice of the equivalent surface area. Maximum
difference between values of 𝐵, calculated for different 𝑆0 and identical value of the bond
stiffness is 37% for 𝐶20 and 16% for 𝐶60. Nonlinear volumetrical deformation of the fullerene
was considered. It was assumed that compression of the bond is described by pair potential of the
general form. Simple analytical formula for pressure-volume dependence for the fullerenes under
volumetrical compression was derived. For example, Lennards-Jones potential was considered.
It was shown that at high compressions the pressure is increasing asymptotically as (𝑉0/𝑉 )5.
Volumetrical vibrations of the fullerenes are considered. An analytical expression connecting
frequencies of volumetrical vibration for fullerenes 𝐶20 and 𝐶60 with parameters of interatomic
interactions was derived. The following values of the frequencies were obtained: 𝜔 = 156.0 THz
for 𝐶20 and 𝜔 = 88.20 THz for 𝐶60.
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