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ABSTRACT This paper investigates pinned gradient measures for SOS (Solid-On-Solid) models associated

with HA-boundary laws of period two, a class that encompasses all 2-height periodic gradient Gibbs measures

corresponding to a spatially homogeneous boundary law. While previous research has predominantly focused

on a spatially homogeneous boundary law and corresponding GGMs on Cayley trees, this study extends the

analysis by providing a comprehensive characterization of such measures. Specifically, it demonstrates the

existence of pinned gradient measures on a set of G-admissible configurations and precisely quantifies their

number under certain temperature conditions.
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1. Introduction

Gradient Gibbs measures (GGMs) on trees, particularly on the Cayley tree, are an important class of models in

statistical mechanics used to study interfaces and phase transitions. These measures arise in systems where the spin

variables, i.e. “heights” are defined on the vertices of a tree and exhibit a gradient interaction between neighboring sites,

meaning the energy of the system depends on the difference between spins at adjacent vertices. The main interest in

GGMs on trees lies in their ability to capture complex behaviors such as long-range correlations, coexistence of multiple

phases, and non-trivial periodic solutions, even in low-dimensional settings.

The Cayley tree, an infinite, connected, acyclic graph where each vertex has a fixed number of neighbors (called

the order of the tree), serves as a natural setting for studying such measures. Unlike lattice systems, the tree structure

introduces unique challenges due to the absence of loops, resulting in boundary effects that play a dominant role in the

behavior of the system (e.g., [1–5]).

For GGMs on trees, the construction is typically based on boundary laws as solutions of recursive equations that

describe the influence of the outer boundary on the system. This recursive structure facilitates the exploration of non-

translation-invariant solutions, including periodic or quasi-periodic Gibbs measures. Notably, the work of Zachary [6]

laid the foundation for describing Gibbs measures on trees using these boundary conditions. Models with denumerable

(non-compact) set of spin values which potentials are invariant under a joint height-shift of all values of the spin-variables

are notable in statistical mechanics, under the names interface models or gradient models. For lattice spin systems, a

theory demonstrates the existence and uniqueness of gradient Gibbs measures with a fixed tilt, assuming uniform strictly

convex potentials in dimensions d = 2 investigated by Funaki and Spohn [7]. (See however Remark 4.4 of [8] on existence

for non-convex potentials.) This extends to random models [9, 10] in dimensions d ≥ 3, while for d = 2 such random

gradient states cannot exist ( [11]) since they experience local destabilization due to the impact of quenched randomness.

In [12], the establishment of gradient Gibbs measures on trees through boundary laws is provided. Also, in the paper,

authors generalize the theory of Zachary [6, 13] for a non-normalizable boundary law (i.e. Zachary’s theory can not be

applied).

In the context of the SOS model, a classic example of an interface model, GGMs on the Cayley tree have been shown

to exhibit rich behavior, including multiple periodic solutions and phase transitions depending on the parameters of the

model. Such systems allow for the study of gradient Gibbs measures that are both translation-invariant and those that

break translation symmetry, leading to periodic configurations (e.g. [14–20]).
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In this paper, we build upon the research presented in the preceding papers by investigating the existence of 2-height

periodic pinned gradient measures for the SOS model restricted to a set of G-admissible configurations on the Cayley tree

of order k ≥ 2. The notion of HA-periodicity is typically defined (see [4]) for boundary conditions. If pinned gradient

measures (GGMs) exist for such boundary conditions, they are referred to as HA-periodic pinned gradient measures

(GGMs). We define HA-boundary laws by formula (3.14). Note that if there exists spatially translation invariant GGMs

corresponding to a spatially homogeneous boundary law (i.e. {lxy} = {l}), then it is possible to call these GGMs

corresponding to HA-boundary laws. In this case, we set l(1) = l(2) := l for the family of vectors {lxy}〈x,y〉∈~L =

{l(1), l(2)}.

The results in Theorem 1 show that all three HA-boundary laws of period two define a spatially homogeneous

boundary law resulting in three GGMs (see [17, 21, 22]). On the other hand, the results in Theorem 2 indicate that

for specific ranges of the interaction parameter θ, there are exactly three 2-height periodic pinned gradient measures on a

G2-admissible configuration space: one of them is associated with a trivial boundary law and the other two are derived

from spatially inhomogeneous (HA) boundary laws. This reveals the presence of symmetry breaking in the model, where

distinct periodic solutions emerge depending on the parameter θ.

2. Preliminaries

We would like to emphasize that the information below is based on the references [12, 18, 21–23]. Let us denote

the Cayley tree of order k by Γk = (V, L), where V and L is the set of vertices and the set of edges, respectively. An

unoriented edge between two vertices x, y ∈ V is denoted by b = {x, y}. For an oriented edge going from x to y, we

write 〈x, y〉 and ~L is the set of all such edges. d(x, y) denotes the number of edges along the unique smallest path from x
to y. Let N be the collection of a finite subsets of V . The outer boundary set of Λ ∈ N is defined as

∂Λ := {x /∈ Λ : d(x, y) = 1 for some y ∈ Λ}.
Let Ω := Z

V = {(ωx)x∈V |ωx ∈ Z} denote the set of (integer-valued) height-configurations endowed with the product

σ-algebra F = P(Z)V generated by the spin variables πx : ZV → Z is defined by πx(ω) = ωx the projection onto the

coordinate x ∈ V.
Let Λ ⊂ V and πΛ : Ω → Z

Λ be the projection onto the coordinates in Λ. We can write

FΛ = σ ({πy | y ∈ Λ}) = P(Z)Λ

for the σ−algebra generated by the height-variables in the vertices x ∈ Λ.

Let ωx be the state of the configuration ω at the vertex x ∈ V and b = 〈v, w〉 ∈ ~L. The equation ∇ωb = ωw − ωv
denotes the height difference of b. We define the gradient field of ω as

∇ω := {∇ωb| b ∈ ~L}.
The set of spin values η〈x,y〉 = πy − πx is called gradient spin variables for each 〈x, y〉 ∈ ~L. The state space of

the gradient configurations is defined by Ω∇ = Z
V /Z = Z

~L. We will consider the standard σ-algebra on Z
~L which is

defined as follows

F∇ = σ
({

ηb | b ∈ ~L
})

= P(Z)
~L.

For each b = {x, y} ∈ L, a symmetric nearest-neighbor gradient interaction potential Ub : Z → R is given by

Ub(m) = Ub(−m) and the family of functions, i.e. transfer operators are defined by Qb(m) = exp (−βUb(m)) for all

m ∈ Z. Here β is interpreted as the inverse of a temperature. The following finite quantity is called [22] a Hamiltonian in

the finite volume Λ ∈ V is as follows

HU
Λ (ω) =

∑

b∩Λ 6=∅

Ub (∇ωb) , Λ ∈ N .

In the SOS model on a Cayley tree, Ub is an unbounded symmetric nearest-neighbor gradient interaction potential

defined by

Ub(ωx, ωy) = Jb|ωx − ωy|,
where Jb ∈ R is a coupling constant, which determines the energy cost of height differences.

In the article, it is assumed that Jb = J > 0, indicating the spatial homogeneity of the coupling constant. Further-

more, the system’s energy increases as the height difference between adjacent sites increases. Thus, we can conclude that

the parameter θ := e−Jβ lies within the interval 0 < θ < 1.

The family of probability kernels [22] for the given HamiltonianHU
Λ , i.e., (γΛ)Λ∈N from (Ω,FΛc) to (Ω,F) is given

by

γΛ(A|ω̃) = Z−1
Λ (ω̃)

∫

A

exp









−
∑

b⊂Λ

Ub (∇ωb)−
∑

i∈Λ,j∈Λc

i∼j

U{i,j} (ωi − ω̃j)









dωΛ (2.1)
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for all A ∈ F , where ZΛ(ω̃) denotes a normalization constant and dωΛ is the counting measure on ΩΛ = Z
Λ.

A transfer operator Qb = Q induces local Gibbsian specification

γ = {γΛ : F × Ω → [0, 1]}Λ∈N

by the assignment which represent (2.1) in the form

γΛ(σΛ = ω̃Λ|ω) =
1

ZΛ(ω∂Λ)





∏

{x,y}⊂Λ

Q(ω̃x − ω̃y)





∏

x∈Λ,y∈Λc

x∼y

Q(ω̃x − ωy)

for every Λ ∈ N , ω̃ ∈ ΩΛ and ω ∈ Ω. Here, the partition function ZΛ gives for every ω ∈ Ω the normalisation constant

ZΛ(ω) = ZΛ(ω∂Λ) turning γΛ(·|ω) into a probability measure on the height configuration space (Ω,F), ωΛ and ΩΛ

denote the restrictions on Λ ∈ V.
The kernels γΛ can be projected to the gradient Gibbs specification

γ∇ = {γ∇Λ : F∇ × Ω∇ → [0, 1]}Λ∈N .

The outer gradient σ-algebra [22] on Ω∇ is defined by

T ∇
Λ := σ((ηb)b⊂Λc , [η]∂Λ) ⊂ F∇.

The kernels [21] are

γ∇Λ (ηΛ = ζΛ|ζ) := γΛ(σΛ = ωΛ|ω)
for any ω ∈ Ω such that (∇ω)Λc = ζΛc and [∇ω]∂Λ = [ζ]∂Λ.

Then a collection Σ :=
(

V,N ,Ω∇,
{

T ∇
Λ

}

Λ∈N

)

can be considered as a lattice system. Let γ = {γΛ}Λ∈N be a local

specification on lattice systems. Then a probability measure µ ∈ P(F) is called a Gibbs measure with specification γ if

µ = µγΛ for each Λ ∈ N . This definition of Gibbs measures originates from Dobrushin and Lanford and Ruelle (see

[24–26]), and the last equations are called the DLR-equations. A Gibbs measure with the specification γ∇ = {γ∇Λ (·|ζ)|ζ ∈
Ω∇,Λ ∈ N} is called a gradient Gibbs measure on the lattice system Σ.

3. Pinned gradient measures corresponding to two periodic boundary laws

It is known that the problem of expressing periodic Gibbs measures corresponding to various Hamiltonians typically

reduces to solving systems of algebraic equations. Due to the lack of general formulas for solving such systems, many

difficulties arise. Initially, we analyze the solutions of the following system of equations:


















x =

(

ay + b

cy + a+ b− c

)k

y =

(

ax+ b

cx+ a+ b− c

)k
, (3.1)

which is a generalization of systems of equations encountered in many papers [14,15,17,27]. As an example for the case

b 6= c, one can apply the result of the following proposition to the system of equations (4.3) analyzed in [27]. Applications

of our proposition for the case b = c will be explored later in Theorems 1 and 2.

Proposition 1. Let a, b, c > 0 be real numbers satisfying the condition a + b − c > 0. The number of positive solutions

(x, y) to the system (3.1) is determined by the value of k ∈ N and the relationship between a and c:

(1) If a = c or k = 1, then the system has exactly one solution which is (x, y) = (1, 1).

(2) If a > c and k >
a+ b

a− c
, then the system has exactly three distinct solutions which satisfy x = y.

(3) If a < c and k >
a+ b

c− a
, then the system also has exactly three distinct solutions one solution satisfies x = y and

the other two satisfy the condition x 6= y.

Proof. Let’s start with the following notation for simplicity

f(x) :=

(

ax+ b

cx+ a+ b− c

)k

. (3.2)

The case a = c is indeed quite trivial, as in this scenario, the function simplifies to f(x) = 1 for all positive x.

Consequently, there is only one pair of solutions, which is (x, y) = (1, 1).
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For the case a 6= c, the function f(x) exhibits specific properties depending on the relationship between a and c. The

derivative of f(x) is given by

f ′(x) =
k(a+ b)(a− c)f(x)

(ax+ b)(cx+ a+ b− c)
.

The function f(x) is bounded, strictly increasing when a > c, and strictly decreasing when a < c. For x > 0, it

holds that f(0) =

(

b

a+ b− c

)k

> 0, and as x→ ∞ we find that lim
x→∞

f(x) =
(a

c

)k

.

Now assume that a < c. In this case, we conclude that there exists a unique solution, given by x = y = 1 on the

assumption that x = y .

Let x 6= y. Now we find the conditions for the existence of solutions with x 6= y in the system (3.1). To do this, we

will study the equation

f(f(x)) = x. (3.3)

Since the function f(x) is invertible for x > 0, we can rewrite the equation as f(x) = f−1(x) := g(x), where

g(x) = f−1(x) =
(a+ b− c) k

√
x− b

−c k
√
x+ a

. (3.4)

From f(x) > 0, it follows that g(x) > 0. Therefore, the domain of the function g(x) is (x1, x2), where


















x1 =
(a

c

)k

< x <

(

b

a+ b− c

)k

= x2, if a < c

x1 =

(

b

a+ b− c

)k

< x <
(a

c

)k

= x2, if a > c

. (3.5)

Now let us consider the case a < c. Note that by solving the equation h(x) = 0 for the function h(x) = ln
f(x)

g(x)
=

ln f(x)− ln g(x), we obtain the same solution set as for equation (3.3). Clearly, x = 1 is a solution to this equation, i.e.,

h(1) = 0. Using the derivatives

f ′(x) =
k(a+ b)(a− c)f(x)

(ax+ b)(cx+ a+ b− c)

and

g′(x) =
(a+ b)(a− c)g(x)

k
k
√
xk−1 [(a+ b− c) k

√
x− b] (−c k

√
x+ a)

,

we have

h′(x) =
f ′(x)

f(x)
− g′(x)

g(x)
=

(a+ b)(a− c)

k
·
(

k2

(ax+ b)(cx+ a+ b− c)

)

− (a+ b)(a− c)

k
· 1

k
√
xk−1 [(a+ b− c) k

√
x− b] (−c k

√
x+ a)

.

Denoting k
√
x = t, we rewrite the derivative h′(x) as

v(t) =
(a+ b)(c− a)p(t)

ktk−1(atk + b)(ctk + a+ b− c) [(a+ b− c)t− b] (−ct+ a)
,

where
p(t) = act2k + k2c(a+ b− c)tk+1 − (k2 − 1)(a2 + ab+ bc− ac)tk+

+ k2abtk−1 + b2 + ab− bc.
(3.6)

Let k = 1. Then the function h′(x) gets always positive (a < c) or negative (a > c) value for any x ∈ (x1, x2) . Therefore,

the only way for the function h(x) to cross the x-axis is at the point x = 1.
Let k ≥ 2. Then by Descartes’ rule [28] of signs, the polynomial (3.6) has at most two positive roots. It is easy to

verify that

lim
x→x1

h(x) = −∞, h(1) = 0, lim
x→x2

h(x) = +∞. (3.7)

Hence, the equation h(x) = 0 has at least one solution x0 for x < 1 and at least one solution x′0 for x > 1 if

h′(1) < 0. From this condition,

h′(1) =
(a+ b)(a− c)

k
·
(

k2

(a+ b)2
− 1

(a− c)2

)

< 0, (3.8)

we find that k >
a+ b

c− a
since

a+ b

c− a
> 0. Moreover,

lim
x→x1

h′(x) = +∞, lim
x→x2

h′(x) = +∞ (3.9)
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for all k >
a+ b

c− a
. From the condition h′(1) < 0, it follows that the function h(x) has exactly two critical points ξ1 and

ξ2 such that x1 < ξ1 < 1 and 1 < ξ2 < x2 (see Figure 1).

FIG. 1. The graph illustrates the number of possible solutions to the equation (3.3) for a < c and k >
a+ b

c− a

This indicates that h(x) is increasing on the intervals x1 < x < ξ1 and ξ2 < x < x2 and decreasing on the interval

ξ1 < x < ξ2. Therefore, the equation h(x) = 0 has exactly two solutions except for 1, denoted as x0 < 1 < x′0.

Finally, since the function f(x) is strictly decreasing for a < c, from the second equation of the system (3.1), we have

f(x0) := y0 > f(1) = 1 > f(x′0) := y′0. We conclude that x0 6= y0 (x′0 6= y′0) for the pairs of solutions (x0, y0) and

(x′0, y
′
0) corresponding to x0 and x′0 respectively. Thus, the system of equations (3.1) has exactly three distinct solutions

under the condition k >
a+ b

c− a
.

The case a > c is analogous to the case a < c, so we will provide a brief proof. In this case the function f is a strictly

increasing function for x > 0. Assume that y < x and (x, y) is a solution to (3.1). This would imply f(x) < f(y) but due

to the fact that f is strictly increasing, we would have x < y which contradicts our assumption. The case x < y proceeds

analogously and consequently there can not be a solution x 6= y if a > c.
Therefore, it suffices to consider the case of x = y as the solutions to the system (3.1).

After denoting k
√
x := z, the system of equations (3.1) becomes the following equation

z =
azk + b

czk + a+ b− c
. (3.10)

Alternatively, using the function (3.4), the equation (3.10) can be rewritten in the following form

zk = g(zk) =
(a+ b− c)z − b

−cz + a
. (3.11)

In this case, for the values k
√
x1 := z1 and k

√
x2 := z2 in the domain (z1, z2) of the function g(zk) the equations in

(3.7) take the form

lim
z→z1

h(z) = +∞, h(1) = 0, lim
z→z2

h(z) = −∞.

The inequality corresponding to (3.8) becomes

h′(1) =
(a+ b)(a− c)

k
·
(

k2

(a+ b)2
− 1

(a− c)2

)

> 0, (3.12)

and the derivative condition in (3.9) transforms to

lim
z→z1

h′(z) = −∞, lim
z→z2

h′(z) = −∞,

for k >
a+ b

a− c
. Under this condition, the system (3.1) admits exactly two solutions, apart from the trivial case z = y = 1

(see Figure 2).

�
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FIG. 2. The graph depicts the number of possible solutions to the equation (3.11) in the case a > c and

k >
a+ b

c− a

Definition 1. [22] A family of vectors {lxy}〈x,y〉∈~L, where lxy ∈ (0,∞)Z, is called a boundary law for the transfer

operators {Qb}b∈L if for each 〈x, y〉 ∈ ~L, there exists a constant cxy > 0 such that the consistency equation

lxy(ωx) = cxy
∏

z∈∂x\{y}

∑

ψz∈Z

Qzx(ωx − ψz)lzx(ψz) (3.13)

holds for every ωx ∈ Z. A boundary law is called q-periodic if lxy(ωx + q) = lxy(ωx) for every oriented edge 〈x, y〉 ∈ ~L
and each ωx ∈ Z.

Gradient measures and gradient Gibbs measures are constructed using q-periodic boundary laws on the space of

gradient configurations (see Chapters 3 and 4 in [22]). Theorem 3.1 establishes that for a vertex Λ ∈ N and class label

s ∈ Zq , any q-periodic boundary law {lxy}〈x,y〉∈~L for {Qb}b∈L defines a consistent family of probability measures

(pinned gradient measures) on Ω∇. Chapter 4 discusses a spatially homogeneous boundary law, with the gradient Gibbs

measure given by equation (4.3).

Let Gk be the free product of k + 1 cyclic groups of order two, with generators a1, a2, . . . , ak+1. It is known that

there is a one-to-one correspondence between the set of vertices V of the Cayley tree Γk and the groupGk(see Proposition

1.1 in [4]).

Any element x ∈ Gk has the following form

x = ai1ai2 ...ain , where 1 ≤ im ≤ k + 1, m = 1, ..., n.

The number n is called the length of the word and the number of letters ai, i = 1, ..., k+1, that enter the non contractible

representation of the word x is denoted by ωx(ai). Let Nk = {1, . . . , k + 1}, and define the set

HA =

{

x ∈ Gk |
∑

i∈A

ωx(ai) is even

}

.

By Proposition 1.2 in [4], for any ∅ 6= A ⊆ Nk, the set HA ⊂ Gk is a normal subgroup of index two.

Now, we define a spatially inhomogeneous boundary law associated withHA (aHA-boundary law), i.e., {lxy}〈x,y〉∈~L =

{l(1), l(2)} assuming A = Nk as follows

lxy =

{

l(1), if x ∈ HA and y ∈ Gk \HA

l(2), if y ∈ HA and x ∈ Gk \HA

. (3.14)

It is essential to observe that when l(1) = l(2), the boundary conditions are spatially homogeneous [17, 21, 22].

Conversely, when l(1) 6= l(2), the boundary conditions become spatially inhomogeneous, a phenomenon that is further

investigated in this paper.

Now we define the vectors z = (...z−2, z−1, 1, z1, z2,...) and t = (...t−2, t−1, 1, t1, t2,...) for simplicity under the

assumption lxy(0) 6= 0 in the following way
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lxy(i)

lxy(0)
=

{

zi, if x ∈ HA and y ∈ Gk \HA

ti, if y ∈ HA and x ∈ Gk \HA

,

where i ∈ Z.

Let G be a given graph. We specify the set of G-admissible configurations as follows.

Definition 2. [14] A configuration ω is called a G-admissible configuration on the Cayley tree if {ωx, ωy} is the edge of

the graph G for any pair of nearest neighbors x, y in V .

Let ΩG denote the set of G-admissible configurations, Ω∇
G indicate the set of G-admissible gradient configuration

space and L(G) be the set of edges of a graph G. We let A ≡ AG = (aij)i,j∈Z
denote the adjacency matrix of the graph

G, i.e.,

aij = aGij =











1 if {i, j} ∈ L(G)

0 if {i, j} /∈ L(G)
.

Applying the matrix A to the system of boundary law equations (3.13) for the SOS model, restricted to the set of

G-admissible configurations, results in






























zi =

(

ai0θ
|i| +

∑

j∈Z0
aijθ

|i−j|tj

a00 +
∑

j∈Z0
a0jθ|j|tj

)k

ti =

(

ai0θ
|i| +

∑

j∈Z0
aijθ

|i−j|zj

a0,0 +
∑

j∈Z0
a0jθ|j|zj

)k
, (3.15)

where i ∈ Z0 := Z \ {0}.

It should be noted that for any graph with the vertex set Z, the system of equations (3.15) simplifies to the form (3.1).

It is easily demonstrable that by altering the graph, one can derive parameter values b and c such that b 6= c. Specifically,

the scenario where b = c is examined for two selected graphs throughout the paper.

Let G1 be the complete graph with vertex set Z, where each vertex has a loop, i.e., aij = 1 for all i, j ∈ Z. Using

the transfer operator defined in the preliminaries and the parameter θ = e−Jβ (with 0 < θ < 1), the system of equations

(3.15) for our model becomes































zi =

(

θ|i| +
∑

j∈Z0
θ|i−j|tj

1 +
∑

j∈Z0
θ|j|tj

)k

ti =

(

θ|i| +
∑

j∈Z0
θ|i−j|zj

1 +
∑

j∈Z0
θ|j|zj

)k
. (3.16)

We study the 2-periodic solutions of (3.16), assuming ui = k
√
zi and vi =

k
√
ti. In the 2-periodic case, the sequences

are given by

l(1) ∼ (..., u1, 1, u1, 1, u1, ...),

l(2) ∼ (..., v1, 1, v1, 1, v1, ...).

By denoting u1 := x and v1 := y we obtain the following system of equations


















x =
(θ2 + 1)yk + 2θ

2θyk + θ2 + 1

y =
(θ2 + 1)xk + 2θ

2θxk + θ2 + 1

. (3.17)

Theorem 1. Let θcr =

√
k − 1√
k + 1

with k ≥ 2. Then 2-height periodic boundary law of the type (3.14) determines 2-

height periodic spatially homogeneous boundary law. Consequently, for the SOS model on Cayley tree of order k with the

parameter θ ∈ (0, θcr) there exist precisely three 2-height periodic GGMs on Ω∇
G1

.

Proof. We apply Proposition 1 with parameters a = θ2+1, b = 2θ, and c = 2θ. It’s clear that we are in the regime where

a > c and consequently we obtain three different GGMs corresponding to the spatially homogeneous boundary law, i.e.

l(1) = l(2).
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To determine the conditions for the existence of three gradient Gibbs measures corresponding to the subgroup HA,

we solve the following inequality as stated in part (2) of Proposition 1

k >
(θ + 1)2

(θ − 1)2
.

Through straightforward calculations, we establish the interval 0 < θ < θcr within which the system of equations

(3.17) possesses exactly three solutions. Here, θcr is defined as θcr =

√
k − 1√
k + 1

for k ≥ 2. �

Now we consider the graph G2 containing Z as the vertices, i.e. one-dimensional lattice graph where additionally

each vertex is connected to itself, considered in [14] (see Figure 3) with its adjacency matrix

aij =

{

1, if i = j or |i− j| = 1, i, j ∈ Z

0, otherwise
.

FIG. 3. The graph G2 with the set Z of vertices

Then the system of equations (3.15) on the space ΩG2
for the 2−periodic case becomes























x =

(

y + 2θ

2θy + 1

)k

y =

(

x+ 2θ

2θx+ 1

)k
. (3.18)

Theorem 2. Let θ−cr =
k − 1

2k + 2
for k ≥ 2 and θ+cr =

k + 1

2k − 2
for k ≥ 4. Then for the SOS model restricted to a set of

G2-admissible configurations on the Cayley tree of order k the following assertions hold

• The boundary law (3.14) associated with HA coincides with the spatially homogenous boundary law for θ ∈
(0, θ−cr) which provides exactly three 2-height periodic GGMs on Ω∇

G2
.

• The boundary law (3.14) associated withHA becomes spatially inhomogeneous for θ ∈ (θ+cr, 1) resulting in three

2-height periodic pinned gradient measures on Ω∇
G2

.

Proof. For the graph G2 in Figure 3 we derive the parameters a = 1, b = 2θ, and c = 2θ to apply Proposition 1 once

more.

Case 1. Let 0 < θ <
1

2
. Then, it is evident that a > c, leading to three distinct GGMs corresponding to the spatially

homogeneous boundary law, i.e., l(1) = l(2). In this case, we use the inequality k >
a+ b

a− c
stated in part (2) of Proposition

1 in the form

k >
2θ + 1

1− 2θ
.

By solving last inequality, we obtain 0 < θ < θ−cr, where θ−cr =
k − 1

2k + 2
.

Case 2. Let
1

2
< θ < 1. Then, it is evident that a < c, resulting in spatially inhomogeneous, i.e., l(1) 6= l(2), boundary

laws which always defines gradient measures by the equation (3.4) in [22]. In this case, the inequality k >
a+ b

c− a
stated

in part (3) of Proposition 1 becomes

k >
2θ + 1

2θ − 1
.

Thus, it follows that the system of equations (3.18) has exactly three solutions, provided that θ+cr < θ < 1, where

θ+cr =
k + 1

2k − 2
. It is important to note that this condition on θ is valid when the order of the Cayley tree is strictly greater

than 3. �
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Remark 1. Are the two pinned gradient measures identified in Theorem 2 classified as gradient Gibbs measures (GGMs)?

This question remains open.

4. Conclusion

Our main goal is to quantify the number of pinned gradient measures for the SOS model on the Cayley tree of order

k ≥ 2 by analyzing boundary law equations (3.13) under certain temperature conditions. This work distinguishes itself

from previous studies, which have focused on spatially homogeneous q-periodic boundary laws and their corresponding

GGMs (see [14–19, 22]). The paper is organized as follows: we first prove Proposition 1, then use it to solve an infinite

system of equations (3.13), i.e., to find 2-periodic boundary laws. In Theorem 1, we demonstrate the existence of three

GGMs on the Cayley tree of order k ≥ 2 for certain values of θ using different methods (see [17, 21, 22]). We also

determine the critical temperature condition, i.e., θ ∈ (θ+cr, 1), where spatially inhomogeneous boundary laws of period

two defines pinned gradient measures for the SOS model restricted to the G2-admissible configuration space.
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[9] Cotar C., Külske C., Existence of Random Gradient States. Ann. Appl. Probab., 2012, 22(4), P. 1650–1692.
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