
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (6), P. 851–856

FORMATION MECHANISM OF GdFeO3

NANOPARTICLES UNDER THE
HYDROTHERMAL CONDITIONS

E. A. Tugova1,2, I. A. Zvereva3

1Ioffe Physical Technical Institute of RAS, Saint Petersburg, Russia

2Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia

3Saint Petersburg State University, Saint Petersburg, Russia

katugova@inbox.ru; irinazvereva@yandex.ru

PACS 61.46.+w

The formation mechanism of GdFeO3 nanoparticles by varying of the hydrothermal conditions has been

investigated. The mean size of coherent scattering regions of GdFeO3 was determined to be equal to 53, 68

and 73 nm. The observed regularities allowed us to assume the oriented attachment of nanocrystals.
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1. Introduction

Perovskite-type compounds possess unique electrical, magnetic, thermal properties
[1-6]. The potential exists for materials production based on the application of perovskite-like
oxide nanoparticles. However, in the literature there is little data concerning investigations
into the chemical pre-history and synthetic technique’s influence on size, morphology and
properties of obtained LnFeO3 (Ln = rare earth element) [7, 8]. The sonochemical method
is suggested [9] for the synthesis of nanoparticles of the rare earth series of orthoferrites,
using iron pentacarbonyl and rare earth carbonates as precursors. In this manner, GdFeO3,
TbFeO3 nanoparticles of 60 nm and EuFeO3, ErFeO3 of 40 nm were obtained. According to
the presented data [10] LaFeO3 was synthesized by three different preparation methods, i.e.,
by the calcination of both mixtures of La2O3 and Fe2O3 (I), co-precipitated La(OH)3 and
Fe(OH)3 hydroxides (II) and La[Fe(CN)6]·5H2O heteronuclear complex (III). The formation
of LaFeO3 is recognized for I, II and III cases at calcining temperatures above 1000, 800
and 600˚C, respectively. The mean particle diameter of LaFeO3 after heat treatment of
La[Fe(CN)6]·5H2O at 600˚C for 2 hours was 30 nm [10].

It was also shown [11, 12] that the mean size of coherent scattering regions, morphol-
ogy and magnetic characteristics of YFeO3 target product were strongly dependent upon the
synthetic techniques. Besides, it is well known [13, 14], that hydrothermal synthesis allows
the production of highly crystallized and well dispersed powders at relatively low tempera-
tures. There is little literature concerning the hydrothermal synthesis of LnFeO3 (Ln = rare
earth element), particularly, GdFeO3.

These reasons demonstrate the importance of systematic investigations of the pecu-
liarities of nanocrystalline GdFeO3 formation under hydrothermal conditions.
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2. Experimental

2.1. Synthesis procedure

The initial mixture, corresponding to the stoichiometry of GdFeO3 was prepared by
precipitation method from aqueous solutions of stoichiometric amounts of 1M Gd(NO3)3·5H2O
and Fe(NO3)3·9H2O by a previously published procedure [15]. The obtained powders were
then transferred to autoclaves and heated at 300–480˚C for 1–3 h under 60–90 MPa pressure
in distilled aqueous media. The required pressure was determined by temperature and water
filling content and produced on Kennedy table data [16]. After cooling, the product was
unloaded and then dried at the ambient temperature.

2.2. Characterization of prepared nanocrystals

Purity and crystallization of GdFeO3 samples were characterized by powder X-ray
diffraction (XRD) using a Shimadzu XRD-7000 with monochromatic CuKα radiation (λ=
154.178 pm). Crystallite sizes of the obtained powders were calculated by the X-ray line
broadening technique based on Scherer’s formula.

The microstructure of the specimen, elemental composition and the composition
of separate phases were analyzed by means of scanning electron microscopy (SEM) using
Quanta 200, coupled with EDAX microprobe analyzer. The error in determining the ele-
ments content by this method varies with the atomic number and equals to ±0.3 mass% on
average.

3. Results and discussion

The performed X-Ray and SEM/EDAX analysis of co-precipitated initial mixture
corresponding to the stoichiometry of GdFeO3 shows the amorphous state and heterogeneity
of the produced powders. But, it should be noted, that X-Ray diffraction pattern related
to the initial mixture demonstrates the weak affect which can be attributed to hexagonal
modification of Gd(OH)3 (Fig. 1(1)).

Table 1. Electron probe microanalysis data for the regions indicated in
Fig. 1(b− d)

Sample
Sintering Examined Components content, mol%

Phases
temperature˚C region GdO1.5 FeO1.5

b 300

SQ1 36.58 63.42 Gd3Fe5O12

P1 38.67 61.33 Gd3Fe5O12

P2 17.92 82.08 Fe2O3

P3 37.44 62.56 Gd3Fe5O12

c 400

SQ2 43.97 56.03 GdFeO3 + Gd3Fe5O12

P4 50.30 49.70 GdFeO3

P5 41.02 58.98 GdFeO3 + Gd3Fe5O12

P6 46.71 53.29 GdFeO3

d 480 SQ3 48.85 51.15 GdFeO3

Based on X-ray and SEM/EDX data (Fig. 1(2,3), Table 1), samples treated at 300˚C
and 400˚C under 70 MPa pressure for 1 hour contain Gd(OH)3, FeOOH and small amounts
of Gd3Fe5O12 and GdFeO3. At the same time, the presence of Gd2O3 and Fe2O3 are observed
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Fig. 1. a) X-Ray diffraction patterns and b-d) SEM photographs of: 1) ini-
tial mixture, 2-4), b-d) initial mixtures after hydrothermal treatment at 300,
400, 480˚C under 70 MPa for 1 h

Table 2. Electron probe microanalysis data for the regions indicated in Fig. 2(b,c)

Sample
Hydrothermal Examined Components content, mol%

Phases
conditions region GdO1.5 FeO1.5

b 600

SQ 46.71 53.29

GdFeO3

SQ1 46.79 53.21
1 47.64 52.36

c 900

SQ 48.18 51.82
1 41.60 58.40
2 41.08 58.92
3 48.58 51.42
4 45.76 54.24
5 47.63 52.37
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Fig. 2. a) X-Ray diffraction patterns and b,c) SEM photographs of initial
mixtures after hydrothermal treatment at 480˚C under 60 MPa (1,b) and
90 MPa (2,c) for 1 h

Fig. 3. Phase formation scheme, describing processes which are taken place
under initial mixture hydrothermal treatment to yield GdFeO3
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(Fig. 1(2,3); Table 1). Raising the temperature rising to 480˚C leads to homogeneous
GdFeO3 formation (Fig. 1(4), Table 1).

The formation of GdFeO3 nanoparticles was investigated by varying pressure from 60
to 90 MPa and was carried out at the same temperature, 480˚C. Fig. 2 and Table 2 present
results for X-ray and SEM/EDX data of the initial mixture samples treated under 60 and
90 MPa at 480˚C for 1 hour. According to the presented data (Fig. 2,a and Table 2),
all characteristic reflects corresponded to the target product. The mean size of coherent
scattering regions (D111) was determined from X-ray data for peak with (111) index for
samples of GdFeO3 produced after initial mixture treatment under 60, 70, 90 MPa at 480˚C.
The D111 values were equal to 53, 68 and 73 nm, respectively. Figure 2(b,c) shows that the
product was entirely composed of crystals with a relatively uniform, rod-like morphology.

Thus, according to presented and literature data [17, 18], the formation mechanism
for GdFeO3 nanoparticles under the hydrothermal conditions can be illustrated as the shown
scheme (Fig. 3).

The large values of mean size of coherent scattering regions of GdFeO3 nanoparti-
cles can be explained by oriented attachment of nanocrystals proceeding via the described
mechanism [19, 20].

4. Conclusion

These results showed that the mechanism by which GdFeO3 nanoparticles were
formed proceeded through the dehydration stages of Gd(OH)3 and FeOOH. The target
product was entirely composed of crystals with a relatively uniform, rod-like morphology.
The large values of mean size of coherent scattering regions of GdFeO3 nanoparticles ranging
from 53–73 nm size were obviously attributed to oriented attachment of nanocrystals.
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