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ABSTRACT We consider the solution of the two-dimensional Neumann problem for the Helmholtz equation in
a complex region composed of a square resonator with large number of smaller square resonators connected
to it through small apertures along one side. The sizes of the apertures and distances between the neighbour
apertures tend to zero. We use the method of matching of asymptotic expansions of solutions. By directing
the number of attached small resonators to infinity, we obtain a problem for the Laplacian in the main square
with energy-dependent boundary condition.
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1. Introduction

Changes of the Laplacian spectrum under small perturbation of the domain is important and widely studied prob-
lem. It is well-known that sufficiently regular perturbation leads to the situation when n−th eigenvalue of the perturbed
operator tends to n−th eigenvalue of the unperturbed operator if the perturbation decreases [1, 2]. However, if the pertur-
bation is not so regular the situation becomes more complicated [3, 4]. An interesting case takes place if one consider a
domain (resonator) with small coupled resonator or several resonators [5]. This is especially interesting if the number of
coupled resonators tends to infinity simultaneously with the reducing of its sizes. Under these assumptions, the problem
is analogous to homogenization problem [6–15]. This situation was studied from variational point of view in [16]. As
a limiting result, one obtains the problem in main domain with a specific energy-dependent boundary condition (such
conditions are interesting both from mathematical and physical points of view [17]). The result depends on the details of
the limiting procedure (relation between ”rooms” and ”passages” (resonators and coupling channels)). A particular case
of the problem was considered in [18] in the framework of the operator extensions theory model for coupled resonators.
The role of the coupling windows shape was described in [19]. Numerical results are in [20]. Two close windows were
considered in [21, 22] in the framework of the point-like window model. In the present paper, we consider the problem
for the system shown in Fig. 1. We deal with asymptotics of the solution of the boundary problem in respect to two small
parameters: apertures width and distance between neighbour apertures. Matching of asymptotic expansions of solutions
(see, e.g., [23, 24] is used.

Recently, an additional interest to the problem was inspired by investigations towards creation of acoustic metamate-
rials, i.e. a form of man-made materials that can be specifically developed to have a sub-wavelength periodic structures
with extraordinary characteristics not found in nature [25]. Physicists try to find such structures using the Helmholtz res-
onators, membrane-type structures, locally resonant and space-coiled structures. The particular question in the field is as
follows: Can one create an unusual boundary condition by a specific geometry of the boundary? For example, physicists
construct different combinations of small acoustic resonators (see, e.g., [26]).

2. The model

We consider the Laplace operator in the two-dimensional domain composed of a square (main resonator) Ω− (the
length of edge equals d) and a chain ofN identical square resonators Ω+

i , i = 1, 2, ...N, coupled to one edge of the square
through small apertures of widths 2ad, where a is a dimensionless small parameter (see Fig. 1). In this domain, we deal
with the Laplace operator −∆ defined on functions from the Sobolev space W 2

2 (Ω), Ω = Ω− ∪ Ω+
1 ∪ Ω+

2 ∪ ... ∪ Ω+
N ,

satisfying the Neumann boundary conditions at ∂Ω and the Meixner condition at edge points of the apertures (to ensure
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FIG. 1. Geometry of the system

the uniqueness of the solution). Correspondingly, in spectral problem one has the Helmholtz equation with the Neumann
boundary conditions:

∆ψ + k2ψ = 0,
∂ψ

∂n

∣∣∣
∂Ω

= 0. (1)

The Green function for the Helmholtz operator for the square having side d) with the Neumann boundary condition has
the form:

G(X,X ′, k) =

∞∑
n=0

∞∑
m=0

χnm(x, y)χnm(x′, y′)(
k2 − π2n2

d2 −
π2m2

d2

)
(δnm + 1)

, (2)

where X = (x, y), X ′ = (x′, y′), δnm is the Kronecker symbol (δnm = 1 if n2 +m2 = 0, else δnm = 0),

χnm(x, y) =
2

d
cos

πnx

d
cos

πmy

d
. (3)

The Green function allows one to transform equation (1) in the main square to the following form:

ψ(X) =

∫
∂Ω−

G(X,X ′, k)
∂ψ

∂n
(X ′)dX ′. (4)

The analogous presentation is valid for each small coupled resonator.
We will seek the eigenvalue k2 close to

√
2π/d. The term corresponding to n = m = 1 in (2) gives a singularity in

respect to the spectral parameter of the Green function. We use the method of matching asymptotic expansions of solu-
tions [23, 24]. In the present paper, we deal with the problem containing two small parameters. We consider asymptotic
expansions in small parameter a, that corresponds to the apertures radius and a → 0. However, at the same time, the
number of resonators attached tends to infinity (N → ∞) so that the ε (distance between adjacent holes) tends to zero.
We assume that these two small parameters are related in accordance with the following formula:

ε = |xi − xi−1| = maδ =
d

N
, δ ∈ (0, 1). (5)

Keeping in mind that the integrand in (4) vanishes on the part of the boundary outside the apertures, one can see that
the integral is over apertures only. Correspondingly, one can find the main terms of the asymptotics in a in the following
form which is analogous to that in [23]. Particularly, the solution of equation (1) near i-th aperture has the form:

ψ(X) =



(
k2 − 2π2

d2

)
αiG

+
i (X, (xi, 0), k), X ∈ Ω+ \ S((xi, 0), r(a));

vi0(x/a) + vi1(x/a) ln−1 a+ o(ln−1 a), X ∈ S((x1, 0), 2r(a));

−
(
k2 − 2π2

d2

) N∑
j=1

αjG
−(X, (xj , 0), k), X ∈ Ω− \ S((xi, 0), r(a)),

(6)

where S(X, r) is sphere with center X and radius r, radius r(a) is chosen in such a way that

ad < r(a) < 2r(a) < ε/2.

The asymptotic expansion for the deviation of k2 from
2π2

d2
is chosen in accordance with the following formula

(a→ 0):

k2 − 2π2

d2
= τ1 ln−1 a+ τ2 ln−2 a+ o

(
ln−2 a

)
. (7)

Here coefficients τ1, τ2 are to be determined.
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3. Matching of asymptotic expansions

3.1. Asymptotics of solution for coupled resonators

The asymptotic behavior (when X → (xi, 0)) of the Green function for each small coupled resonator is as follows:

G+
N ((x, 0), (xi, 0), k) =

− 1

π
ln a+

4N2 cos(Nπxi/d) cos(Nπx/d)

d2 (k2 − 2N2π2/d2)
+ g+

1 (X)− 1

π
ln |ξ| =

= − 1

π
ln a+

4 cos(πxi/ε) cos(πx/ε)

k2ε2 − 2π2
+ g+

1 (X)− 1

π
ln |ξ|, (8)

where X = (x, y), ξ =
x

a
, g+

1 is bounded function. Note that the second term is bounded for small ε. Therefore, we

attach it to the function g+
1 (X) and call it g+:

G+
N ((x, 0), (xi, 0), k) = − 1

π
ln a+ g+(X)− 1

π
ln |ξ|, (9)

where g+ is bounded function.
Taking into account (7), one comes to the following lemma

Lemma 1. The first terms of the asymptotic expansion of the solution (6) in the upper i-th resonator has the form:

ψ+(x, 0) = αi

(
k2 − 2π2

d2

)[
− 1

π
ln a+ g+(X)− 1

π
ln ξ

]
= − 1

π
αiτ1 + o(1), (10)

where x→ xi, a→ 0.

3.2. Asymptotics of solution for the main resonator

For the main cavity, if N → ∞, then each aperture contracts and, simultaneously, the apertures are getting closer to
each other (correspondingly, the number of coupled resonators increases). Hence, in addition to the asymptotics of the
solution for a → 0, one must also take into account the asymptotics of it for ε = |xi − xi−1| → 0. The asymptotics of
the Green function near the i-th hole for X → (xi, 0) is analogous to that for the coupled resonators (9). The asymptotic
behavior of the Green function near the hole (when ε→ 0) depends on the speed of approaching of the holes. Particularly,
for the chosen relation (5) it has a conventional form:

G−((x, 0), (xi, 0), k) = − 1

π
ln ε+

4 cos(πx/d) cos(πxi/d)

d2
(
k2 − 2π2

d2

) + h−(x− xi)−
1

π
ln |ξ|, (11)

where h− is bounded function depending on (5). For the main resonator, the asymptotic behavior of the solution (6) near
the i-th aperture has the form:

ψ−(x, 0) =

− αi
[
−τ1
π

+
4 cos2(πx/d)

d2

]
− αi ln−1 a

[
−τ2
π

+ τ1

(
g−(X)− 1

π
ln |ξ|

)]
−

−
(
k2 − 2π2

d2

) N∑
j=1,j 6=i

αj

[
− δ
π

ln a+
4 cos(πxj/d) cos(πxi/d)

d2(k2 − 2π2/d2)
+ h−(x− xj)

]
+ o(1). (12)

Keeping in mind that x→ xi, one comes to the following lemma

Lemma 2. The asymptotics of the solution to (6) in the main resonator has the following form:

ψ−(X) = −αi
[
−τ1
π

+
4

d2
cos2(πxi/d)

]
−

N∑
j=1,j 6=i

αj

[
4

d2
cos(πxi/d) cos(πxj/d)− δτ1

π
+

]
+ o(1). (13)

3.3. Matching

To ensure the consistency of the asymptotic expansions in the both regions (6), the coincidence of the zero-order
terms is necessary. Correspondingly, the matching function vi0(x/a) can be chosen as a constant. Equating the terms of
order a0, one obtains:

−αi
τ1
π

= −αi
[
−τ1
π

+
4

d2
cos2(πxi/d)

]
−

N∑
j=1,j 6=i

αj

[
4

d2
cos(πxi/d) cos(πxj/d)− δτ1

π

]
. (14)
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One has such relation for each aperture. Hence, we obtain the system of linear equations for αi:

αi

[
−2τ1
π

+
4

d2
cos2(πxi/d)

]
−

N∑
j=1,j 6=i

αj

[
4

d2
cos(πxi/d) cos(πxj/d)− δτ1

π

]
= 0, i = 1, 2, ...N. (15)

Let us make designations for the convenience of calculating the determinant of the system. Then we get the following
system of linear equations:

αi
(
cos2 x′i − β

)
+

N∑
j=1,j 6=i

αj
(
cosx′i cosx′j − δ′β

)
= 0, (16)

where β = d2τ1/2π, x′i = πxi/d, δ′ = −δ/2.
The system (16) has a nontrivial solution if its determinant is zero. Calculation of the determinant (see, e.g., [27,28])

gives one the following relation:

det



cos2 x1 − β cosx1 cosx2 cosx1 cosx3 ... cosx1 cosxN

cosx2 cosx1 cos2 x2 − β cosx2 cosx3 ... cosx2 cosxN

...

cosxN cosx1 cosxN cosx2 cosxN cosx3 ... cos2 xN − β


=

= βN−1(1 + δ′)N−2δ′N

[
−1

2
N + (1 + δ′)β + o(1)

]
= 0, (17)

whence we get

β =
N

2 + δ
+ o(N), N →∞. (18)

Then we can get the first coefficient in the expansion (7) for k2.

Lemma 3.
τ1 =

2π

d2(2− δ)
N + o(N). (19)

Let us express αi from each equality (15) and substitute the expression to (6). We obtain an expression for ψ in the
main cavity using (19) and (15):

ψ−(x, 0) = −
(
k2 − 2π2

d2

) N∑
i=1

G−((x, 0), (xi, 0), k)

[
d2τ1
2π
− cos2

(πxi
d

)]−1

×

N∑
j=1,j 6=i

αj

(
cos(πxi/d) cos(πxj/d)− d2δτ1

4π

)
=

−
(
k2 − 2π2

d2

)
2− δ
N

N∑
i=1

G−((x, 0), (xi, 0), k)

[
αi

2(2− δ)
N − d2

4
ψ−(xi, 0) + o(1)

]
=

1

2
ψ−(x, 0) +

d

4
(2− δ)

(
k2 − 2π2

d2

) N∑
i=1

G−((x, 0), (xi, 0), k)
(
ψ−(xi) + o(1)

)
· d
N
. (20)

Finally for ψ−(x) one obtains the following expression:

ψ−(x) =
d

2
(2− δ)

(
k2 − 2π2

d2

) N∑
i=1

G−((x, 0), (xi, 0), k)
(
ψ−(xi) + o(1)

)
· d
N

(21)

which presents the integral sum. Performing the limiting transition for N →∞, one obtains the integral equation for the
eigenfunction ψ.

Lemma 4. Eigenfunction for the limit problem satisfies the following integral equation:

ψ−(X) =
d

2
(2− δ)

(
k2 − 2π2

d2

)∫
Γ

G−(X,X ′, k)ψ−(X ′)dX ′. (22)
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4. Conclusion

Taking into account (4), one can determine the boundary condition corresponding to the obtained integral eq. (22).

Theorem 4.1. Eigenfunctions of the Laplacian corresponding to eigenvalue close to
2π2

d2
for the system with many

coupled resonators converges to the eigenfunctions of the Laplacian with the following boundary condition on the edge
of the main square:

∂ψ

∂n

∣∣∣
∂Ω

=
d

2
(2− δ)

(
k2 − 2π2

d2

)
ψ
∣∣∣
∂Ω
. (23)

The dependence of the boundary condition on the spectral parameter correlates with the results of [16]. We considered
the eigenvalue close to one of the eigenvalues of the Neumann Laplacian in the square. Evidently, the same can be made
for any eigenvalue. Square domain was taken for simplicity only. Really, we use only the fact that the part of the boundary
with coupled resonators is straight. The result can be generalized to the case of any smooth boundary.
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