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An efficient and accurate numerical method is presented for the solution of highly oscillatory differential equations
in one spatial dimension. While standard methods would require a very fine grid to resolve the oscillations, the
presented approach uses first an analytic WKB-type transformation, which filters out the dominant oscillations. The
resulting ODE-system is much smoother and can hence be discretized on a much coarser grid, with significantly
reduced numerical costs.

Here we are concerned with stationary two-band Schrödinger equations employed in quantum transport applications.

We focus on the Kane–model and the two band 𝑘 ⋅ 𝑝–model. The accuracy of the presented method is illustrated on

a numerical example.
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1. Introduction

This paper deals with an asymptotically correct scheme for the numerical solution of
stationary, vector valued Schrödinger equations in the highly oscillatory regime. To fix the ideas
we first recall this procedure from [2], where the scalar Schrödinger equation in 1D is dealt with.
We consider highly oscillating differential equations of the type

𝜀2𝜑′′(𝑥) + 𝑎(𝑥)𝜑(𝑥) = 0 , (1)

where 0 < 𝜀 ≪ 1 is a very small parameter and 𝑎(𝑥) ≥ 𝑎0 > 0 a sufficiently smooth function.
For very small 𝜀 > 0, the wave length 𝜆 = 2𝜋𝜀√

𝑎(𝑥)
is very small, such that the solution 𝜑 becomes

highly oscillating. In a classical ODE–scheme such a situation requires a very fine mesh in order
to accurately resolve the oscillations. Hence, standard numerical methods would be very costly
and inefficient here. The goal of the numerical WKB-scheme is to provide a method that uses a
coarse spatial grid with step size ℎ > 𝜆.

The strategy in [2] is to first analytically rewrite (1) as a “smoother” (i.e. less oscillatory)
problem that is then easier to handle numerically. In this analytic preprocessing, the dominant
oscillations are eliminated. This transformation is closely related to using a second order WKB-
approximation for 𝜑:

𝜑(𝑥) ≈ 𝐶
exp

(± 𝑖
𝜀
𝜙(𝑥)

)
4
√
𝑎(𝑥)

, 𝜙(𝑥) :=

∫ 𝑥

0

(√
𝑎(𝜏)− 𝜀2𝛽(𝜏)

)
𝑑𝜏 , (2)

with 𝛽 := − 1
2𝑎1/4

(𝑎−1/4)′′ .
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Standard numerical methods for (1) (like in [8]) used to require a step size ℎ = 𝒪(𝜀)
for accurate resolution. The WKB-based schemes from [2] or [18] reduce that limitation to
ℎ = 𝒪(

√
𝜀) (when using a forth order quadrature rule for the integration of the phase 𝜙 in (2)).

If this phase is explicitly integrable (for piecewise linear 𝑎(𝑥), e.g.), the mesh size ℎ can even be
chosen independently of 𝜀 in the scheme from [2]. This scheme is then asymptotically correct
w.r.t. 𝜀.

The goal of this paper (and of [5]) is to generalize this procedure to vector valued
Schrödinger equations in one spatial dimension. Here we shall consider two-band Schrödinger
systems that are employed in quantum transport models, e.g. for simulating resonant interband
tunneling diodes (see [3, 20]). In particular we shall focus on the Kane–model [13, 14] and the
𝑘 ⋅ 𝑝–model [19].

We remark that numerical integrators for oscillatory ODE-systems have been addressed
by several authors in the last decade (cf. Sec. 5 of [9], [11,18], Sec. XIV of [6]). Those methods
are closely related to using the zeroth order WKB-approximation, 𝜑(𝑥) ≈
𝐶 exp

(± 𝑖
𝜀

∫ 𝑥

0

√
𝑎 𝑑𝜏

)
to eliminate the dominant oscillations in (1). But the higher order trans-

formations employed below provide a refined asymptotic, with error estimates of higher order in
𝜀.

This paper is organized as follows. In Sec. 2 we introduce the Kane–model and 𝑘 ⋅ 𝑝–
model, along with their open boundary conditions that are needed in quantum transport appli-
cations. These boundary value problems (BVPs) are then transformed into equivalent initial
value problems (IVPs). In Sec. 3 we make an analytic preprocessing of these oscillatory IVPs.
This transforms them into “smoother” ODEs. In Sec. 4 we develop for these ODEs a sec-
ond order, asymptotically correct numerical scheme. The error of this method is of the order
𝒪(min(𝜀ℎ2, 𝜀3)). To achieve this, particular care has to be taken for the discretization of the in-
volved oscillatory integrals. In Sec. 5 we illustrate the effectiveness of our method in a numerical
example for the Kane–model and on an example from the literature [18].

2. Two-band Schrödinger models

For several novel semiconductor devices (like resonant interband tunneling diodes, see
[3,20]) single-band effective mass models become insufficient to simulate the quantum transport
through such a device. Hence, it is getting ever more important to include realistic band structures
in quantum transport models. In this section we shall discuss two independent, stationary two-
band Schrödinger models (Kane–model and two-band 𝑘 ⋅ 𝑝–model) that are used for simulations
of one dimensional semiconductor devices like a resonant tunnel diode. We assume that the
considered semiconductor structure occupies the interval [𝑎, 𝑏] and is connected to reservoirs at
𝑥 = 𝑎 and 𝑥 = 𝑏. We also assume that both reservoirs are homogeneous and extend to 𝑥 = ±∞.
So all material (and energy) parameters are constant in each reservoir, which is hence populated
only by traveling plane waves.

In analogy to (1) we shall discuss in this paper only the numerically challenging oscil-
latory regime of traveling waves. The evanescent regime with tunneling is of course equally
important for quantum transport, but the numerical treatment of those smooth wave functions
is simple, and will not be discussed here. However, WKB-based discretizations of the cou-
pled oscillatory–evanescent situation are currently under investigation, and will be the topic of
an upcoming work. In [17], transparent boundary conditions (TBCs) for the Kane–model and
𝑘 ⋅ 𝑝–model were derived, as well as discrete TBCs for finite difference schemes. However, such
classical schemes are numerically expensive in the oscillatory case. So it is the goal of this paper
to develop a more efficient alternative.
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2.1. The two-band Kane–model

The simplest multi-band approach is the two-band Kane-model (cf. [15]). This is an inter-band
model, describing the coupled electron transport in the conduction and the valence bands. Here
the “wave function” 𝜓(𝑥) ∈ ℂ2 is a solution of the ODE

H𝜓 = 𝐸𝜓, (3)

with

H =

(
𝑉 (𝑥) −𝑖𝜀𝑝(𝑥) 𝑑

𝑑𝑥−𝑖𝜀𝑝(𝑥) 𝑑
𝑑𝑥

𝑉 (𝑥)− 𝐸𝑔(𝑥)

)
.

We denote by 𝐸 > 0 the prescribed (constant-in-𝑥) injection energy of the electrons, and 𝜀 > 0
is a small constant. Here, the potential 𝑉 is the band edge of the conduction band, and 𝐸𝑔 > 0
is the band gap between the conduction and the valence band. The function 𝑝 > 0 is related to
the Kane-parameter. The dispersion relation of this Kane model is discussed in detail in Sec. 3.1
of [17].

In order to have unique solutions we assume:

Assumption 1. The functions 𝑉,𝐸𝑔, 𝑝 are piecewise1 Lipschitz continuous on the non-empty
bounded interval [𝑎, 𝑏] and constant on the exterior domains (−∞, 𝑎] and [𝑏,∞). Further, there
exist open neighborhoods of 𝑎, 𝑏 where they are continuous.

We rewrite the ODE (3) in the more convenient form

𝜓′(𝑥) =
𝑖

𝜀

(
0 𝛼(𝑥)

𝛽(𝑥) 0

)
𝜓(𝑥) , (4)

with

𝛼(𝑥) :=
𝐸 − 𝑉 (𝑥) + 𝐸𝑔(𝑥)

𝑝(𝑥)
and 𝛽(𝑥) :=

𝐸 − 𝑉 (𝑥)

𝑝(𝑥)
.

We shall consider here a scattering model, subject to a given, incoming plane wave. Hence, we
shall need transparent boundary conditions (TBCs) at both (artificial) boundary points 𝑎, 𝑏 (as
derived in Sec. 3.2 of [17]). We denote the system matrix of (4) by 𝐴(𝑥), with the eigenvalues

𝜆(𝑥) = ± 𝑖
𝜀

√
𝛼(𝑥)𝛽(𝑥)

= ± 𝑖

𝜀𝑝(𝑥)

√
(𝐸 − 𝑉 (𝑥) + 𝐸𝑔(𝑥))(𝐸 − 𝑉 (𝑥)) =: ± 𝑖 𝑘(𝑥) . (5)

If the given injection energy 𝐸 is larger than the conduction band edge, i. e. if 𝐸 − 𝑉 (𝑥) > 0
holds on the whole interval [𝑎, 𝑏] (and thus on the whole real line), the eigenvalues 𝜆 = ±𝑖𝑘
are purely imaginary and hence we only have traveling waves2. Let 𝑣±(𝑥) be (real valued)
eigenvectors of 𝐴(𝑥) corresponding to the eigenvalues 𝜆(𝑥) = ±𝑖𝑘(𝑥). From the right exterior

1Here, piecewise Lipschitz continuous means that there are finitely many (non trivial) pairwise disjoint intervals
𝐼1, . . . , 𝐼𝑛 such that [𝑎, 𝑏] ⊂ ∪𝑛

𝑗=1 𝐼𝑗 and the functions are globally Lipschitz continuous on each single interval
𝐼1, . . . , 𝐼𝑛.

2One also gets purely imaginary eigenvalues if the energy is smaller than the valence band edge, i. e. 𝐸−𝑉 (𝑥)+
𝐸𝑔(𝑥) < 0. This energy corresponds to holes in the valence band, and the situation would be analogous to the case
discussed here.



10 Geier J., Arnold A.

domain [𝑏,∞) we now inject a left traveling electron wave with prescribed amplitude 𝑑𝑏 ∕= 0.
Then the resulting scattering state has the following form in the exterior domains:

𝜓𝑎(𝑥) = 𝑑𝑎𝑒
−𝑖𝑘(𝑎)(𝑥−𝑎)𝑣−(𝑎) for 𝑥 ≤ 𝑎 ,

𝜓𝑏(𝑥) = 𝑐𝑏𝑒
𝑖𝑘(𝑏)(𝑥−𝑏)𝑣+(𝑏) + 𝑑𝑏𝑒

−𝑖𝑘(𝑏)(𝑥−𝑏)𝑣−(𝑏) for 𝑥 ≥ 𝑏 , (6)

with constants 𝑐𝑏, 𝑑𝑎, 𝑑𝑏 ∈ ℂ. We denote the solution in the interior domain [𝑎, 𝑏] by 𝜓. Due to
Assumption 1 the solution on the whole real line is continuously differentiable in certain open
neighborhoods of the boundary points 𝑎, 𝑏. Hence we get the (homogeneous) left TBC

𝜓(𝑎) = 𝜓𝑎(𝑎) ∈ span[𝑣−(𝑎)] ⇔ (
𝐴(𝑎) + 𝑖𝑘(𝑎) Id

)
𝜓(𝑎) = 0

⇔ 𝜓′(𝑎) + 𝑖𝑘(𝑎)𝜓(𝑎) = 0 .

At the right boundary we combine the first derivative 𝜓′ with 𝜓 to eliminate the reflection
constant 𝑐𝑏. From (6) we obtain the (inhomogeneous) right TBC

𝜓′(𝑏)− 𝑖 𝑘(𝑏)𝜓(𝑏) = −2𝑖 𝑘(𝑏) 𝑑𝑏 𝑣−(𝑏) .

The resulting (inhomogeneous) BVP then reads

𝜓′(𝑥)− 𝐴(𝑥)𝜓(𝑥) = 0 , 𝑥 ∈ [𝑎, 𝑏] , (7)

𝜓′(𝑎) + 𝑖𝑘(𝑎) Id𝜓(𝑎) = 0 (8)

𝜓′(𝑏)− 𝑖𝑘(𝑏) Id𝜓(𝑏) = −2𝑖𝑘(𝑏)𝑑𝑏𝑣−(𝑏) . (9)

Its unique solvability was established in Sec. 3.3 of [17]. Thus we state without proof:

Lemma 2.1. The BVP (7)–(9) has a unique solution in
(
𝑊 2,∞(𝑎, 𝑏)

)2
.

Remark 2.2. Since 𝜓 satisfies the ODE (7) even on the boundary, the TBCs can be reformulated
as (

𝐴(𝑎) + 𝑖𝑘(𝑎) Id
)
𝜓(𝑎) = 0 ,(

𝐴(𝑏)− 𝑖𝑘(𝑏) Id
)
𝜓(𝑏) = −2𝑖𝑘(𝑏)𝑑𝑏𝑣−(𝑏) . (10)

We shall now reformulate the BVP (7)–(9) as an IVP, which is easier to solve numerically
(particularly for our highly oscillatory regime). To this end we first solve (using the left boundary
condition) the IVP

𝜓′
−(𝑥) = 𝐴(𝑥)𝜓−(𝑥) , 𝑥 ∈ [𝑎, 𝑏]; 𝜓−(𝑎) = 𝑣−(𝑎) ∈ ℂ

2 . (11)

Since 𝜓 has to fulfill (8) (which is equivalent to 𝜓(𝑎) ∈ span[𝑣−(𝑎)] ), there exists a constant
𝑐− ∈ ℝ such that 𝜓(𝑎) = 𝑐−𝑣−(𝑎). Hence we get 𝜓 = 𝑐−𝜓−. Using the remaining boundary
condition (10) we get

𝑐−
(
𝐴(𝑏)− 𝑖𝑘(𝑏) Id

)
𝜓−(𝑏) = −2𝑖𝑘(𝑏)𝑑𝑏𝑣−(𝑏) .

The inner product of this equation with 𝑣−(𝑏) yields

𝑐− =
−2𝑖𝑘(𝑏)𝑑𝑏 ∥𝑣−(𝑏)∥2

𝑣−(𝑏)𝑇
(
𝐴(𝑏)− 𝑖𝑘(𝑏) Id

)
𝜓−(𝑏)

=
−2𝑖𝑘(𝑏)𝑑𝑏 ∥𝑣−(𝑏)∥2

𝑣−(𝑏)𝑇
(
𝜓′−(𝑏)− 𝑖𝑘(𝑏)𝜓−(𝑏)

) .
Analogously, we get for a right traveling plane wave in the left exterior domain (−∞, 𝑎] with
prescribed amplitude 𝑐𝑎 ∕= 0:

𝜓′(𝑥)− 𝐴(𝑥)𝜓(𝑥) = 0

𝜓′(𝑎) + 𝑖𝑘(𝑎) Id𝜓(𝑎) = 2𝑖𝑘(𝑎)𝑐𝑎𝑣+(𝑎)

𝜓′(𝑏)− 𝑖𝑘(𝑏) Id𝜓(𝑏) = 0 .
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It holds 𝜓 = 𝑐+𝜓+, where 𝜓+ solves

𝜓′
+(𝑥) = 𝐴(𝑥)𝜓+(𝑥) , 𝜓+(𝑏) = 𝑣+(𝑏) ∈ ℂ

2 ,

and

𝑐+ =
2𝑖𝑘(𝑎)𝑐𝑎 ∥𝑣+(𝑎)∥2

𝑣+(𝑎)𝑇
(
𝐴(𝑎) + 𝑖𝑘(𝑎) Id

)
𝜓+(𝑎)

=
2𝑖𝑘(𝑎)𝑐𝑎 ∥𝑣+(𝑎)∥2

𝑣+(𝑎)𝑇
(
𝜓′
+(𝑎) + 𝑖𝑘(𝑎)𝜓+(𝑎)

) .
Recall from (4) that the system matrix 𝐴(𝑥) is proportional to 1/𝜀 and off-diagonal.

We now aim to transform out the dominant oscillations in the IVP (11). To this end we first
diagonalize 𝐴 as 𝐴(𝑥) = 𝑖

𝜀
𝑄(𝑥)−1𝐿(𝑥)𝑄(𝑥) with

𝑄(𝑥)−1 :=

( √
𝛼(𝑥) −√

𝛼(𝑥)√
𝛽(𝑥)

√
𝛽(𝑥)

)
and 𝐿(𝑥) :=

(
𝜀𝑘(𝑥) 0
0 −𝜀𝑘(𝑥)

)
.

Note that the matrix valued functions 𝑄 and 𝐿 are real valued and actually independent of 𝜀.
The ansatz 𝑢 := 𝑄𝜓− and 𝑄𝑣− = (0, 1)𝑇 yields for 𝑥 ∈ [𝑎, 𝑏]:

𝑢′ =
𝑖

𝜀
𝐿𝑢+ 𝐵𝑢 , 𝑢(𝑏) =

(
0
1

)
, (12)

with 𝐵 := 𝑄′𝑄−1. The same transformation also works for the other case of a right traveling
plane wave with prescribed amplitude in the exterior domain (−∞, 𝑎]. We only have to replace
the initial condition by 𝑢(𝑎) = (1, 0)𝑇 .

2.2. The two-band 𝑘 ⋅ 𝑝–model

In this section we discuss a slightly more involved inter-band model for the coupled quantum
transport in the conduction and the valence bands (cf. [3,12]). A different inter-band 𝑘 ⋅ 𝑝–model
is analyzed in Sec. 4 of [17]. And for extended multi-band 𝑘 ⋅𝑝–models (including the intra-band
coupling of heavy and light holes within the valence band) we refer to [13], Sec. 6 of [3], and
Sec. 5 of [17]. In our two-band model, the “wave function” 𝜓 = (𝜓1, 𝜓2)

𝑇 ∈ ℂ2 solves a 2 × 2
Schrödinger boundary value problem

H(𝑥)𝜓(𝑥) = 𝐸 𝜓(𝑥) , 𝑥 ∈ (𝑎, 𝑏) (13)

𝜓′(𝑎)−𝐾𝑎(𝐸)𝜓(𝑎) = 0 (14)

𝜓′(𝑏)−𝐾𝑏(𝐸)𝜓(𝑏) = 𝑟 ∈ ℂ
2 , (15)

with the Hamiltonian

H := − 𝜀2 ∂2

∂𝑥2
+ 𝜀 𝑃 (𝑥)

∂

∂𝑥
+

(
𝑉 (𝑥) 0
0 𝑉 (𝑥)− 𝐸𝑔(𝑥)

)

and

𝑃 (𝑥) :=

(
0 𝑖𝑝(𝑥)

𝑖𝑝(𝑥) 0

)
.

The real parameter 𝜀 > 0 is a small constant, which is often (depending on the model) pro-
portional to the reduced Planck constant ℏ. By 𝐸 we denote the given injection energy of
the particles. The potential 𝑉 (𝑥) is the band edge of the conduction band, and 𝐸𝑔(𝑥) > 0
is the energy gap between the conduction and valence bands. Further, 𝑝(𝑥) > 0 is the cou-
pling coefficient (related to the Kane-parameter) between the two bands. As in [3] we assume
𝑝(𝑥)2 > 𝐸𝑔(𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏], which implies that the valence band is concave close to 𝑘 = 0. We
remark that (13)-(15) is a scattering problem with given 𝐸, and not an eigenvalue problem.
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The matrices 𝐾𝑎, 𝐾𝑏 ∈ ℂ2×2 and the vector 𝑟 in (14), (15) constitute the TBCs for the
𝑘 ⋅𝑝–model. (15) models the injection of plane waves at 𝑥 = 𝑏. Their derivation follows the same
strategy as for the Kane model in Sec. 2.1. But for the more involved details we refer to [3].

The self-consistent potential 𝑉 is the solution of the following Poisson problem:

𝑉 ′′(𝑥) = 𝑛(𝑥) , 𝑥 ∈ (𝑎, 𝑏) ,

𝑉 (𝑎) = 𝑉1 > 0 ,

𝑉 (𝑏) = 0 .

The charge density 𝑛 is defined by

𝑛(𝑥) =

∫ ∞

0

𝑓(𝐸) ∣𝜓(𝑥,𝐸)∣2 𝑑𝐸 ,

for a prescribed function 𝑓 that models the semiconductor statistics. Well-posedness of this
nonlinear BVP is established in Th. 2.2 of [3].

If one is interested in a numerical approximation of 𝑛(𝑥) or of the current density

𝑗(𝑥) =

∫ ∞

0

𝑓(𝐸)
(− Im⟨𝜓′, 𝜓⟩+ 2𝑝Re(𝜓1𝜓2)

)
(𝑥,𝐸) 𝑑𝐸 ,

one has to use an iterative scheme, like the Gummel method, to solve the nonlinear problem. In
each step one has to calculate a suitable approximation for the charge density 𝑛, and hence one
has to solve (13) for a large number of (discrete) energies. Since 0 < 𝜀 ≪ 1 is a small constant
the wave function 𝜓 is highly oscillatory for 𝐸 > ∥𝑉 ∥∞. In order to speed up the calculations
it is very useful to have a numerical scheme that produces an accurate approximation for 𝜓,
without having to resolve all oscillations of the wave function.

It is often more convenient to solve, instead of a BVP, an equivalent initial value problem.
As we will see in a moment, it is possible to determine the solution of (13) from just four (vector
valued) IVP-solutions. Let the functions 𝑝, 𝑉 , and 𝐸𝑔 be Lipschitz continuous on [𝑎, 𝑏]. Hence
the IVP for a matrix-valued wave function Φ(𝑥) ∈ ℂ2×2,

H(𝑥)Φ(𝑥) = 𝐸Φ(𝑥) , 𝑥 ∈ (𝑎, 𝑏), (16)

Φ(𝑎) = Id, (17)

Φ′(𝑎) = 𝐾𝑎 , (18)

has a unique solution. Further, it holds for every vector valued solution 𝜙 of

H(𝑥)𝜙(𝑥) = 𝐸𝜙(𝑥) , 𝑥 ∈ (𝑎, 𝑏), (19)

𝜙′(𝑎)−𝐾𝑎𝜙(𝑎) = 0 ,

that 𝜙(𝑥) = Φ(𝑥)𝜙(𝑎). Since the solution 𝜓 of the BVP (13)–(15) solves (19), we can write
𝜓(𝑥) = Φ(𝑥)𝜓(𝑎). Hence we get from the remaining right boundary condition (15)(

Φ′(𝑏)−𝐾𝑏Φ(𝑏)
)
𝜓(𝑎) = 𝑟 .

Since the BVP (13)–(15) is well-posed (cf. [3], Prop. 2.1), the above equation has a unique
solution which yields 𝜓(𝑎) and consequently 𝜓.

As we have seen, the solution 𝜓 of the BVP (13)–(15) is (uniquely) determined by the
solution Φ of the IVP (16)–(18). Thus, in the sequel we shall derive and discuss an efficient
numerical method to solve the IVP for the (vector valued) equation (19).

Equation (19) for 𝜙 ∈ ℂ
2 takes the form

𝜀2𝜙′′ − 𝜀𝑃 (𝑥)𝜙′ + 𝐴(𝑥)𝜙 = 0 , (20)
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with 𝐴(𝑥) := diag(𝐸 − 𝑉 (𝑥), 𝐸 − 𝑉 (𝑥) + 𝐸𝑔(𝑥)). For 𝐸 > ∥𝑉 ∥∞ the matrix 𝐴(𝑥) is positive
definite for all 𝑥 ∈ [𝑎, 𝑏]. Now we want to rewrite (20) as a first order IVP, with the same form
as (12). To this end we set

𝑣1 := 𝐴
1
2𝜙 , 𝑣2 := 𝜀𝜙′ ,

which yields for 𝑣(𝑥) = (𝑣1(𝑥), 𝑣2(𝑥))
𝑇 ∈ ℂ4:

𝑣′ =
1

𝜀

(
0 𝐴

1
2

−𝐴 1
2 𝑃

)
𝑣 +

(
𝐴

1
2
′
𝐴− 1

2 0
0 0

)
𝑣 , (21)

𝑣(𝑎) =

(
𝐴

1
2 (𝑎)
𝜀𝐾𝑎

)
.

Let us denote by 𝐿̃ the first matrix of (21). Since 𝑃 (𝑥) is skew-symmetric for all 𝑥 ∈ [𝑎, 𝑏],
the same holds for 𝐿̃. Hence there exists a matrix function 𝑄 : [𝑎, 𝑏] → ℂ4×4, such that for all
𝑥 ∈ [𝑎, 𝑏] it holds (cf. the Appendix Sec. 6)

𝐿̃(𝑥) = 𝑖𝑄∗(𝑥)𝐿(𝑥)𝑄(𝑥) ,

with 𝐿(𝑥) real and diagonal. Finally we set

𝑢(𝑥) := 𝑄(𝑥) 𝑣(𝑥) ∈ ℂ
4 ,

which yields

𝑢′ =
𝑖

𝜀
𝐿𝑢+𝐵𝑢 , 𝑢(𝑎) = 𝑢0 , (22)

with

𝐵(𝑥) = 𝑄′(𝑥)𝑄∗(𝑥) +𝑄(𝑥)

(
𝐴

1
2 (𝑥)

′
𝐴− 1

2 (𝑥) 0
0 0

)
𝑄∗(𝑥) .

Of course, the above transformation procedure is not limited to the special case (13). One can
apply it to any ODE of type (20) with 𝑃 (𝑥) skew-symmetric and 𝐴(𝑥) positive definite. Hence
we shall continue our discussion for general equations of the form (22).

Since 𝐿 is diagonal and real valued, the solution 𝑢 is highly oscillatory. But ∥𝑢∥ is
bounded by a constant independent of 𝜀. In order to prove this, we introduce a smoother,
“adiabatic” variable 𝜂 (which coincides with the “𝜂” from [11, 18]). This can be interpreted as
the lowest order WKB-type transformation (see Sec. 3 for details).

In the sequel we denote by ∥⋅∥ the Euclidean norm on ℂ𝑛 and also its subordinated matrix
norm. Further we define for continuous vector valued functions 𝑓 : [𝑎, 𝑏] → ℂ

𝑑 the ∞-norm by

∥𝑓∥∞ := sup
𝑥∈[𝑎,𝑏]

∥𝑓(𝑥)∥ ,

and analogously for matrix valued functions. With these definitions we can establish

Lemma 2.3. Let 𝑢 be the unique solution of the IVP (22), and let

𝐸𝜀(𝑥) := exp

(
𝑖

𝜀

∫ 𝑥

𝑎

𝐿(𝑠) 𝑑𝑠

)
∈ ℂ

4 .

Then the new quantity 𝜂(𝑥) := 𝐸∗
𝜀 (𝑥) 𝑢(𝑥) ∈ ℂ4 solves the IVP

𝜂′ = (𝐸∗
𝜀𝐵𝐸𝜀) 𝜂 , 𝜂(𝑥0) = 𝜂0 := 𝑢0 .

There exists a constant 𝑐 ≥ 0 independent of 𝜀 such that it holds for all 𝑥 ∈ 𝐼:
∥𝑢(𝑥)∥ = ∥𝜂(𝑥)∥ ≤ 𝑐 .
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Proof. Since 𝐿(𝑥) is diagonal and real valued, 𝐸𝜀(𝑥) is unitary. Differentiation of the ansatz
𝜂 = 𝐸∗

𝜀𝑢 yields the IVP. A standard Gronwall argument yields

∥𝜂(𝑥)∥ ≤ 𝑒∣𝑥−𝑎∣∥𝐸∗
𝜀𝐵𝐸𝜀∥∞ ∥𝜂0∥ .

Since 𝐸𝜀 is unitary, it follows

∥𝑢(𝑥)∥ = ∥𝜂(𝑥)∥ ≤ 𝑒∣𝑥−𝑎∣∥𝐵∥∞ ∥𝑢0∥ .
Since 𝐵 does not depend on 𝜀, the desired constant is 𝑐 = 𝑒∣𝑏−𝑎∣∥𝐵∥∞ . □

3. Analytic preprocessing

The imaginary part of the system matrix of the IVPs (12) and (22) (i. e. 𝑖
𝜀
𝐿) causes

oscillations of the solution 𝑢, whose wave length is proportional to 𝜀. Thus, if 𝜀 is very small,
the function 𝑢 is highly oscillatory. Hence, directly solving these IVPs with standard integrators
is computationally very costly.

In order to devise an efficient numerical method, we first apply an analytic preprocessing
to the IVPs. While the system matrix in (22) has the leading order 𝒪(1/𝜀), the transformed
problem will have the order 𝒪(𝜀). This does not mean that the oscillations disappear. In fact,
one can observe that the frequencies are even (approximately) doubled. But the amplitude of
the oscillations in the new variable 𝑦 will only be 𝒪(𝜀), down from the 𝒪(1) oscillations in the
original variable 𝑢 (cf. Lemma 2.3). Clearly, we can expect that the new “smoother” IVP for 𝑦
is much easier to solve numerically than that for 𝑢, particularly in the regime of small 𝜀.

The following discussion focusses on the IVPs (12) and (22). But it can be extended to
a larger class of problems and refined to higher 𝜀–order asymptotics (see Corollary 3.3, and for
more details [5]). We formulate the essential requirements on the functions diag(𝜆1, . . . , 𝜆𝑑) = 𝐿
from both IVPs in

Assumption 2. There exists a 𝛿 > 0 such that for all 𝑥 ∈ [𝑎, 𝑏] and 𝑖 ∕= 𝑗 it holds

∣𝜆𝑖(𝑥)− 𝜆𝑗(𝑥)∣ ≥ 𝛿 .

I. e. 𝐿(𝑥) has only simple eigenvalues, which stay separated over the whole interval [𝑎, 𝑏].

For the transformation we make the following ansatz

𝑦(𝑥) := 𝐸−1
𝜀 (𝑥)𝑇−1

𝜀 (𝑥) 𝑢(𝑥) , (23)

where we set

𝐸𝜀(𝑥) := exp

(
𝑖

𝜀

∫ 𝑥

𝑎

𝐿(𝑠) 𝑑𝑠

)
, (24)

𝑇𝜀(𝑥) := 𝑇0(𝑥) + 𝜀𝑇1(𝑥) . (25)

Since 𝐿(𝑥) is a real valued diagonal matrix for all 𝑥 ∈ [𝑎, 𝑏], the matrix 𝐸𝜀(𝑥) is unitary and
diagonal, i. e. it holds

𝐸−1
𝜀 (𝑥) = 𝐸∗

𝜀 (𝑥) = exp

(
− 𝑖

𝜀

∫ 𝑥

𝑎

𝐿(𝑠) 𝑑𝑠

)
.

Before we can write down the matrix 𝑇1 we need some notation. Let 𝐴,𝐵 ∈ ℂ
𝑑×𝑑. The

entry-wise product (Hadamard product) of 𝐴 and 𝐵 is defined by

𝐴⊙𝐵 := (𝑎𝑖𝑗𝑏𝑖𝑗)1≤𝑖,𝑗≤𝑑 .
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Moreover, for a diagonal matrix 𝐿 = diag(𝜆1, . . . , 𝜆𝑑) with pairwise distinct simple eigenvalues
𝜆1, . . . , 𝜆𝑑, we define the following two matrices:

𝐷𝐿 := (𝜆𝑖 − 𝜆𝑗)1≤𝑖,𝑗≤𝑑 ; 𝐷−
𝐿 :=

(
1

𝜆𝑖 − 𝜆𝑗

)
1≤𝑖 ∕=𝑗≤𝑑

,
(
𝐷−

𝐿

)
𝑖=𝑗

:= 0 . (26)

We remark that it holds ∀𝐴 ∈ ℂ𝑑×𝑑:

𝐿𝐴−𝐴𝐿 = 𝐷𝐿 ⊙ 𝐴 and 𝐷𝐿 ⊙𝐷−
𝐿 ⊙ 𝐴 = 𝐴− diag𝐴 . (27)

With this notation we can establish

Lemma 3.1. We make Assumption 2. Let the matrix valued functions 𝐿,𝐵 ∈ 𝐶𝑟([𝑎, 𝑏],ℂ𝑑×𝑑) for
some 𝑟 ∈ ℕ. Further, let 𝑇0 be the unique solution of the (matrix valued) IVP

𝑇 ′
0(𝑥) = diag(𝐵(𝑥))𝑇0(𝑥) , 𝑇0(𝑎) = Id ∈ ℂ

𝑑×𝑑, (28)

and let

𝑇1(𝑥) := 𝑖𝐷−
𝐿(𝑥) ⊙ (𝐵(𝑥)𝑇0(𝑥)) .

Then there exists a constant 𝜀0 > 0 such that: For all 0 < 𝜀 < 𝜀0, the matrix 𝑇𝜀(𝑥) is regular
for all 𝑥 ∈ [𝑎, 𝑏], and the variable 𝑦 defined in (23) solves the IVP

𝑦′ = 𝜀𝐸∗
𝜀𝑆1𝐸𝜀 𝑦 , 𝑦(𝑎) = 𝑦0 . (29)

The matrix valued function 𝑆1 is given by

𝑆1 := 𝑇−1
𝜀 (𝐵𝑇1 − 𝑇 ′

1) ,

and hence is of class 𝐶𝑟−1([𝑎, 𝑏],ℂ𝑑×𝑑).

Proof. Clearly, the IVP (28) has a unique solution 𝑇0 ∈ 𝐶𝑟+1([𝑎, 𝑏],ℂ𝑑×𝑑). By Assumption 2,
𝐷−

𝐿(𝑥) and 𝑇1(𝑥) are well defined for all 𝑥 ∈ [𝑎, 𝑏], with 𝐷−
𝐿(𝑥), 𝑇1(𝑥) ∈ 𝐶𝑟([𝑎, 𝑏],ℂ𝑑×𝑑).

Since 𝑇0(𝑥) is regular for all 𝑥, we can write

𝑇𝜀(𝑥) = 𝑇0(𝑥)
(
Id+𝜀𝑇0(𝑥)

−1𝑇1(𝑥)
)
.

We set

𝜀0 := min
𝑥∈[𝑎,𝑏]

1

∥𝑇0(𝑥)−1𝑇1(𝑥)∥ .

With the von Neumann series we immediately get that 𝑇𝜀(𝑥) is regular for all 0 < 𝜀 < 𝜀0, and
𝑇𝜀 ∈ 𝐶𝑟([𝑎, 𝑏],ℂ𝑑×𝑑). Differentiating (23) yields

𝑦′ = 𝐸∗
𝜀

[
𝑖
𝜀
(𝑇−1

𝜀 𝐿− 𝐿𝑇−1
𝜀 ) + 𝑇−1

𝜀
′
+ 𝑇−1

𝜀 𝐵
]
(𝐸∗

𝜀𝑇
−1
𝜀 )−1𝑦 .

Using 𝑇−1
𝜀 𝐿− 𝐿𝑇−1

𝜀 = 𝑇−1
𝜀 [𝐿, 𝑇𝜀]𝑇

−1
𝜀 and 0 = 𝑇−1

𝜀
′
𝑇𝜀 + 𝑇−1

𝜀 𝑇 ′
𝜀 we get

𝑦′ = 𝐸∗
𝜀𝑇

−1
𝜀

(
𝑖
𝜀
[𝐿, 𝑇𝜀]− 𝑇 ′

𝜀 +𝐵𝑇𝜀
)
𝐸𝜀𝑦 .

With 𝑇𝜀 = 𝑇0 + 𝜀𝑇1 we deduce

𝑦′ = 𝐸∗
𝜀𝑇

−1
𝜀

(
𝑖
𝜀
[𝐿, 𝑇0] + 𝑖[𝐿, 𝑇1] +𝐵𝑇0 − 𝑇 ′

0 + 𝜀𝐵𝑇1 − 𝜀𝑇 ′
1

)
𝐸𝜀𝑦 . (30)

Since 𝑇0 is diagonal the first commutator in (30) is zero. Using (27) we find

𝑖[𝐿, 𝑇1] = 𝑖𝐷𝐿 ⊙ 𝑇1

= −𝐷𝐿 ⊙𝐷−
𝐿 ⊙ (𝐵𝑇0)

= −(𝐵𝑇0 − diag(𝐵𝑇0)) ,
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which yields 𝑖[𝐿, 𝑇1] +𝐵𝑇0 − 𝑇 ′
0 = 0. Hence (30) reduces to

𝑦′ = 𝜀𝐸∗
𝜀𝑇

−1
𝜀

(
𝐵𝑇1 − 𝑇 ′

1

)
𝐸𝜀𝑦 .

𝐵, 𝑇1 ∈ 𝐶𝑟([𝑎, 𝑏],ℂ𝑑×𝑑) implies 𝑆1 = 𝑇−1
𝜀 (𝐵𝑇1 − 𝑇 ′

1) ∈ 𝐶𝑟−1([𝑎, 𝑏],ℂ𝑑×𝑑) which completes the
proof. □

Corollary 3.2. Let the assumptions of Lemma 3.1 hold. Then there exists a constant 𝑐 > 0,
independent of 𝜀, such that

∥𝑦(𝑥)− 𝑦0∥ ≤ 𝑐𝜀 and ∥𝑦′(𝑥)∥ ≤ 𝑐𝜀

hold for all 𝑥 ∈ [𝑎, 𝑏], 0 < 𝜀 ≤ 𝜀0
2

.

Proof. Integration of (29) yields

∥𝑦(𝑥)− 𝑦0∥ ≤ 𝜀

∫ 𝑥

𝑎

∥(𝐸∗
𝜀𝑆1𝐸𝜀)(𝑠)∥ ∥𝑦(𝑠)− 𝑦0∥ 𝑑𝑠+ 𝜀

∫ 𝑥

𝑎

∥(𝐸∗
𝜀𝑆1𝐸𝜀)(𝑠)∥ ∥𝑦0∥ 𝑑𝑠 .

Since 𝐸𝜀(𝑠) is unitary for all 𝑠 ∈ [𝑎, 𝑏] we obtain

∥𝑦(𝑥)− 𝑦0∥ ≤ 𝜀

∫ 𝑥

𝑎

∥𝑆1(𝑠)∥ ∥𝑦(𝑠)− 𝑦0∥ 𝑑𝑠+ 𝜀∣𝑏− 𝑎∣ ∥𝑆1∥∞ ∥𝑦0∥ .

A Gronwall argument implies

∥𝑦(𝑥)− 𝑦0∥ ≤ 𝜀∣𝑏− 𝑎∣ ∥𝑆1∥∞ ∥𝑦0∥ 𝑒𝜀
∫ 𝑥
𝑎
∥𝑆1(𝑠)∥ 𝑑𝑠 ,

which yields the first estimate, since 𝑇−1
𝜀 (and hence also 𝑆1) is uniformly bounded for 0 < 𝜀 ≤

𝜀0/2 and 𝑥 ∈ [𝑎, 𝑏]. The second estimate then follows from the ODE (29). □

For the numerical scheme it turns out that one can achieve better results (i.e. higher order
𝜀–asymptotics of the error) if the diagonal of the system matrix in (29) would be zero.

Corollary 3.3. Let the assumptions of Lemma 3.1 hold and let (the diagonal matrix function)
𝑅 : [𝑎, 𝑏] → ℂ𝑑×𝑑 be the unique solution of the IVP

𝑅′ = 𝜀 diag(𝑆1)𝑅 , 𝑅(𝑎) = Id . (31)

If 𝑦 is the solution of (29), then 𝑧 := 𝑅−1𝑦 solves

𝑧′ = 𝜀
(
𝐸∗

𝜀𝑆𝐸𝜀

)
𝑧 , 𝑧(𝑎) = 𝑧0 (32)

with 𝑆 := 𝑅−1(𝑆1 − diag(𝑆1))𝑅. Furthermore, 𝑧 admits the improved estimates

∥𝑧(𝑥)− 𝑧0∥ ≤ 𝑐 𝜀2 , ∥𝑧′(𝑥)∥ ≤ 𝑐 𝜀 ,

with a constant 𝑐 ≥ 0 independent of 𝜀.

Proof. See [5]. □

In typical quantum transport applications, the coefficient functions often have jump dis-
continuities. This can be dealt with by restarting a new IVP at the 𝑥-point of discontinuity.
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4. Numerical scheme

In this section we derive an explicit one step scheme with convergence order two for the
IVP (32). To be more precise we shall derive local error estimates of order3 𝒪(𝜀1ℎ3𝑛), where
ℎ𝑛 is the local step size of the spatial grid. Let 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁 = 𝑏 be a grid
and let ℎ𝑛 := 𝑥𝑛+1 − 𝑥𝑛 be the local step size. Further we define the maximum step size
by ℎ := max0≤𝑛≤𝑁−1(𝑥𝑛+1 − 𝑥𝑛). Integration of (32) over the subinterval [𝑥𝑛, 𝑥𝑛+1] yields
iteratively

𝑧(𝑥𝑛+1) = 𝑧(𝑥𝑛) + 𝜀

∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑠) 𝑑𝑠 𝑧(𝑥𝑛) + 𝜀2
∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑠)

∫ 𝑠

𝑥𝑛

𝑀(𝑟) 𝑑𝑟 𝑑𝑠 𝑧(𝑥𝑛)

+𝜀3
∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑠)

∫ 𝑠

𝑥𝑛

𝑀(𝑟)

∫ 𝑟

𝑥𝑛

𝑀(𝑡)𝑧(𝑡) 𝑑𝑡 𝑑𝑟 𝑑𝑠 , (33)

where we use the abbreviation 𝑀 := 𝐸∗
𝜀𝑆𝐸𝜀 ∈ ℂ𝑑×𝑑. The last term is of order 𝒪(𝜀3ℎ3𝑛) and,

hence, can be neglected for the purpose of our error estimate. Let us define

𝐼1(𝑥) :=

∫ 𝑥

𝑥𝑛

𝑀(𝑡) 𝑑𝑡 =

∫ 𝑥

𝑥𝑛

𝐸∗
𝜀 (𝑡)𝑆(𝑡)𝐸𝜀(𝑡) 𝑑𝑡 , (34)

with 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1] and

𝐼2(𝑥𝑛+1) :=

∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑥)

∫ 𝑥

𝑥𝑛

𝑀(𝑡) 𝑑𝑡 𝑑𝑥 =

∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑥)𝐼1(𝑥) 𝑑𝑥 . (35)

So the first and second integral of (33) are 𝐼1(𝑥𝑛+1) and 𝐼2(𝑥𝑛+1), respectively. Since they both
have highly oscillatory integrands, we need specially designed quadratures in order to obtain
sufficiently good approximations (for a review of highly oscillatory quadrature we refer to [10]).
Here we shall use an ansatz, which can be found in [21] and also in [5].

Recall from Corollary 3.3 that the diagonal components of 𝑆 are zero. So, we now
consider the off-diagonal elements of 𝐼1. Its 𝑖𝑗 th-component reads

𝐼1𝑖𝑗(𝑥) =

∫ 𝑥

𝑥𝑛

𝑆𝑖𝑗(𝑡)𝑒
− 𝑖

𝜀
𝜑𝑖𝑗(𝑡) 𝑑𝑡

with

𝜑𝑖𝑗(𝑡) :=

∫ 𝑡

𝑎

[𝜆𝑖(𝑠)− 𝜆𝑗(𝑠)] 𝑑𝑠 . (36)

Neglecting the indices,

𝐼(𝑥) :=

∫ 𝑥

𝑥𝑛

𝑠(𝑡)𝑒−
𝑖
𝜀
𝜑(𝑡) 𝑑𝑡 (37)

is a prototype oscillatory integral for the off-diagonal elements of 𝐼1. Due to Assumption 2 we
have ∣𝜑′

𝑖𝑗∣ ≥ 𝛿 > 0 for all 𝑥 ∈ [𝑎, 𝑏]. Hence, we also assume for the phase in (37) ∣𝜑′∣ ≥ 𝛿 > 0 for
all 𝑥 ∈ [𝑎, 𝑏]. To derive an accurate quadrature for 𝜀 small we shall leave the oscillatory factor
unchanged and approximate only the 𝜀–independent part 𝑠 of the integrand. We shall choose
an approximation, such that the resulting integral is exactly computable. This is the case when
replace 𝑠 in (37) e.g. by 𝜑′𝜑𝑘, with some 𝑘 ∈ ℕ. Hence, the space spanned by these generalized
monomials is well suited to find an appropriate approximation of 𝑠. Now let

𝑝(𝑥) := 𝜑′(𝑥)
(
𝑐0 + 𝑐1𝜑(𝑥)

)
(38)

3We say 𝑓 : [0, ℎ0]× (0, 𝜀0) → ℂ
𝑑 is of order 𝒪(𝜀𝑛ℎ𝑚), iff there exists a constant 𝑐 ≥ 0 independent of 𝜀 and ℎ,

such that ∥𝑓(ℎ, 𝜀)∥ ≤ 𝑐𝜀𝑛ℎ𝑚 for all (ℎ, 𝜀) ∈ [0, ℎ0]× (0, 𝜀0).
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be our ansatz function, with some 𝑐0, 𝑐1 ∈ ℂ.
In order to determine 𝑐0, 𝑐1 we integrate by parts in (37):

𝐼(𝑥) = 𝑖𝜀
𝑠(𝑡)

𝜑′(𝑡)
𝑒−

𝑖
𝜀
𝜑(𝑡)

∣∣∣∣
𝑥

𝑡=𝑥𝑛

− 𝑖𝜀

∫ 𝑥

𝑥𝑛

(
𝑠(𝑡)

𝜑′(𝑡)

)′
𝑒−

𝑖
𝜀
𝜑(𝑡) 𝑑𝑡 . (39)

Repeated integration by parts then yields the asymptotic expansion of 𝐼 as discussed in [10]. For
a moment let us replace 𝑠 by 𝑠 − 𝑝, which shall be the pointwise approximation error. Thus, if
we require (𝑠− 𝑝)(𝑥𝑛) = (𝑠 − 𝑝)(𝑥𝑛+1) = 0, the integral 𝐼(𝑥𝑛+1) is of order 𝒪(𝜀ℎ𝑛), provided(
𝑠−𝑝
𝜑′

)′
is well defined and bounded. And if

(
𝑠−𝑝
𝜑′

)′
is even continuously differentiable, a further

integration by parts yields 𝐼(𝑥) = 𝒪(𝜀2). Since this asymptotic behavior is desirable, we now
choose 𝑝 as the solution of the generalized interpolation problem

𝑝(𝑥𝑛) = 𝑠(𝑥𝑛) , 𝑝(𝑥𝑛+1) = 𝑠(𝑥𝑛+1) .

This implies

𝑐1 =

𝑠𝑛+1

𝜑′
𝑛+1

− 𝑠𝑛
𝜑′
𝑛

𝜑𝑛+1 − 𝜑𝑛
and 𝑐0 =

𝑠𝑛
𝜑′
𝑛

− 𝑐1𝜑𝑛 , (40)

where we use the abbreviation 𝑠𝑛 = 𝑠(𝑥𝑛), and analogously for 𝜑, 𝜑′. Replacing 𝑠 by 𝑝 in 𝐼
yields the quadrature

𝐼(𝑥) ≈ 𝑞(𝑥) :=

∫ 𝑥

𝑥𝑛

𝑝(𝑡) 𝑒−
𝑖
𝜀
𝜑(𝑡) 𝑑𝑡 = 𝑖𝜀𝑒−

𝑖
𝜀
𝜑(𝑡)

(
𝑐0 + 𝑐1𝜑(𝑡)− 𝑖𝜀𝑐1

)∣∣𝑥
𝑡=𝑥𝑛

. (41)

Lemma 4.1. Let 𝑠, 𝜑′ ∈ 𝐶2([𝑎, 𝑏]) and let ∣𝜑′∣ ≥ 𝛿 > 0 for all 𝑥 ∈ [𝑎, 𝑏]. Then there exists a
constant 𝑐 ≥ 0 independent of 𝜀 and 𝑛, such that for all 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1] ⊂ [𝑎, 𝑏] it holds

∣𝐼(𝑥)− 𝑞(𝑥)∣ ≤ 𝑐 ℎ2𝑛 min(𝜀, ℎ𝑛) , (42)

∣𝐼(𝑥𝑛+1)− 𝑞(𝑥𝑛+1)∣ ≤ 𝑐 ℎ𝑛 min
𝑘=0,2

(ℎ2−𝑘
𝑛 𝜀𝑘) . (43)

Proof. Let us start with the integral

𝐽(𝑥) := 𝐼(𝑥)− 𝑞(𝑥) =

∫ 𝑥

𝑥𝑛

(𝑠− 𝑝)(𝑡)𝑒−
𝑖
𝜀
𝜑(𝑡) 𝑑𝑡 . (44)

By assumption, ∣𝜑′(𝑥)∣ ≥ 𝛿 > 0 for all 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1]. Hence, 𝜑 is invertible (without restriction
of generality let 𝜑 be increasing) and we substitute 𝜉 = 𝜑(𝑡) in (44), yielding

𝐽(𝑥) =

∫ 𝜑(𝑥)

𝜑(𝑥𝑛)

(
𝑠− 𝑝

𝜑′

)
(𝜑−1(𝜉))𝑒−

𝑖
𝜀
𝜉 𝑑𝜉 =

∫ 𝜑(𝑥)

𝜑(𝑥𝑛)

(𝑔 − 𝜋)(𝜉)𝑒−
𝑖
𝜀
𝜉 𝑑𝜉 . (45)

Here we set 𝑔(𝜉) :=
(

𝑠
𝜑′
)
(𝜑−1(𝜉)) and 𝜋(𝜉) := 𝑐0 + 𝑐1𝜉. By construction, 𝜋 interpolates 𝑔

at the points 𝜑(𝑥𝑛), 𝜑(𝑥𝑛+1). Since 𝑠, 𝜑′ ∈ 𝐶2([𝑎, 𝑏]), so is 𝑔. The theory of polynomial
interpolation [16, 22] thus yields the following error representation for 𝜉 ∈ [𝜑(𝑥𝑛), 𝜑(𝑥𝑛+1)]:

𝑔(𝜉)− 𝜋(𝜉) = 𝑔(2)(𝜁(𝜉))
(𝜉 − 𝜑(𝑥𝑛))(𝜉 − 𝜑(𝑥𝑛+1))

2
,

for some 𝜁(𝜉) ∈ [𝜑(𝑥𝑛), 𝜑(𝑥𝑛+1)]. This yields the uniform estimate

∣𝑔(𝜉)− 𝜋(𝜉)∣ ≤ ∥∥𝑔(2)∥∥∞

(
𝜑(𝑥𝑛)− 𝜑(𝑥𝑛+1)

)2
2

≤ 𝑐 ℎ2𝑛 , (46)
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and 𝑐 is independent of 𝑛. From [16] we get an estimate for the first derivative of the interpolation
error. There exists a 𝜉∗ ∈ [𝜑(𝑥𝑛), 𝜑(𝑥𝑛+1)], such that it holds for all 𝜉 ∈ [𝜑(𝑥𝑛), 𝜑(𝑥𝑛+1)]:

∣𝑔′(𝜉)− 𝜋′(𝜉)∣ ≤ ∥∥𝑔(2)∥∥∞
∣∣𝜉 − 𝜉∗

∣∣ ≤ 𝑐 ℎ𝑛 . (47)

Hence it holds for all 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1] (using (45) and (46))

∣𝐽(𝑥)∣ ≤ ∣𝜑(𝑥𝑛+1)− 𝜑(𝑥𝑛)∣ 𝑐ℎ2𝑛 ≤ 𝑐ℎ3𝑛 .

Moreover, integration by parts in (45) gives

𝐽(𝑥) = 𝑖𝜀(𝑔 − 𝜋)(𝜉) 𝑒−
𝑖
𝜀
𝜉

∣∣∣∣
𝜑(𝑥)

𝜉=𝜑(𝑥𝑛)

− 𝑖𝜀

∫ 𝜑(𝑥)

𝜑(𝑥𝑛)

(𝑔 − 𝜋)′(𝜉) 𝑒−
𝑖
𝜀
𝜉 𝑑𝜉 .

Thus, the estimate (42) follows from (47). Since 𝜋 interpolates 𝑔 at the boundary points
𝜑(𝑥𝑛), 𝜑(𝑥𝑛+1), we find (with another integration by parts)

𝐽(𝑥𝑛+1) = −𝑖𝜀
∫ 𝜑(𝑥𝑛+1)

𝜑(𝑥𝑛)

(𝑔 − 𝜋)′(𝜉) 𝑒−
𝑖
𝜀
𝜉 𝑑𝜉

= −(𝑖𝜀)2(𝑔 − 𝜋)′(𝜉) 𝑒−
𝑖
𝜀
𝜉

∣∣∣∣
𝜑(𝑥𝑛+1)

𝜉=𝜑(𝑥𝑛)

+ (𝑖𝜀)2
∫ 𝜑(𝑥𝑛+1)

𝜑(𝑥𝑛)

(𝑔 − 𝜋)′′(𝜉) 𝑒−
𝑖
𝜀
𝜉 𝑑𝜉 .

This yields

∣𝐽(𝑥𝑛+1)∣ ≤ 𝑐min
(
𝜀0ℎ3𝑛, 𝜀

1ℎ2𝑛, 𝜀
2ℎ1𝑛

)
,

which is equivalent to (43). □

To get a quadrature for 𝐼1 from (34) we apply the scalar quadrature given by (40), (41)
to each (off-diagonal) component of 𝐼1. Let us denote the matrix valued phase function of 𝐸𝜀 by
Φ = diag(𝜙1, . . . , 𝜙𝑑), i. e.

𝐸𝜀(𝑥) = 𝑒
𝑖
𝜀
Φ(𝑥) with Φ(𝑥) =

∫ 𝑥

𝑎

𝐿(𝑡) 𝑑𝑡 .

Hence it holds (see (36))

𝜑𝑖𝑗(𝑥) = 𝜙𝑖(𝑥)− 𝜙𝑗(𝑥) =
(
𝐷Φ(𝑥)

)
𝑖𝑗

and 𝜑′
𝑖𝑗(𝑥) = 𝜆𝑖(𝑥)− 𝜆𝑗(𝑥) =

(
𝐷𝐿(𝑥)

)
𝑖𝑗
.

We denote with 𝑃 = 𝑃 (𝑥) ∈ ℂ
𝑑×𝑑 the matrix valued analogue of the interpolation polynomial 𝑝

from (38). With the notation of Sec. 3 it reads:

𝑃 (𝑥) = 𝐷𝐿(𝑥) ⊙
(
𝐶1

0 + 𝐶1
1 ⊙𝐷Φ(𝑥)

)
. (48)

From (40) we obtain

𝐶1
1 =

(
𝑆𝑛+1 ⊙𝐷−

𝐿𝑛+1
− 𝑆𝑛 ⊙𝐷−

𝐿𝑛

)⊙ (
(𝐷Φ𝑛+1 −𝐷Φ𝑛 + Id)⃝-1 − Id

)
, (49)

𝐶1
0 = 𝑆𝑛 ⊙𝐷−

𝐿𝑛
− 𝐶1

1 ⊙𝐷Φ𝑛 . (50)

Here ⋅⃝-1 denotes the matrix with componentwise reciprocal elements. Since (48)–(50) is just a
compact form to write the (componentwise) interpolation function 𝑝𝑖𝑗 we get the quadrature

𝑄1(𝑥) := 𝑖𝜀 𝑒−
𝑖
𝜀
Φ(𝑡)

(
𝐶1

0 + 𝐶1
1 ⊙𝐷Φ(𝑡) − 𝑖𝜀𝐶1

1

)
𝑒

𝑖
𝜀
Φ(𝑡)

∣∣𝑥
𝑡=𝑥𝑛

. (51)

Componentwise application of Lemma 4.1 yields
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Corollary 4.2. Let 𝐿, 𝑆 ∈ 𝐶2([𝑎, 𝑏],ℂ𝑑×𝑑) and let Assumption 2 hold. Then there exists a
constant 𝑐 ≥ 0 independent of 𝜀 and 𝑛, such that for all 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1] ⊂ [𝑎, 𝑏] it holds∥∥𝐼1(𝑥)−𝑄1(𝑥)

∥∥ ≤ 𝑐 ℎ2𝑛 min(𝜀, ℎ𝑛) , (52)∥∥𝐼1(𝑥𝑛+1)−𝑄1(𝑥𝑛+1)
∥∥ ≤ 𝑐 ℎ𝑛 min

𝑘=0,2
(ℎ2−𝑘

𝑛 𝜀𝑘) . (53)

It remains to find a discretization for the second oscillatory integral 𝐼2(𝑥𝑛+1). As a first step we
replace 𝐼1(𝑥) in (35) by 𝑄1(𝑥). This yields an error of at most 𝒪(𝜀ℎ2𝑛) in the integrand. Hence,
there exists a constant 𝑐 ≥ 0 independent of 𝜀 (and 𝑛), such that∥∥∥∥𝐼2(𝑥𝑛+1)−

∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑥)𝑄1(𝑥) 𝑑𝑥

∥∥∥∥ ≤ 𝑐 𝜀 ℎ3𝑛 .

In order to make the following formula more readable we define the matrix function

𝑃 1(𝑥) := 𝐶1
0 + 𝐶1

1 ⊙𝐷Φ(𝑥) − 𝑖𝜀𝐶1
1 . (54)

Hence it holds

𝑄1(𝑥) = 𝑖𝜀 𝑒−
𝑖
𝜀
Φ(𝑡)𝑃 1(𝑡)𝑒

𝑖
𝜀
Φ(𝑡)

∣∣𝑥
𝑡=𝑥𝑛

,

which yields∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑥)𝑄1(𝑥) 𝑑𝑥 = 𝑖𝜀

∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑥)𝑒−
𝑖
𝜀
Φ(𝑥)𝑃 1(𝑥)𝑒

𝑖
𝜀
Φ(𝑥) 𝑑𝑥

−𝑖𝜀
∫ 𝑥𝑛+1

𝑥𝑛

𝑀(𝑥)𝑒−
𝑖
𝜀
Φ(𝑥𝑛)𝑃 1(𝑥𝑛)𝑒

𝑖
𝜀
Φ(𝑥𝑛) 𝑑𝑥

= 𝑖𝜀

∫ 𝑥𝑛+1

𝑥𝑛

𝑒−
𝑖
𝜀
Φ(𝑥)𝑆(𝑥)𝑃 1(𝑥)𝑒

𝑖
𝜀
Φ(𝑥) 𝑑𝑥

−𝑖𝜀 𝐼1(𝑥𝑛+1) 𝑒
− 𝑖

𝜀
Φ(𝑥𝑛)𝑃 1(𝑥𝑛)𝑒

𝑖
𝜀
Φ(𝑥𝑛) .

For 𝐼1(𝑥𝑛+1) we already computed an approximation. Since the remaining integral is of the same
type as 𝐼1 (replace 𝑆 by 𝑆𝑃 1), we can use the same quadrature for the off diagonal elements and
shall get the same error estimates (with a different constant 𝑐, however). Thus we set

𝑆2 := 𝑆𝑃 1 , (55)

𝐶2
1 :=

(
𝑆2
𝑛+1 ⊙𝐷−

𝐿𝑛+1
− 𝑆2

𝑛 ⊙𝐷−
𝐿𝑛

)⊙ (
(𝐷Φ𝑛+1 −𝐷Φ𝑛 + Id)⃝-1 − Id

)
, (56)

𝐶2
0 := 𝑆2

𝑛 ⊙𝐷−
𝐿𝑛

− 𝐶2
1 ⊙𝐷Φ𝑛 (57)

and the quadrature for the off diagonal elements reads

𝑄2
off(𝑥𝑛+1) := 𝑖𝜀 𝑒−

𝑖
𝜀
Φ(𝑡)

(
𝐶2

0 + 𝐶2
1 ⊙𝐷Φ(𝑡) − 𝑖𝜀𝐶2

1

)
𝑒

𝑖
𝜀
Φ(𝑡)

∣∣𝑥𝑛+1

𝑡=𝑥𝑛
. (58)

But, in general, the diagonal of 𝑆2 is not zero. Hence we also have to find an appropriate
quadrature for ∫ 𝑥𝑛+1

𝑥𝑛

diag
(
𝑒−

𝑖
𝜀
Φ(𝑥)𝑆2(𝑥)𝑒

𝑖
𝜀
Φ(𝑥)

)
𝑑𝑥 =

∫ 𝑥𝑛+1

𝑥𝑛

diag
(
𝑆2(𝑥)

)
𝑑𝑥 .

Since this integral is independent of 𝜀 we can use a standard (polynomial based) quadrature. Due
to the desired order with respect to ℎ𝑛 we choose the trapezoid rule, which yields∥∥∥∥

∫ 𝑥𝑛+1

𝑥𝑛

diag
(
𝑆2(𝑥)

)
𝑑𝑥−𝑄2

diag(𝑥𝑛+1)

∥∥∥∥ ≤ 𝑐ℎ3𝑛 ,
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with a constant 𝑐 ≥ 0 independent of 𝜀 and 𝑛 and

𝑄2
diag(𝑥𝑛+1) :=

ℎ𝑛
2

(
diag(𝑆2

𝑛+1) + diag(𝑆2
𝑛)
)
. (59)

Finally we define

𝑄2(𝑥𝑛+1) := 𝑄2
diag(𝑥𝑛+1) +𝑄2

off(𝑥𝑛+1) (60)

and hence get the quadrature error estimate∥∥∥𝐼2(𝑥𝑛+1)− 𝑖𝜀
[
𝑄2(𝑥𝑛+1)−𝑄1(𝑥𝑛+1)𝑒

− 𝑖
𝜀
Φ(𝑥𝑛)𝑃 1(𝑥𝑛)𝑒

𝑖
𝜀
Φ(𝑥𝑛)

]∥∥∥ ≤ 𝑐 𝜀 ℎ3𝑛 . (61)

Thus we have proven

Proposition 4.3 (Local error). Let 𝑆, 𝐿 ∈ 𝐶2([𝑎, 𝑏],ℂ𝑑×𝑑) and let Assumption 2 hold. Further
let 0 ≤ 𝑛 ≤ 𝑁 − 1 and let 𝑃 1(𝑥𝑛), 𝑄1(𝑥𝑛+1), 𝑄2(𝑥𝑛+1) (and the related quantities) be given by
(49)–(60). We define

𝐴𝑛 := 𝑄1(𝑥𝑛+1) ,

𝐵𝑛 := 𝑖𝜀
[
𝑄2(𝑥𝑛+1)−𝑄1(𝑥𝑛+1)𝑒

− 𝑖
𝜀
Φ(𝑥𝑛)𝑃 1(𝑥𝑛)𝑒

𝑖
𝜀
Φ(𝑥𝑛)

]
.

Than there exists a constant 𝑐 ≥ 0 independent of 𝜀 and 𝑛, such that∥∥𝑧(𝑥𝑛+1)−
(
Id+𝜀𝐴𝑛 + 𝜀2𝐵𝑛

)
𝑧(𝑥𝑛)

∥∥ ≤ 𝑐 𝜀 ℎ𝑛 min
𝑘=0,2

ℎ2−𝑘
𝑛 𝜀𝑘 .

Remark 4.4. Let the assumptions of Proposition 4.3 hold. Then it follows from (53) in Corollary
4.2:

∥𝐴𝑛∥ =
∥∥𝑄1(𝑥𝑛+1)

∥∥ ≤ ∥∥𝐼1(𝑥𝑛+1)
∥∥+ 𝑐 ℎ𝑛 min

𝑘=0,2
(ℎ2−𝑘

𝑛 𝜀𝑘) .

Due to (39) every component of 𝐼1(𝑥𝑛+1) is at most of order 𝒪(𝜀). Further ∥𝐼1(𝑥𝑛+1)∥ is of
order 𝒪(ℎ𝑛) which yields

∥𝐴𝑛∥ ≤ 𝑐min(ℎ𝑛, 𝜀) .

It is easy to see, that 𝑐1, 𝑐0 from (40) are bounded as ℎ𝑛 → 0. Hence the same holds for 𝐶1
1 , 𝐶

1
0

and consequently for 𝑃 1, and finally for 𝑆2 = 𝑆𝑃 1. Thus we can use the same argument as
before and deduce from (61)

∥𝐵𝑛∥ ≤ 𝑐min(ℎ𝑛, 𝜀) .

This yields the estimate ∥∥Id+𝜀𝐴𝑛 + 𝜀2𝐵𝑛

∥∥ ≤ 1 + 𝑐𝜀ℎ𝑛 ,

which guarantees stability and hence convergence of the one step scheme (OSS) from Proposition
4.3.

4.1. Pseudo-code of the scheme

Here we shall write the numerical scheme from Sec. 4 in a pseudo-code. Let 𝑎 = 𝑥0 <
𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁 = 𝑏 be our grid and let 𝑧𝑛 denote the approximation of 𝑧 at the grid point 𝑥𝑛. We
start with 𝑧0 = 𝑧0. Assume we have already computed the quantities4 𝑆𝑛, 𝐿𝑛, 𝐷

−
𝐿𝑛
,Φ𝑛, 𝐷Φ𝑛, 𝐸𝜀,𝑛,

and 𝑧𝑛.

(1) compute 𝑆𝑛+1, 𝐿𝑛+1, Φ𝑛+1, and 𝐸𝜀,𝑛+1

(2) compute 𝐷−
𝐿𝑛+1

and 𝐷Φ𝑛+1 by (26)

4Here the lower index 𝑛 denotes the exact quantity evaluated at the grid point 𝑥𝑛.
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(3) compute 𝐶1
0 and 𝐶1

1 by (50) and (49), i. e.

𝐶1
1 =

(
𝑆𝑛+1 ⊙𝐷−

𝐿𝑛+1
− 𝑆𝑛 ⊙𝐷−

𝐿𝑛

)⊙ (
(𝐷Φ𝑛+1 −𝐷Φ𝑛 + Id)⃝-1 − Id

)
,

𝐶1
0 = 𝑆𝑛 ⊙𝐷−

𝐿𝑛
− 𝐶1

1 ⊙𝐷Φ𝑛 .

(4) compute 𝑃 1
𝑛 and 𝑃 1

𝑛+1 by (54):

𝑃 1
𝑛 = 𝐶1

0 + 𝐶1
1 ⊙𝐷Φ𝑛 − 𝑖𝜀𝐶1

1 ,

𝑃 1
𝑛+1 = 𝐶1

0 + 𝐶1
1 ⊙𝐷Φ𝑛+1 − 𝑖𝜀𝐶1

1 .

(5) set 𝑆2
𝑛 = 𝑆𝑛𝑃

1
𝑛 , 𝑆2

𝑛+1 = 𝑆𝑛+1𝑃
1
𝑛+1 and compute (see (56), (57))

𝐶2
1 =

(
𝑆2
𝑛+1 ⊙𝐷−

𝐿𝑛+1
− 𝑆2

𝑛 ⊙𝐷−
𝐿𝑛

)⊙ (
(𝐷Φ𝑛+1 −𝐷Φ𝑛 + Id)⃝-1 − Id

)
,

𝐶2
0 = 𝑆2

𝑛 ⊙𝐷−
𝐿𝑛

− 𝐶2
1 ⊙𝐷Φ𝑛

(6) compute (see (51))

𝑄1(𝑥𝑛+1) := 𝑖𝜀
[
𝐸∗

𝜀,𝑛+1𝑃
1
𝑛+1𝐸𝜀,𝑛+1 −𝐸∗

𝜀,𝑛𝑃
1
𝑛𝐸𝜀,𝑛

]
.

(7) compute (see (58))

𝑄2
off(𝑥𝑛+1) = 𝑖𝜀 𝑒−

𝑖
𝜀
Φ𝑗
(
𝐶2

0 + 𝐶2
1 ⊙𝐷Φ𝑗

− 𝑖𝜀𝐶2
1

)
𝑒

𝑖
𝜀
Φ𝑗
∣∣𝑛+1

𝑗=𝑛
.

(8) compute (see (59))

𝑄2
diag(𝑥𝑛+1) =

ℎ𝑛
2

(
diag(𝑆2

𝑛+1) + diag(𝑆2
𝑛)
)
.

(9) set 𝑄2(𝑥𝑛+1) = 𝑄2
diag(𝑥𝑛+1) +𝑄2

off(𝑥𝑛+1) (see (60))
(10) compute 𝐴𝑛, 𝐵𝑛 as defined in Proposition 4.3:

𝐴𝑛 = 𝑄1(𝑥𝑛+1) ,

𝐵𝑛 = 𝑖𝜀
[
𝑄2(𝑥𝑛+1)−𝑄1(𝑥𝑛+1)𝑒

− 𝑖
𝜀
Φ(𝑛)𝑃 1

𝑛𝑒
𝑖
𝜀
Φ(𝑛)

]
.

(11) compute approximation of 𝑧 at 𝑥𝑛+1:

𝑧𝑛+1 =
(
Id+𝜀𝐴𝑛 + 𝜀2𝐵𝑛

)
𝑧𝑛

(12) update quantities for the next interval, i. e.

𝑆𝑛 = 𝑆𝑛+1 , 𝐿𝑛 = 𝐿𝑛+1 , 𝐷−
𝐿𝑛

= 𝐷−
𝐿𝑛+1

,

Φ𝑛 = Φ𝑛+1 , 𝐷Φ𝑛 = 𝐷Φ𝑛+1 , 𝐸𝜀,𝑛 = 𝐸𝜀,𝑛+1 .

5. Numerical results

In this section we illustrate the convergence behavior (stated in Proposition 4.3) of our
numerical approximation to the solution 𝑧 of the IVP (32). The results are derived with the
scheme from Sec. 4. The procedure how to approximate 𝑇𝜀, 𝑅𝜀, 𝑆,Φ is not discussed in this
work. For a detailed discussion of the algorithm to compute these variables we refer to [5].
Anyhow, the numerical integration of the phase Φ usually incures an additional error for the
original, oscillatory function 𝑢 from (12) or (22). This situation is the same also for scalar ODEs
(cf. Th. 3.1 in [2]).

We shall compare our one step scheme (OSS) to the Adiabatic Midpoint Rule (AMPR)
from [18]. That integrator is a space-symmetric two-step scheme, which yields a convergence
error of order 𝒪(𝜀0ℎ2) for the function 𝜂 defined in Lemma 2.3. If we would want to have the
same error behavior for the original function 𝑢, we also have to impose the step size restriction
ℎ ≤ √

𝜀 (when using the Simpson rule to approximate the matrix valued phase Φ). Using a
higher order quadrature rule for Φ, would weaken this restriction on ℎ.
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Let us choose a family of equidistant grids. Let 𝑔 ∈ ℕ, and define for 𝑛 = 0, . . . , 2𝑔 =: 𝑁𝑔

the grid points

𝑥𝑔𝑛 := 𝑎+ 𝑛ℎ𝑔 with ℎ𝑔 :=
𝑏− 𝑎

𝑁𝑔
.

For integers 𝑔1 < 𝑔2, the grid corresponding to 𝑔1 is a (coarser) subgrid of the 𝑔2–grid. Hence no
interpolation is needed when comparing solutions on two grids. To generate error plots we fix a
finite number of indices, e. g. 𝑔 = 2, . . . , 14, and use the numerical solution on the finest grid as
reference solution. To illustrate the convergence behavior of the OSS (w.r.t. the step size ℎ, and
in dependence of 𝜀) we shall give the relative 𝐿1–error.

Figures 1–3 show the relative 𝐿1–error of 𝑧 for the example, which is already used in [18]
to illustrate the performance of the AMPR (for the details of this example see Sec. 5.1). The
graphs in Figure 4 are the relative 𝐿1–errors of the variable 𝑧, computed with the Kane model of
Sec. 2.1. We used the following data: 𝑎 = 0, 𝑏 = 𝑝(𝑥) = 1, 𝐸 = 2, 𝑉 (𝑥) = 10𝑥(3

4
−𝑥), 𝐸𝑔(𝑥) =

1
2
sin2(2𝜋𝑥) + 1

2
.

In Figure 1 we plot the theoretical error prediction of Proposition 4.3, with a fitted leading
constant. This behavior is reflected quite well in Figure 2, where we used almost exact values
for the coefficients appearing in the IVP (32). I. e. we use the approximation of 𝑆, 𝐿,Φ from the
finest grid also for the coarser ones. For the simulation of Figure 3 the coefficients 𝑆, 𝐿,Φ were
approximated -as it will be done in practice- on the same grid that was used for the solution of
the IVP. In the Figures 2, 3 we also observe the error threshold at about 10−14, resulting from
the Matlab computations in double precision.

The numerical experiments confirm the theoretical results. We observe the 𝒪(𝜀0ℎ2)
convergence behavior for the AMPR as discussed in [18]. So, the error of that scheme (for
the variable 𝜂 from Lemma 2.3) is uniform in 𝜀, but it does not decrease as 𝜀 → 0. However,
our OSS shows an even better error behavior than predicted in Proposition 4.3. While for large
step sizes ℎ the graphs of the 𝑧-error behave like 𝒪(𝜀3ℎ0) (which coincides with the theoretical
estimate), they seem to turn to an 𝒪(𝜀2ℎ2) behavior, if ℎ gets small enough (see Fig. 3, 4).
This is a “better” convergence property than the predicted 𝒪(𝜀1ℎ2) behavior from Proposition
4.3. This behavior was also described in Sec. 3.3 of [2], and it is due to cancellation effects in
successive integration steps. The Figures 2–4 also illustrate the asymptotic correctness of our
OSS as 𝜀→ 0, even for rather large values of ℎ.

Both methods, the OSS and the AMPR are subject to the fact that (in general) the
transformation back to the original variable 𝑢 introduces an error of the order 𝒪(𝜀−1). This is
due to the multiplication of 𝑧 (and 𝜂) with the highly oscillatory matrix 𝐸𝜀(𝑥) = exp( 𝑖

𝜀
Φ(𝑥)).

Since Φ is approximated with the Simpson rule (which yields an error of 𝒪(ℎ4) for Φ) we get
an transformation error of 𝒪(𝜀−1ℎ4). This explains the step size restriction mentioned in the
beginning of this section. But if the matrix valued phase function Φ is exactly known5, the error
behavior of 𝑧, 𝜂 carries over to 𝑢. In this situation our OSS yields much better results for 𝑢 than
the AMPR – with approximately the same numerical effort.

5.1. The example from [18]

The following example is not related to two-band Schrödinger models. But since it has been
studied in the literature [18], it serves as a convenient test and comparison for our method. We

5E. g., piecewise linear functions 𝑉,𝐸𝑔, 𝑝 in the Kane model lead to an exactly integrable phase.
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Fig. 1. Plot of the functions 20min(5𝜀2ℎ2, 𝜀3) (solid lines) and 8ℎ2 (dashed
lines) for different values of 𝜀.
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Fig. 2. Relative 𝐿1–error of the OSS for 𝑧 (solid lines) and the AMPR [18] for 𝜂
(dashed lines) for different values of 𝜀. “Exact” evaluation of 𝑆 via interpolation
is used.
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Fig. 3. Relative 𝐿1–error of the OSS for 𝑧 (solid lines) and the “adiabatic mid-
point rule” from [18] for 𝜂 (dashed lines) for different values of 𝜀. The function
𝑆 is numerically approximated as discussed in [5].
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Fig. 4. Relative 𝐿1–error of the OSS for 𝑧 related to the Kane model of
Sec. 2.1.“Exact” evaluation of 𝑆 via interpolation is used.
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shall solve the IVP

𝜀2𝜓′′(𝑥) + 𝐴(𝑥)𝜓(𝑥) = 0 , 𝑥 ∈ 𝐼 := [−1, 1] ,

𝜓(𝑎) = 𝜓0 ∈ ℂ
2 ,

𝜓′(𝑎) = 𝜓1 ∈ ℂ
2 ,

with

𝐴(𝑥) :=

(
𝑥+ 3 𝛿
𝛿 2𝑥+ 3

)2

,

and 𝛿 > 0 some fixed parameter. The diagonalization 𝐴 = 𝑈∗Λ𝑈 is given by

Λ(𝑥) =

(
3
2
𝑥+ 3 + 1

2

√
𝑥2 + 4𝛿2 0

0 3
2
𝑥+ 3− 1

2

√
𝑥2 + 4𝛿2

)2

,

𝑈(𝑥) =

(
cos 𝜉(𝑥) sin 𝜉(𝑥)

− sin 𝜉(𝑥) cos 𝜉(𝑥)

)
with 𝜉(𝑥) =

𝜋

4
+

1

2
arctan

(
𝑥

2𝛿

)
.

Since 𝐴 is positive definite on [−1, 1], we transform (as for the 𝑘 ⋅ 𝑝–model in Sec. 2.2)

𝑣1 := 𝐴
1
2𝜓 , 𝑣2 := 𝜀𝜓′ ,

which yields the first order IVP for 𝑣(𝑥) = (𝑣1(𝑥), 𝑣2(𝑥))
𝑇 ∈ ℂ4:

𝑣′ =
1

𝜀

(
0 𝐴

1
2

−𝐴 1
2 0

)
𝑣 +

(
𝐴

1
2
′
𝐴− 1

2 0
0 0

)
𝑣 , (62)

𝑣(𝑎) =

(
𝐴

1
2 (𝑎)𝜓0

𝜀𝜓1

)
.

The first matrix of (62) (which we denote by 𝐿̃) has the decomposition 𝐿̃ = 𝑖𝑄∗𝐿𝑄 with6

𝑄(𝑥) =
1√
2

(
𝑖 1
1 𝑖

)
⊗ 𝑈(𝑥) , 𝐿(𝑥) =

(
1 0
0 −1

)
⊗ Λ(𝑥)

1
2 .

Thus, the equivalent first order IVP for 𝑢 = 𝑄𝑣 reads

𝑢′(𝑥) =
𝑖

𝜀

(
Λ

1
2 (𝑥) 0

0 −Λ
1
2 (𝑥)

)
𝑢(𝑥) +𝐵(𝑥) 𝑢(𝑥) , (63)

𝑢(𝑎) =
1√
2

(
𝑖 1
1 𝑖

)
⊗ 𝑈(𝑎)

(
𝐴

1
2 (𝑎)𝜓0

𝜀𝜓1

)
, (64)

with

𝐵 =

(
1 0
0 1

)
⊗ (𝑈 ′𝑈∗) +

1

2

(
1 𝑖
−𝑖 1

)
⊗ (

𝑈𝐴
1
2
′
𝐴− 1

2𝑈∗) .
In the numerical example we use 𝛿 = 1. If 𝛿 gets smaller, the eigenvalues of 𝐴(𝑥 = 0) approach
each other. This situation is a so called avoided eigenvalue crossing and needs a special numerical
treatment. Both schemes, OSS and AMPR, yield poor results for small 𝛿.

6Here ⊗ denotes the Kronecker (or tensor) product for matrices as defined in [7].
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6. Appendix: The diagonalization matrix 𝑄 for the two-band 𝑘 ⋅ 𝑝–model

For the two-band 𝑘 ⋅ 𝑝-model we can explicitly compute the transformation matrix 𝑄 and the
eigenvalues of 𝐿̃. The matrix 𝐿̃ is given by

𝐿̃ =

⎛
⎜⎜⎝

0 0
√
𝐸1 0

0 0 0
√
𝐸2

−√
𝐸1 0 0 𝑖𝑝
0 −√

𝐸2 𝑖𝑝 0

⎞
⎟⎟⎠ ,

where we set 𝐸1 = 𝐸 − 𝑉 and 𝐸2 = 𝐸 − 𝑉 + 𝐸𝑔. The characteristic polynomial 𝜒 reads

𝜒(𝜆̃) = 𝜆̃4 + (𝑝2 + 𝐸1 + 𝐸2)𝜆̃
2 + 𝐸1𝐸2 .

Hence, the four (imaginary) eigenvalues of 𝐿̃ are

𝜆̃ = ± 𝑖√
2

√
𝑝2 + 𝐸1 + 𝐸2 ±

√
(𝑝2 + 𝐸1 + 𝐸2)2 − 4𝐸1𝐸2 .

An eigenvector corresponding to the eigenvalue 𝜆̃ is

𝑣𝜆̃ =

(
− 𝑖

√
𝐸1𝑝𝐸2

𝜆̃2(𝜆̃2 + 𝑝2 + 𝐸1)
,

√
𝐸2

𝜆̃
, − 𝑖𝑝𝐸2

𝜆̃(𝜆̃2 + 𝑝2 + 𝐸1)
, 1

)𝑇

.

Since 𝜆̃ is a root of 𝜒 we get

𝜆̃2(𝜆̃2 + 𝑝2 + 𝐸1) = −𝐸2(𝜆̃
2 + 𝐸1) ,

which yields

𝑣𝜆̃ =

(
𝑖𝑝
√
𝐸1

𝜆̃2 + 𝐸1

,

√
𝐸2

𝜆̃
,

𝑖𝑝𝜆̃

𝜆̃2 + 𝐸1

, 1

)𝑇

.

Let 𝑖𝜆1, . . . , 𝑖𝜆4 be the four pairwise different eigenvalues of 𝐿̃. Hence it is

𝐿̃ = 𝑖 𝑄∗𝐿𝑄 ,

with 𝐿 = diag(𝜆1, . . . , 𝜆4) and

𝑄 =

(
𝑣1

∥𝑣1∥ , . . . ,
𝑣4
∥𝑣4∥

)∗
,

with corresponding eigenvectors 𝑣1, . . . , 𝑣4.
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