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ABSTRACT To study point groups, their irreducible characters are essential. The table of irreducible characters
of the icosahedral group A5 is usually obtained by using its duality to the dodecahedral group. It seems that
there is no literature which gives a routine computational way to complete it. In the works of Harter and Allen, a
computational method is given and the character table up to the tetrahedral group A4 using the group algebra
table and linear algebra. In this paper, we employ their method with the aid of computer programming to
complete the table. The method is applicable to any other more complicated groups.
KEYWORDS icosahedral group, irreducible representation, simple characters, regular representation, eigenval-
ues.
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1. Introduction and irreducible characters of S3

The icosahedral group A5 also denoted C60 is important in the light of recent developments of fullerene structures,
cf. [1–4]. The character table of the icosahedral group A5 is usually obtained by using its duality to the dodecahedral
group [5](pp. 216–219). Alternatively, it is simply stated without any indication of proof, cf. e.g. [6, 7]. It seems that
there is no literature which gives a routine computational way to find it with the aid of computers. We describe the method
of Harter [8, 9] and Allen [10] and determine the character table of the icosahedral group. The method is rather a light-
hearted one and without much knowledge, one can construct character tables. The procedure is described in the following
subsections. For some algebraic preliminaries, see, e.g. [11].

1.1. Algebra table and regular representation matrices

[10](p. 27) gives one the table of irreducible characters up to the tetrahedral group Td and we shall give one for the
icosahedral group. We need to form the table of conjugate classes and their algebra table. We illustrate the procedure by
the 3rd symmetric group (Table 1).

TABLE 1. Conjugate classes of S3

label representative type cardinality

C1 (1)(2)(3) (1, 0, 0) 1

C2 (1, 2)(3) (0, 1, 0) 3

C3 (1, 2, 3) (0, 0, 1) 2

Here C−1
i is the conjugate class consisting of all the inverses of elements of Ci (Table 2).

The (right) regular representation matrix R(Cα) has the (i, j)-entry cjiα, which are the structure constants defined by

CiCα =

n∑
j=1

cjiαCj , (1)

where n is the number of conjugate classes of G.
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TABLE 2. Class algebra table for S3

classes C1 C2 C3

C1 C1 C2 C3

C−1
2 = C2 C2 3C1 + 3C3 2C2

C−1
3 = C3 C3 2C2 2C1 + C3

Looking at each column in Table 2, we see immediately that

R(C2) =


0 1 0

3 0 3

0 2 0

 , R(C3) =


0 0 1

0 2 0

2 0 1

 . (2)

Note that we always have R(C1) = E, where E is the identity matrix.

1.2. Eigenvalues and eigenspaces of regular representations

R(C2) has eigenvalues 0,±3 with the following eigenspaces

ER(C2)(0) = R


1

0

−1

 , ER(C2)(±3) = R


1

±3

2

 (3)

and R(C3) has eigenvalues −1, 2, 2 with the following eigenspaces

ER(C3)(−1) = R


1

0

−1

 ER(C3)(2) = R


1

0

2

⊕ R


0

1

0

 = R


1

3

2

⊕ R


1

−3

2

 . (4)

Remark 1. To find eigenvalues of R(Cj), j = 2, 3 Allen uses the method of raising-to-powers.

C0
2 = C1, C1

2 = C2, C2
2 = 3C1 + 3C3, C3

2 = 3C1 + 3C3 = 3C2 + 3C3C2 = 3C2 + 6C2 = 9C2, (5)

whence the Cayley-Hamilton equation resp. the characteristic equation

C3
2 − 9C2 = 0, λ3 − 9λ = 0 (6)

and the eigenvalues are 0,±3.

C0
3 = C1, C1

3 = C3, C2
3 = 2C1 + C3, C3

3 = 2C1 + 3C3, (7)

whence the Cayley-Hamilton equation C3
3 − 4C2

3 + 4C2 = 0, But we already have a lower order equation resp. the
characteristic equation

C2
3 − C3 − 2C1 = 0, λ2 − λ− 2 = 0 (8)

and the eigenvalues are 2,−1. But this is practical only for lower degree matrices. This process may be automated.

1.3. Matching the eigenvalues

This process may remain manual and depends on inspection.
A character table (CT) is in effect a collection of traces of IR’s (Irreducible representation) of the group. As such, all

of the entries in a given row of a CT belong to the same IR. Up to now the eigenvalues are arranged in sets according to
classes Ci. For a specific IR, P , say, the character χ(α)

l assigned to class Ci is associated with a specific member of the
set {λi}. It is therefore required that for a given P(α), a single eigenvalue be picked from each of the n sets λi and that
these eigenvalues be arranged in a new set

{λ(α)} = λ
(α)
1 , · · · , λ(α)n (9)

all of which are associated with the given P(α). This procedure is called matching the eigenvalues.
The collection of eigenvalues λ(α) has a single column vector v(α) associated with it, which has the property

R[Ci]v
(α) = λ

(α)
i v(α), i = 1, · · · , n. (10)



Irreducible characters of the icosahedral group 407

The vector v(α) is, simultaneously, an eigenvector of every R(Ci). When this property is used in conjunction with (3)
and (4), we see that λ = −1 from R(C2), and λ = 0 from R(C3) belong to the same set {λ(1)}, where the common
eigenvectors are

v(1) =


1

0

−1

 , v(2) =


1

3

2

 , v(3) =


1

−3

2

 . (11)

Here v(2) is a common eigenvector of R(C2) and R(C3) belonging to the eigenvalue λ(2)2 = 3 resp. λ(2)3 = 2. Similarly,
v(3) is a common eigenvector belonging to the eigenvalue λ(2)2 = −3 resp. λ(3)3 = 2. Every set {λ(α)} contains the n-fold
multiple eigenvalues λ = 1 from R(C1), so that the complete set found is represented in Table 3.

TABLE 3. Eigenvalues arranged

eigenvalue set C1 C2 C3 eigenvector

{λ(1)} λ
(1)
1 = 1 λ

(1)
2 = 0 λ

(1)
2 = −1 v(1)

{λ(2)} λ
(2)
1 = 1 λ

(2)
2 = 3 λ

(2)
3 = 2 v(2)

{λ(3)} λ
(3)
1 = 1 λ

(3)
2 = −3 λ

(3)
3 = 2 v(3)

1.4. Finding values of irreducible characters

To find CT we accommodate the values of λ(α)l and arrange the characters in the order of increasing dimension of IR.
The following formula appears as the coefficients of (49’) in [9](p. 747, l. 2):

χ
(α)
j =

`(α)

card(Cj)
λ
(α)
j , (12)

where χ(α)
l is the character value χ(α)(ord(Cj)) of the jth class in the αth irreducible representation (IR), `(α) the

dimension of the αth IR and ord(Cj) is the order of the jth class.
We appeal to the formula ( [9](p. 747))

1

|G|
∑
j

(λ
(α)
j )

2

card(Cj)
=

1

(`(α))
2 . (13)

It follows that `(2) = 2 and other two are 1. We rearrange Table 3 in the order of dimensions and label them as
follows (Table 4) (so as to compare with [10](p. 23)).

TABLE 4. Eigenvalues arranged

IR C1 C2 C3 dim

P(0) λ
(0)
1 = 1 λ

(0)
2 = 3 λ

(0)
3 = 2 `(0) = 1

P(1) λ
(1)
1 = 1 λ

(1)
2 = −3 λ

(1)
2 = 2 `(1) = 1

P(2) λ
(2)
1 = 1 λ

(2)
2 = 0 λ

(2)
3 = −1 `(2) = 2

We stretch the interpretation of (12) to mean

χ
(α)
j = `(α)

(
λ
(α)
j

card(Cj)

)
. (14)

Then

χ
(2)
j = 2

(
1

card(C1)
,

0

card(C2)
,
−1

card(C3)

)
=

(
2

1
,
0

3
,−2

2

)
= (2, 0,−1). (15)

Similarly,

χ
(0)
j =

(
1

card(C1)
,

3

card(C2)
,

2

card(C3)

)
= (1, 1, 1), χ

(1)
j = (1,−1, 1). (16)
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TABLE 5. Values of irreducible characters

IR C1 C2 C3

P(0) χ
(0)
1 = 1 χ

(0)
2 = 1 χ

(0)
3 = 1

P(1) χ
(1)
1 = 1 χ

(1)
2 = −1 χ

(1)
2 = 1

P(2) χ
(2)
1 = 2 χ

(2)
2 = 0 χ

(2)
3 = −1

TABLE 6. Conjugate classes of S5

label representative type cardinality

C1 (1)(2)(3)(4)(5) (5, 0, 0, 0, 0) 1

C2 (1, 2)(3)(4)(5) (3, 1, 0, 0, 0) 10

C2 (1, 2)(3, 4)(5) (1, 2, 0, 0, 0) 15

C4 (1, 2, 3)(4)(5) (2, 0, 1, 0, 0) 20

C5 (1, 2, 3)(4, 5) (0, 1, 1, 0, 0) 20

C6 (1, 2, 3, 4)(5) (1, 0, 0, 1, 0) 30

C7 (1, 2, 3, 4, 5) (0, 0, 0, 0, 1) 24

TABLE 7. Conjugacy classes of A5

class type representative kj

C1 (5, 0, 0, 0, 0) (1) 1

C2 (2, 0, 1.0, 0) (1, 2, 3) 20

C3 (1, 2, 0, 0, 0) (1, 2)(3, 4) 15

C4 (0, 0, 0, 0, 1) (1, 2, 3, 4, 5) 12

C5 (0, 0, 0, 0, 1) (2, 1, 3, 4, 5) 12

2. Irreducible characters of A5

This will be much harder. We need to prepare the class algebra table (Table 6).
The goal is to establish the following theorem.

Theorem 1. All simple characters of A5 are given by Table 8:

TABLE 8. All simple characters of A5 (τ indicates
1 +
√
5

2
– the golden ratio)

C1 C2 C3 C4 C5

χ1 1 1 1 1 1

χ2 3 0 −1 τ −τ−1

χ3 3 0 −1 −τ−1 τ

χ4 4 1 0 −1 −1

χ5 5 −1 1 0 0

2.1. Class algebra table and regular representation matrices

For this, we need the class algebra table (Table 9)
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TABLE 9. Class algebra table for A5

classes C1 C2 C3 C4 C5

C1 C1 C2 C3 C4 C5

C−1
2 =C2 C2 20C1+7C2+8C3+5C4+5C5 6C2+4C3+5C4+5C5 3C2+4C3+5C4+5C5 3C2+4C3+5C4+5C5

C−1
3 =C3 C3 6C2+4C3+5C4+5C5 15C1+3C2+2C3+5C4+5C5 3C2+4C3+5C5 3C2+4C3+5C4

C−1
4 =C4 C4 3C2+4C3+5C4+5C5 3C2+4C3+5C5 12C1+3C2+5C4+C5 3C2+4C3+C4+C5

C−1
5 =C5 C5 3C2+4C3+5C4+5C5 3C2+4C3+5C4 3C2+4C3+C4+C5 12C1+3C2+C4+5C5

R(C2) =



0 1 0 0 0

20 7 8 5 5

0 6 4 5 5

0 3 4 5 5

0 3 4 5 5


. (17)

R(C3) =



0 0 1 0 0

0 6 4 5 5

15 3 2 5 5

0 3 4 0 5

0 3 4 5 0


. (18)

R(C4) =



0 0 0 1 0

0 3 4 5 5

0 3 4 0 5

12 3 0 5 1

0 3 4 1 1


. (19)

R(C5) =



0 0 0 0 1

0 3 4 5 5

0 3 4 5 0

0 3 4 1 1

12 3 0 1 5


. (20)

2.2. Finding eigenvalues and eigenvectors by a computer

(1) The eigenvalues of the matrix R(C2) are obtained by a python program:

20, 5,−4, 0, 0
. Their corresponding eigenvectors are as follows

v1 = (0.03,−0.15,−0.196,−0.012,−0.016)
v2 = (0.661,−0.753,−0.784, 0, 0)
v3 = (0.496, 0, 0.588, 0.063, 0.849)

v4 = (0.396, 0.452, 0,−0.73,−0.437)
v5 = (0396, 0.452, 0, 0.679,−0.241)

and the polynomial is
λ5 − 21λ4 + 400λ2.
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(2) The eigenvalues of the matrix R(C3) obtained by a python program are:

15,−5, 3, 0,−5

and the their corresponding eigenvectors are

v1 = (−0.033,−0.171, 0.196, 0.15, 0.016)
v2 = (−0.661, 0,−0.784, 0.753, 0)
v3 = (−0.496, 0.857, 0.588, 0,−0.08)
v4 = (−0.396,−0.342, 0,−0.452,−0.671)
v5 = (−0.396,−0.342, 0,−0.452, 0.736)

and the polynomial is
λ5 − 8λ4 − 110λ3 + 1125λ.

(3) The eigenvalues of the matrix R(C4) obtained by a python program are:

12, 6.47, 0,−3,−2.47

and the their corresponding eigenvectors are

v1 = (0.033, 0.116,−0.196,−0.15, 0.116)
v2 = (0.661, 0, 0.784,−0.753, 0)
v3 = (0.496,−0.581,−0.588, 0,−0.581)
v4 = (0.396, 0.752, 0, 0.452,−0.287)
v5 = (0.396,−0.287, 0, 0.452, 0.752)

and the polynomial is
λ5 − 13λ4 − 16λ3 + 288λ2 + 576λ.

(4) The eigenvalues of the matrix R(C5) obtained by a python program are:

12, 6.47, 0,−3,−2.47

and the their corresponding eigenvectors are

v1 = (0.033, 0.116,−0.196, 0.15, 0.116)
v2 = (0.661, 0, 0.784, 0.753, 0)

v3 = (0.496,−0.581,−0.588, 0,−0.581)
v4 = (0.396,−0.287, 0,−0.452, 0.752)
v5 = (0.396, 0.752, 0,−0.452,−0.287)

and the polynomial is

λ5 − 13λ4 − 16λ3 + 288λ2 + 576λ = λ(λ− 12)(λ+ 3)(λ2 − 4λ− 16)

The eigenvalues of R(C5) are:
12, 4τ, 0,−3,−4τ−1.

2.3. Matched eigenvalues

This section combines §1.2 and §1.3 to give the table corresponding to Table 4.

TABLE 10. Eigenvalues arranged

C1 C2 C3 C4 C5 eigenvectors dim

{λ(1)} 1 20 15 12 12 v(1) `(1) = 1

{λ(2)} 1 0 −5 4τ −4τ−1 v(2) `(2) = 3

{λ(3)} 1 0 −5 −4τ−1 4τ v(3) `(3) = 3

{λ(4)} 1 5 0 −1 −3 v(4) `(4) = 4

{λ(2)} 1 −4 3 0 0 v(5) `(5) = 5
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Here

v(1) =t(0.03,−0.15,−0.196,−0.012,−0.016)

v(2) =t(0396, 0.452, 0, 0.679,−0.241)

v(3) =t(0.661,−0.753,−0.784, 0, 0)

v(4) =t(0.396, 0.452, 0,−0.73,−0.437)

v(5) =t(0.496, 0, 0.588, 0.063, 0.849).

2.4. Proof of Theorem 1

Using the method in §1.4, we find the values of all ICs.

χ
(1)
j = 1

(
1

card(C1)
,

20

card(C2)
,

15

card(C3)
,

12

card(C4)
,

12

card(C5)

)
(21)

=

(
1

1
,
20

20
,
15

15
,
12

12
,
12

12

)
= (1, 1, 1, 1, 1).

χ
(2)
j = 3

(
1

card(C1)
,

0

card(C2)
,
−5

card(C3)
,

4τ

card(C4)
,
−4τ−1

card(C5)

)
(22)

= (1, 0,−1, τ,−τ−1).

χ
(3)
j = 3

(
1

card(C1)
,

0

card(C2)
,
−5

card(C3)
,
−4τ−1

card(C4)
,

4τ

card(C5)

)
(23)

= (1, 0,−1,−τ−1, τ).

χ
(4)
j = 4

(
1

card(C1)
,

5

card(C2)
,

0

card(C3)
,
−1

card(C4)
,
−3

card(C5)

)
(24)

= (4, 1, 0,−1,−1).

χ
(5)
j = 5

(
1

card(C1)
,
−4

card(C2)
,

3

card(C3)
,

0

card(C4)
,

0

card(C5)

)
(25)

= 5

(
1

1
,
−4
20
,
3

15
, 0, 0

)
= (5,−1, 1, 0, 0).

as in Table 7. This proves Theorem 1. �

3. Conclusion

The method described here of Harter and Allen may be applied to any other interesting finite groups which will be
conducted elsewhere.
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