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Essentially nonlinear model of a crystalline bi-atomic lattice described by coupled nonlinear equations, is considered.

Its nonlinear wave solutions account for dynamic variations in an internal structure of the lattice due to an influence

of a dynamic loading. Numerical simulations are performed to study evolution of a kink-shaped dynamic variations

in an internal structure of the lattice. Special attention is paid on the transition from kink-shaped to bell-shaped

variations. It is shown how predictions of the known exact traveling wave solutions may help in understanding and

explanation of evolution of localized waves of permanent shape and velocity in numerical solutions.
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Introduction

The cardinal, qualitative variations of the cell properties, lowering of potential barri-
ers, switching of interatomic connections, arising of singular defects and other damages, phase
transitions require development of essentially nonlinear models of a crystalline lattice taking
into account deep variations in the structure. Recently such a nonlinear model of a crystalline
bi-atomic lattice has been developed in Refs. [1,2]. The variations in the internal structure are de-
scribed by coupled nonlinear equations which are derived for the vectors of macro-displacement
𝑈 and relative micro-displacement 𝑢 for the pair of atoms with masses 𝑚1, 𝑚2,

U =
𝑚1U1 +𝑚2U2

𝑚1 +𝑚2

, u =
U1 −U2

𝑎

where 𝑎 is a period of sub-lattice. The first variable allows us to describe macro-dispalcements,
while the second variable accounts for the reference displacement of the atoms in the lattice. In
the one-dimensional (1D) case, the coupled governing equations read [1, 2]

𝜌𝑈𝑡𝑡 − 𝐸 𝑈𝑥𝑥 = 𝑆(cos(𝑢)− 1)𝑥, (1)

𝜇𝑢𝑡𝑡 − 𝜅𝑢𝑥𝑥 = (𝑆𝑈𝑥 − 𝑝) sin(𝑢). (2)

Nonlinearity is introduced via the trigonometric functions that ensures description of translational
symmetry in the crystalline lattice. The 1D formulation allows some analytical solutions to
account for dynamic variations in the internal structure governed by function 𝑢 while the strain
function 𝑣 = 𝑈𝑥 accounts for an external loading of the lattice. Of special interest are bell-
shaped and kink-shaped localized solutions [3–7]. However, they belong to the traveling wave
solutions, hence they cannot account for arising of localized internal variations. In particular,
existence of the bell-shaped or kink-shaped dynamic structure depends on the phase velocity
as follows from exact solutions [3]. However, how one or another velocity may be achieved
from rather arbitrary input for 𝑢 and 𝑣? Only numerical simulations may answer this question.
Previously the domain of the wave velocities has been studied where both macro- and micro-
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Table 1. Wave shapes for 𝜎 = 0

𝑉 2 (0; 𝑐2𝐿 − 𝑐20) (𝑐2𝐿−𝑐20; 𝑐
2
𝐿) (𝑐2𝐿; 𝑐

2
𝐿 + 𝑐20) > 𝑐2𝐿 + 𝑐20

Shape of 𝑣 Tensile (4) Tensile (4) Compression
(5)

Compression
(4)

Shape of 𝑢 Kink Bell-
shaped

Kink Kink

Choice of 𝑄± 𝑄+ 𝑄− 𝑄+ 𝑄+

bell-shaped strain waves co-exist [4–6]. Only some preliminary results obtained for the kinks in
Ref. [7]. Now we consider the kink-shaped waves for 𝑢. Like in Refs. [4–6] the use of particular
exact solution to design and describe numerical results is studied.

1. Exact kink-type solution

The function 𝑢 may be found from Eq.(1) when all functions depend only on the phase
variable 𝜃 = 𝑥− 𝑉 𝑡− 𝑥11,

cos(𝑢) = 1− (𝐸 − 𝜌𝑉 2)𝑈𝜃 − 𝜎

𝑆
, (3)

where 𝜎 is a constant of integration. It is known that only bell-shaped exact localized traveling
wave solutions exist for the macro-strain 𝑣 [3]:

𝑣1 =
𝐴

𝑄 cosh(𝑘 𝜃) + 1
, (4)

𝑣2 = − 𝐴

𝑄 cosh(𝑘 𝜃)− 1
. (5)

whose parameters are defined for two values of 𝜎, 𝜎 = 0 and 𝜎 = −2𝑆 [3]. Thus, for 𝜎 = 0 we
obtain

𝐴 =
4 𝑆

𝜌(𝑐20 + 𝑐2𝐿 − 𝑉 2)
, 𝑄± = ±𝑐2𝐿 − 𝑉 2 − 𝑐20

𝑐2𝐿 − 𝑉 2 + 𝑐20
, 𝑘 = 2

√
𝑝

𝜇(𝑐2𝑙 − 𝑉 2)
(6)

where 𝑐2𝐿 = 𝐸/𝜌, 𝑐2𝑙 = 𝜅/𝜇, 𝑐20 = 𝑆2/(𝑝 𝜌).
Depending on the value of the phase velocity, see Table 1, Eq.(3) gives rise to the solution

for 𝑢 in the kink-shaped or in the bell-shaped form [3–6]. In this paper we consider only the
former solution which reads

𝑢 = ± arccos

(
(𝜌𝑉 2 − 𝐸)𝑈𝑥

𝑆
+ 1

)
for 𝜃 > 0, (7)

𝑢 = ±2𝜋 ∓ arccos

(
(𝜌𝑉 2 − 𝐸)𝑈𝑥

𝑆
+ 1

)
for 𝜃 ≤ 0, (8)

In particular, the kink-shaped solution exists in the interval (0; 𝑐2𝐿 − 𝑐20) as follows from Table 1.
while the bell-shaped solution for 𝑢 [3]

𝑢 = ± arccos

(
(𝜌𝑉 2 − 𝐸)𝑈𝑥

𝑆
+ 1

)
, (9)

exists in the neighboring interval of velocities (𝑐2𝐿 − 𝑐20; 𝑐
2
𝐿). Previously we have obtained in [7]

that moving kink-shaped wave of internal variations 𝑢 may arise in a lattice even if its initial
velocity lies within the neighboring interval (𝑐2𝐿 − 𝑐20; 𝑐

2
𝐿). The kink velocity is changed due to
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Fig. 1. Simultaneous propagation of localized bell-shaped macro-strain wave 𝑣
and the kink-shaped wave 𝑢 in the interval of velocities prescribed by the exact
solution. Points of time correspond to the neighboring peaks. Final wave profiles
are allocated in bold.

variations in the amplitude of the input of external loading 𝑣. Now we call attention to the waves
evolution caused by variation in the relative position of the inputs for 𝑢 and 𝑣.

2. Transition from kink to bell-shaped moving variations in the structure

To solve Eqs. (1), (2) numerically the standard MATLAB routine ode45 is used [8]. The
parameters chosen are 𝑆 = 1, 𝑝 = 1, 𝜌 = 1, 𝑐0 = 1, 𝑐𝐿 = 1.6, 𝑐𝑙 = 2, then the suitable for kinks
values of 𝑉 lie in the interval (0, 1.25). The initial condition for 𝑣 is chosen in the form (4) with
𝑄 = 𝑄+ and with initial velocity 𝑉 . The condition for 𝑢 is used in the form slightly differing
form that of described by Eqs.(7), (8), namely, 𝑢 = 𝜋(1 − tanh(𝑘(𝑥− 𝑥12))) where 𝑘 = 0.25 is
chosen to be as close as possible to the shape of the solution (7), (8).

First the case is considered when initial positions 𝑥11 of the input for 𝑣 and 𝑥12 of that of
𝑢 coincide and equal to 40 units. Shown in Fig. 1 is rather fast transition of the input 𝑢 to that
of the exact solution (7), (8) and further simultaneous stable propagation of this kink with the
bell-shaped wave of 𝑣 or an external loading. The velocity of the waves propagation lies in the
interval (𝑐2𝐿 − 𝑐20; 𝑐

2
𝐿) prescribed by the exact solution.

The initial position of the inputs should coincide according to the exact solution. Small
difference in the relative position, 𝑥11 = 40, 𝑥12 = 37.5, yields perturbations on the profiles of
the waves propagating with the velocity from the interval (0; 𝑐2𝐿−𝑐20), see Fig. 2. Further increase
in the relative initial positions, 𝑥11 = 40, 𝑥12 = 36, gives rise to a splitting of the wave 𝑣 into
two localized bell-shaped parts what is clearly seen at the final bold curve in Fig. 3. One can
see that one part continues to move together with the kink-shaped wave 𝑢 while the second one
propagates faster. The last wave gives rise to an appearance of perturbations in the shape of 𝑢
trapped by this part of 𝑣. Finally, at larger relative initial distance, 𝑥11 = 40, 𝑥12 = 35, the initial
condition for 𝑢 also splits into two parts as shown in Fig. 4. The kink-shaped part propagates
with corresponding part of 𝑣 like in Fig. 3 while the new bell-shaped part moves faster together
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Fig. 2. Perturbations on the profiles of moving localized bell-shaped macro-strain
wave and kink-shaped wave 𝑢 when its initial position is slightly shifted behind
that of 𝑣. Points of time correspond to the neighboring peaks. Final wave profiles
are allocated in bold.
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Fig. 3. Splitting of moving localized bell-shaped macro-strain wave 𝑣 when the
kink-shaped input for 𝑢 is shifted more behind that of 𝑣. Points of time correspond
to the neighboring peaks. Final wave profiles are allocated in bold.
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Fig. 4. Generation of moving localized bell-shaped micro-strain wave in a lattice
from the kink-shaped input for 𝑢 whose initial position is shifted behind that of
𝑣. Points of time correspond to the neighboring peaks. Final wave profiles are
allocated in bold.

with corresponding bell-shaped wave 𝑣 with the velocity from the interval (𝑐2𝐿−𝑐20; 𝑐
2
𝐿) prescribed

by the bell-shaped exact solutions.

3. Conclusions

It is shown that exact kink-shaped solution prescribes well the velocity interval required
for propagation of the kink-shaped wave accounting for variations in the internal structure of
the lattice. However, variation in the initial positions of the inputs for 𝑢 and 𝑣 gives rise to
their splitting into two parts. These parts yield two pairs of the waves 𝑢 and 𝑣 propagating
with different shapes and velocities. However, correspondence between the wave shape and its
velocity is in an agreement with the analysis following from the traveling wave exact solution.
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