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ABSTRACT The work is devoted to developing a self-similar solution for a system of nonlinear differential equa-
tions that describe diffusion processes. Various techniques are used to examine the capacity for generating
self-similar solutions that can estimate and predict system behavior under diffusion conditions. The focus is
on developing and applying numerical algorithms, as well as using theoretical tools such as asymptotic anal-
ysis, to obtain more accurate and reliable results. The study’s results can be applied to various scientific and
technical fields, such as physics, chemistry, biology, and engineering, where diffusion processes play an es-
sential role. The development of self-similar solutions for systems of nonlinear differential equations related
to diffusion opens novel opportunities for modeling and analyzing complex systems and enhancing diffusion
processes in various fields.
KEYWORDS nonlinear system, diffusion, self-similar solution, flow, model, algorithm, parabolic differential equa-
tion.
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1. Introduction

The scientific community is actively studying self-similar solutions of nonlinear differential equations related to
mutual diffusion. Interdiffusion refers to the movement of substances within a medium where components interact through
diffusion flow. Analytical solutions to such systems are complicated due to nonlinearities. Therefore, self-similar methods
are an effective tool for constructing approximate solutions and analysis of such systems.

Various methods for simulating systems of nonlinear differential equations that describe mutual diffusion are ex-
plored. The article is focused on the problem of finding weak solutions and analyzing the asymptotic properties of these
equations. Particular attention is given to the study of regular, unbounded, and finite solutions to gain a more complete
understanding of the system’s behavior. Such models can be applied across various scientific and technical fields where
mutual diffusion is essential. Understanding and modeling interdiffusion are of practical importance in biology, ecology,
chemistry, and physics. The complexity of the analytical solution of systems of nonlinear differential equations describing
mutual diffusion requires the development of effective numerical methods. The self-similar methods are considered as
a practical approach for obtaining approximate solutions with complex interactions between components and diffusion
conditions. This method makes it possible to apply numerical methods to solve the current type of nonlinear differential
equations and provides the ability to simulate diffusion processes. Applying self-similar solutions in the prediction and
analysis of mutual diffusion systems is extensive. They can be used to optimize processes, manage resources, prevent the
spread of harmful substances and diseases, and understand fundamental principles.

Exploring the category of nonlinear differential equations and systems, particularly those that include the desired
function and its derivative in power form, is intriguing in the study of real physical processes. These nonlinearities are
commonly observed in reaction-diffusion, interdiffusion, and biological population problems [1–3].

Finding an analytical solution to nonlinear boundary value problems is challenging. Determining the new properties
of the solution requires a significant energy and time. Their solving faces with several difficulties. The works of A.A.
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Samarsky, V.A. Galaktionov, A.S. Kalashnikov, L.K. Martinson, R. Kershner, G.I. Barenblatt, B.F. Knerr, Chen Xingfu,
Yu.W. Qi, J.S. Guo, I. Kombe, T. Kusano, T. Tanigawa, S.N. Dimov, M.M. Aripov, and A.T. Khaidarov are devoted to the
study of the properties of solving the above problems. Sh.A. Sadullaeva et al. have shown the significance of self-similar
solutions corresponding to specific parameter values [4–18], The critical curves of a degenerate parabolic equation were
studied in the work of M.Aripov and J.Raimbekov [19].

Cross-diffusion processes are significant in many areas of nanoscience, and a deeper study of these processes con-
tributes to the development of advanced technologies. For example, in nanoelectronics, the interdiffusion of atoms and
particles in semiconductors significantly influences electronic devices’ performance characteristics and reliability. Diffu-
sion processes in the field of nanomaterials play a decisive role in the formation of nanostructures of materials and the
optimization of their mechanical, optical, and electrical properties. In nano-optics and plasmonics, the propagation of light
and collective oscillations of electrons in nanostructured materials depends on the diffusion processes, which expands the
possibilities of light control and redirection. In nanomedicine and biomaterials, cross-diffusion in drug delivery systems
ensures efficient distribution of drugs within cells and tissues, increasing treatment effectiveness. In nanocatalysis, the
interdiffusion of reactants on the catalyst surface is a critical factor in controlling the rate and selectivity of chemical
reactions. Also, diffusion processes in nanocomputer technologies affect the ability of nano-sized memory elements to
store and process information. Thus, the study of mutual diffusion processes contributes to a deeper understanding of
the physicochemical behavior of substances at the nanoscale and is also of fundamental importance in developing new
materials and devices.

In article [20], the formation processes of Liesegang structures are studied using the Keller-Rubinow model. Liesegang
structures are periodic layered structures formed by chemical reactions from diffusion and precipitation. The article ex-
amines a mathematical analysis of these processes using the Keller-Rubinow model, and the modeling results clearly
show the main features of the formation of Liesegang structures. The research results are essential in creating nanoscale
structures and understanding their formation mechanisms.

The article [21] examines the characteristics of the oriented ring of neurons based on the FitzHugh-Nagumo model.
The FitzHugh-Nagumo model is widely used for mathematical modeling of neuronal activity dynamics and represents the
transmission processes of nerve impulses. This study analyzes an oriented neuron loop’s steady states and dynamic be-
havior. The article shows the interactions between neurons in the ring, the conditions of signal propagation, and the effect
of these processes on the functional activity of neural networks. The research findings are important for understanding
neurobiological systems and their modeling in artificial intelligence systems.

These articles [20, 21] cover the mathematical and physical approaches needed for modeling and analysis in nan-
otechnology and neurobiology and act as a bridge between theoretical research and experimental practice. This work is
devoted to the study of constructing a self-similar solution to a system of nonlinear differential equations representing
mutual diffusion problems.

2. Methods and models

We consider the following problem in a specified spatial region Ω = {(x, t) : x ∈ R, t ∈ (0;T )}


∂u

∂t
=

∂

∂x

(
uσ1

∂u

∂x

)
− vβ1

∣∣∣∣∂u∂x
∣∣∣∣P1

,

∂v

∂t
=

∂

∂x

(
vσ2

∂v

∂x

)
− uβ2

∣∣∣∣∂v∂x
∣∣∣∣P2

,

(1)

with initial conditions

u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ R, (2)

and boundary conditions

u(0, t) = u1(t), v(0, t) = v1(t), 0 ≤ t ≤ T, (3a)

u(1, t) = u2(t), v(1, t) = v2(t), 0 6 t 6 T, (3b)

where σ1, σ2, β1, β2, p1, p2 are real numbers which specified surrounding and front parameters.
The equations of the system characterize the migration of salt or dust taking into account humidity and change in

humidity taking into account the migration of salt or dust, respectively.
We represent the solution of the system (1) in the following form

u (t, x) = (T + t)
n1 (t)w1 (τ, x) , (4)

v (t, x) = (T + t)
n2 (t)w2 (τ, x) , (5)
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where τ(t) is function of time. Using equations (4),(5) we find n1 and n2:

n1 =
(p1 − 2)(2p2 − p2σ2 − 2)− 2β1(p2 − 2)

(2p1 − p1σ1 − 2)(2p2 − p2σ2 − 2)− 4β1β2
,

n2 =
(p2 − 2)(2p1 − p1σ1 − 2)− 2β2(p1 − 2)

(2p1 − p1σ1 − 2)(2p2 − p2σ2 − 2)− 4β1β2
.

(6)

We will assume that the functions w1(x, τ) and w2(x, τ) are representable in the form w1(x, τ) = f1(ξ), w2(x, τ) =

f2(ξ), where ξ =
x√
τ

.

Now system (1) can be represented as
−ξ

2

df1
dξ

=
d

dξ
(f1

σ1
df1
dξ

)− (n1σ1 + 1)
p1−2

2 · f2β1

∣∣∣∣df1dξ
∣∣∣∣p1 − n1

n1σ1 + 1
· f1,

−ξ
2

df2
dξ

=
d

dξ
(f2

σ2
df2
dξ

)− (n2σ2 + 1)
p2−2

2 · f1β2

∣∣∣∣df2dξ
∣∣∣∣p2 − n2

n2σ2 + 1
· f2.

(7)

Where the functions f1 and f2 are chosen in the form

f1 = (a+ ξ)
γ1 , f2 = (a+ ξ)

γ2 . (8)

Then we find that the parameters of system (7) must satisfy the following conditionsγ1(σ1γ1 + γ1 − 1) = (n1σ1 + 1)
p1−2

2 |γ1|p1 ,

γ2(σ2γ2 + γ2 − 1) = (n2σ2 + 1)
p2−2

2 |γ1|p1 ,
(9)

(σiγi + γi − 1) > 0, i = 1, 2

Now, let us calculate the values γ1 and γ2. We obtain that

γ1 =
(δ2 − p2 + 1)(2− p1) + β1(2− p2)

(δ1 − p1 + 1)(δ2 − p2 + 1)− β1β2
; γ2 =

(δ1 − p1 + 1)(2− p2) + β2(2− p1)

(δ1 − p1 + 1)(δ2 − p2 + 1)− β1β2
.

The following theorem holds for the upper bound of the solutions obtained.
Theorem. Let
1) σ1 ≥ 0; σ2 ≥ 0;

2) a
β1
σ2

+
(1−σ1)p1−1

σ1
+
p1
2 ≥

( n1

n1σ1+1 + 1
2 )

(n1σ1 + 1)
p1−1

2

and a
β2
σ1

+
(1−σ2)p2−1

σ2
+
p2
2 ≥

( n2

n2σ2+1 + 1
2 )

(n2σ2 + 1)
p2−1

2

;

3) u(t, 0) ≤ u+(t, 0), v(t, 0) ≤ v+(t, 0), x ∈ R.
Then there is a global solution to problem (1)-(3) and the following conditions are valid:

u(x, t) ≤ u+(x, t) = (T + t)
n1f1(ξ), v(x, t) ≤ v+(x, t) = (T + t)

n2f2(ξ). (10)

Proof: To prove the theorem, we use the comparison [1]. We choose the following function as a comparison function

u(x, t) = (T + t)
n1 · f1(ξ), v(x, t) = (T + t)

n2 · f2(ξ). (11)

Substituting (11) into system (1), we obtain the following system
ξ

2

df1
dξ

+
d

dξ
(f1

σ1
df1
dξ

)− (n1σ1 + 1)
p1−1

2 · f2β1

∣∣∣∣df1dξ
∣∣∣∣p1 − n1

n1σ1 + 1
· f1 6 0,

ξ

2

df2
dξ

+
d

dξ
(f2

σ2
df2
dξ

)− (n2σ2 + 1)
p2−1

2 · f1β2

∣∣∣∣df2dξ
∣∣∣∣p2 − n2

n2σ2 + 1
· f2 6 0,

(12)


d

dξ
(f1

σ1
df1
dξ

) +
ξ

2

df1
dξ

+
f1
2
− f1

2
− (n1σ1 + 1)

p1−1
2 · f2β1

∣∣∣∣df1dξ
∣∣∣∣p1 − n1

n1σ1 + 1
· f1 6 0,

d

dξ
(f2

σ2
df2
dξ

) +
ξ

2

df2
dξ

+
f2
2
− f2

2
− (n2σ2 + 1)

p2−1
2 · f1β2

∣∣∣∣df2dξ
∣∣∣∣p2 − n2

n2σ2 + 1
· f2 6 0,

d

dξ
(f1

σ1
df1
dξ

) = −d(ξf1)

2dξ
,

d

dξ
(f2

σ2
df2
dξ

) = −d(ξf2)

2dξ
. (13)

If equality (12) holds, then relation (13) holds.
If the condition σ1 ≥ 0; σ2 ≥ 0; in the theorem holds, then, we will have the following system

− (n1σ1 + 1)
p1−1

2 · f2β1

∣∣∣∣df1dξ
∣∣∣∣p1 − (

n1
n1σ1 + 1

+
1

2
)f1 ≤ 0,

− (n2σ2 + 1)
p2−1

2 · f1β2

∣∣∣∣df2dξ
∣∣∣∣p2 − (

n2
n2σ2 + 1

+
1

2
)f2 ≤ 0,
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
−(n1σ1 + 1)

p1−1
2 · (a− σ2

4
ξ2)

β1
σ2

∣∣∣∣(a− σ1
4
ξ2)

1−σ1
σ1 ξ

2

∣∣∣∣p1 − (a− σ1
4
ξ2)

1
σ1 (

n1
n1σ1 + 1

+
1

2
) 6 0,

−(n2σ2 + 1)
p2−1

2 · (a− σ1
4
ξ2)

β2
σ1

∣∣∣∣(a− σ1
4
ξ2)

1−σ2
σ2 ξ

2

∣∣∣∣p2 − (a− σ2
4
ξ2)

1
σ2 (

n2
n2σ2 + 1

+
1

2
) 6 0.

Here ξ = 2

√
a

σ1
evaluate and expand the first expression

−(n1σ1 + 1)
p1−1

2 a
β1
σ2 a

(1−σ1)p1
σ1

(√
a

σ1

)p1
− a

1
σ1 (

n1
n1σ1 + 1

+
1

2
) 6 0,

−(n2σ2 + 1)
p2−1

2 a
β2
σ1 a

(1−σ2)p2
σ2

(√
a

σ2

)p2
− a

1
σ2 (

n2
n2σ2 + 1

+
1

2
) 6 0,

−(n1σ1 + 1)
p1−1

2 a
β1
σ2

+
(1−σ1)p1−1

σ1 a
p1
2

σ1
p1
2

6 (
n1

n1σ1 + 1
+

1

2
),

−(n2σ2 + 1)
p2−1

2 a
β2
σ1

+
(1−σ2)p2−1

σ2 a
p2
2

σ1
p1
2

6 (
n2

n2σ2 + 1
+

1

2
),

a
β1
σ2

+
(1−σ1)p1−1

σ1
+
p1
2 >

( n1

n1σ1+1 + 1
2 )

(n1σ1 + 1)
p1−1

2

.

As for the second inequality of system (12), if the corresponding operations are carried out

a
β2
σ1

+
(1−σ2)p2−1

σ2
+
p2
2 >

( n2

n2σ2+1 + 1
2 )

(n2σ2 + 1)
p2−1

2

,

it follows that condition 2 in the theorem is valid.
Therefore, according to the hypotheses of the theorem and the principle of comparison, the following relations are

valid: u(t, x) ≤ u+(t, x); v(t, x) ≤ v+(t, x). The theorem is proven.
Thus, it was found that the self-similar solution for system (1) can be represented in the form:

u(x, t) = (T + t)n1 · f1(ξ) = (T + t)n1 · (a− ξ)γ1 ,
v(x, t) = (T + t)n2 · f2(ξ) = (T + t)n2 · (a− ξ)γ2 .

(14)

3. Calculation results

Using self-similar solutions (14) of system (1) - (3), the iteration or sweep method, numerical solutions were found,
the graphs of which are given below. (The graphs presented have a horizontal axis representing the values of the variable
x and a vertical axis intended to represent the values of the functions u and v.)

Graphs of solutions to the mutual diffusion problem: The results of studies of the processes of mutual diffusion
for parameters σ1, σ2, β1, β2, p1, p2, a are described and graphs are presented for analysing changes in moisture (u)
and the content of salt and dust particles (v) under different conditions.

In Fig. 1, the results for the following values of the parameters are shown: σ1 = 4, σ2 = 5, β1 = 2.5, β2 =
2.1, p1 = 2.25, p2 = 3.8, a = 0.5

In Fig. 2, the parameters indicated are as follows: σ1 = 4, σ2 = 5, β1 = 2.2, β2 = 2.1, p1 = 2.87, p2 =
3.76, a = 3.5

The graphs of v-salt-dust migration for cases in steps are given in different colors.
Under the influence of certain parameters, the movement of moisture and salt (or dust) occurs “almost evenly” over a

“short time interval”. This suggests that the diffusion under consideration is likely rapid. Rapid diffusion is characterized
by concentration gradients becoming uniform over short intervals, which corresponds to the description of significant
acceleration of diffusion processes and minimal concentration variations over time.

In Fig. 3, the diffusion process for the followimg parameter values: σ1 = 4, σ2 = 5, β1 = 1.7, β2 = 2.1, p1 =
3.1, p2 = 3.2, a = 0.5 , is shown, where changes in humidity occur almost identically to the migration of salt-dust
particles.

In Fig. 3, the changes in moisture and salt-dust content are shown depending on environmental parameters. It can be
seen that the initial phases of the diffusion processes differ, but later the changes become almost uniform.

In Fig. 4, the diffusion process for the parameter values is presented: σ1 = 4, σ2 = 7, β1 = 2.91, β2 = 2.22, p1 =
3.8, p2 = 2.5, a = 2.5.

In Figs. 3 and 4, the results for various values of σ2, β2 are shown. It is evident that with an increase in σ2 , the
process accelerates, and the concentration gradients equalize more quickly.
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FIG. 1. Solutions of the system of equations representing the mutual diffusion process
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FIG. 2. Graphical representation of moisture and salt-dust diffusion process
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FIG. 3. Solutions of the diffusion problem corresponding to the given values of the parameters
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FIG. 4. Solutions of the diffusion problem corresponding to the given values of the parameters

Changes in parameters lead to an acceleration or deceleration of the mutual diffusion processes. At certain values, the
concentration of moisture and salt-dust particles equalizes more quickly, reducing fluctuations. Changes in moisture (u)
and salt-dust content (v) indicate that, depending on environmental parameter values, in some cases, changes in moisture
occur almost identically to the migration of salt-dust particles. In system (1), representing cross-diffusion processes,
under conditions of rapid diffusion, the movement of moisture and salt (or dust) changes almost uniformly over a short
time interval. With the proper selection of parameter values, these changes asymptotically approach an infinitely small
value. This means that due to significant acceleration of diffusion processes, the concentration gradients of moisture and
salt become almost uniform throughout the system, leading to minimal concentration changes over time.

The figures show that, depending on the medium and front parameter values, the diffusion process begins differently
and then changes almost uniformly.

u-moisture change, V-salt-dust content change, in which depending on the change of parameter values, in some cases
it can be seen that the moisture changes almost identically with the salt-dust migration.

In the system (1) representing cross-diffusion processes, under conditions of rapid diffusion, the movement of mois-
ture and salt (or dust) changes almost uniformly over a short time interval. As the parameter values are chosen appro-
priately, these changes asymptotically approach an infinitesimally small amount. This implies that due to the significant
acceleration of the diffusion processes, the concentration gradients of moisture and salt become nearly uniform across the
entire system, leading to minimal variations in concentration over time.

4. Conclusion

The method for developing a self-similar solution for a system of nonlinear differential equations that explain mutual
diffusion processes in a one-dimensional spatial approximation is investigated. The results have clear practical implica-
tions when considering the Cauchy problem for equations with variable coefficients. An approach to approximation of
the solution of a second-order nonlinear problem is described and supported. Based on the impacts of the finiteness of
the disturbances’ propagation speed and spatial localization, asymptotes of regular, finite, and unbounded solutions are
derived. The observed results allow us to build an iterative procedure for the numerical solution of the mutual diffusion
issue to acquire an initial approximation. These mathematical models can be used to solve many practical problems,
including biological population issues, epidemic spread, and numerical modeling of various diffusion processes.
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