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We illustrate some new results and comment on perspectives of a recent research line, focused on the stability of

stationary states of nonlinear NLS with point interactions. We describe in detail the case of a “𝛿′” interaction, that

provides a rich model endowed with a pitchfork bifurcation with symmetry breaking in the family of ground states.

Finally, we give a direct proof of the stability of the ground states in the cases of a subcritical and critical (in the

sense of the blow-up) nonlinearity power.
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1. A new range of application for point interactions

One of the most celebrated features of the point interactions (PI) lies in their capability of
supplying exactly solvable models. For this reason, PI have been widely employed to construct
toy models and for pedagogical purposes. Nonetheless, they prove useful also when used to
model real physical systems: the more a physically relevant quantity (e.g. energy spectrum or
time evolution) is explicitly known, the more information can be extracted. General theory and
reference to physical applications with extended bibliography are in (see [10, 11]). In particular,
PI fit well the needs of modeling the so-called defects, namely, small inhomogeneities in a
medium where a wave propagates, under the hypothesis that the details of the internal structure
of the inhomogeneity are not relevant, so that its action can be modeled as concentrated at a
point. More precisely, the smallness of the inhomogeneity is to be evaluated with respect to the
typical wavelength of the incoming waves, or equivalently, in the case of a quantum system, to
the width of the wave function. In this paper we address the analysis of effects of the interaction
between nonlinearity and point defects in the behaviour of solutions of nonlinear Schrödinger
(NLS) equation. We prefer not to enter in a description of the vast field of application of the
NLS equation, from the theory of integrable systems and inverse scattering to the propagation
of amplitude envelope of waves. We cite just two relevant applications of the NLS as an
effective model for real physical systems: dynamics of Bose-Einstein condensates (BEC) and
laser beam propagation in nonlinear (Kerr) media. In both cases it is physically meaningful
to consider the propagation of NLS waves in the presence of defects. In particular, the recent
spectacular development of both theoretical research and experimental technology involving BEC
(see [45] and references therein, and [13, 14, 16]) provides point interactions with a wide range
of applications.

As widely known, in current experiments the formation of a BEC is induced in bounded
region of spaces, usually delimited by magnetic and/or optical traps. In such situations, the con-
densate lies in a one-particle quantum state, whose corresponding wavefunction is characterized
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as the minimizer of the Gross-Pitaevskii functional. When the trap is removed, the wavefunction
of the BEC spreads out according to the evolution prescribed by the cubic Schrödinger equation

𝑖∂𝑡𝜓(𝑡, 𝑥) = −∂2
𝑥𝜓(𝑡, 𝑥) + 𝛼∣𝜓(𝑡, 𝑥)∣2𝜓(𝑡, 𝑥), (1.1)

where we denoted by 𝜓 the wave function of the condensate, and the space variable 𝑥 belongs
to R, R2 or R3 according to the fact that we are modeling a cigar-shaped or a disc-shaped or
a genuinely three-dimensional BEC. We recall that the nonlinearity carries the information that,
even though its state is an actual one-particle state, the condensate consists of a large number
of interacting particles (in the experimentally realized condensates, at least thousands); the fact
that the nonlinearity is cubic means that the dynamical effects of the two-particle interactions
overwhelm the effects of many-body collisions. The strength of the nonlinear term, given by
the constant 𝛼, is proportional to the scattering length of the two-body interaction between the
particles. Here we do not summarize the progress in the derivation of (1.1) as an effective
equation for a many-body quantum system. The interested reader is referred to [20–22] for the
three-dimensional problem, to [34] for the two-dimensional case, and to [1, 2, 12] for the case of
cigar-shaped condensates. In the following we focus on this last case, in which, on one hand, the
nonlinearity is milder, while, on the other hand, the family of point interactions is richer.

A natural question in this context is the following: what happens when a wave (i.e. a
condensate) is sent against a defect? One would guess (and it has been shown for some models,
see e.g. [19, 29, 32, 44]) that the incoming wave splits into a reflected wave, a transmitted wave
and a captured component. Similar results have been proven for propagation on graphs also
(see [4]), in the case of a repulsive vertex, where no capture occurs. Indeed, it seems reasonable
to conjecture that a capture can occur only if a nonlinear stationary state exists. Since equation
(1.1) is dispersive, the presence of a nonlinear stationary state (or more than one) must be related
to the defect. This is the reason why such possible stationary states are called defect modes. Even
though at this stage it is an unproven fact, it is plausible to link the persistence of a captured
wave with some sort of stability (in a sense to be made precise) of the defect mode. For this
reason the interest in determining the stability of the defect modes lies not only in the problem
itself, but extends to models of reality too.

As a short review on results on stability and instability of defect modes in the presence
of a power nonlinearity ∣𝜓∣2𝜇𝜓, we recall results proved in [26, 27, 40], where the effects of a
𝛿-like defect are analysed. The first cited work deals with an attractive defect, and shows that,
for any frequency 𝜔 above the proper frequency of the unique bound state of the delta potential,
there is a unique defect mode that oscillates at frequency 𝜔. It turns out that the wavefunction
of such a defect mode is nothing but the nonlinear deformation of the linear bound state. The
stability (more exactly, the orbital stability, see Definition 2.2) of such a mode depends on 𝜇 and
𝜔: if 𝜇 ⩽ 2, then the defect mode is stable for any 𝜔; if 𝜇 > 2, then it becomes unstable at high
frequencies. References [26,40] extend the analysis to a repulsive delta-like defect. The situation
becomes more involved in the case of a more singular defect, for instance, the so-called 𝛿′ defect.
The following sections are devoted to this case. For more details see also the comprehensive
review [7] and the forthcoming paper [6].

The established theoretical framework for the study of stability is provided by Weinstein
and Grillakis-Shatah-Strauss theory (see [30,31,49,50]) or, alternatively, by Lions concentration-
compactness method (see [41, 42] and [17] for a review). The occurrence of bifurcation in the
ground state has been investigated in [33] and more recently in [28, 35, 36, 43, 46].
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2. Results

2.1. The 𝛿′ “potential”

The so-called 𝛿′-defect, with strength −𝛾, located (just to be definite) at zero, is defined
imposing the boundary condition

𝜓(0+)− 𝜓(0−) = −𝛾𝜓′(0+) = −𝛾𝜓′(0−) (2.1)

to the solutions to (1.1) (see [9, 23]). The parameter 𝛾 is real; when positive, the defect is called
attractive, otherwise repulsive. More formally, one defines a linear Hamiltonian operator 𝐻𝛾 as
the operator that acts as −∂2

𝑥 on the domain 𝐷(𝐻𝛾) made of functions in 𝐻2(ℝ−) ⊕ 𝐻2(ℝ+)
satisfying (2.1). Note that the only continuous elements of the domain of 𝐻𝛾 have a vanishing
derivative at the origin. The operator 𝐻𝛾 is a self-adjoint operator with the following spectral
features: singular continuous spectrum is empty, absolutely continuous spectrum is given by the
positive halfline and point spectrum is empty in the repulsive case, and coincides with {−4/𝛾2}
in the attractive case. In the last case the corresponding (non-normalized) eigenfunction is

𝜑𝛾(𝑥) = 𝜖(𝑥)𝑒−
2
𝛾
∣𝑥∣,

where we denoted the sign function by 𝜖. Notice that 𝜑𝛾 is odd. The quadratic form 𝐹𝛾 associated
to 𝐻𝛾 is defined on the domain 𝑄 := 𝐻1(ℝ+) ⊕𝐻1(ℝ−) (we stress that 𝑄 is independent of 𝛾)
and reads

𝐹𝛾(𝜓) = ∥𝜓′∥2 − 𝛾−1∣𝜓(0+)− 𝜓(0−)∣2,
where we made the following abuse of notation

∥𝜓′∥2 := lim
𝜀→0+

∫ +∞

𝜀

∣𝜓′(𝑥)∣2𝑑𝑥 + lim
𝜀→0+

∫ −𝜀

−∞
∣𝜓′(𝑥)∣2𝑑𝑥,

that will be extensively repeated.
At variance with the delta potential, the Schrödinger operator with a 𝛿′ interaction cannot

be derived from a form sum, because the 𝛿′ is not small with respect to the laplacian. Nevertheless
it can be obtained as the norm-resolvent limit of the sum of three 𝛿 potentials (see [18, 24]) with
a fine tuned rescaling, defined as follows

[𝐻𝛾+𝜈]−1 = lim
𝜀→0

[
−∂2

𝑥 −
(

1

𝛾
+

1

2𝜀

)
𝛿(𝑥− 𝜀) −

(
1

𝜀
+

𝛾

2𝜀2

)
𝛿(𝑥) −

(
1

𝛾
+

1

2𝜀

)
𝛿(𝑥− 𝜀) + 𝜈

]−1

for any −𝜈 in the resolvent set of 𝐻𝛾 (see Figure 1).
Moreover, since any delta potential, in its turn, can be approximated by a strong limit of rescaled
regular potentials, then it is possible to interpret a 𝛿-prime potential as the suitable limit of
rescaled, well-behaved potentials. Let us remark that if 𝜓 belongs to the operator domain of 𝐻𝛾 ,
then the form associated to 𝐻𝛾 has the expression

(𝜓,𝐻𝛾𝜓) = ∥𝜓′∥22 − 𝛾∣𝜓′(0+)∣2,
which explains the questionable name of 𝛿′.

2.2. Combining nonlinearity and defect

Once constructed the operator 𝐻𝛾 , the evolution in the presence of both a generic power
nonlinearity and a defect is defined by

𝑖∂𝑡𝜓(𝑡, 𝑥) = 𝐻𝛾𝜓(𝑡, 𝑥) + 𝛼∣𝜓(𝑡, 𝑥)∣2𝜇𝜓(𝑡, 𝑥). (2.2)
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0 𝜀−𝜀

Fig. 1. A regular approximation for an attractive 𝛿-prime potential centred at zero.
To obtain an approximation for a repulsive 𝛿-prime, one must reverse the central
well.

For such equation it is possible to prove global well-posedness if 𝜇 < 2 (see [3]), local well-
posedness if 𝜇 ⩾ 2 (see [6]), and to provide examples of blow-up for this last case (see [8]).
However, until the solution exists, 𝐿2-norm and energy

ℰ(𝜓) =
1

2
∥𝜓′∥2 − 1

2𝛾
∣𝜓(0+) − 𝜓(0−)∣2 − 𝜆

2𝜇 + 2
∥𝜓∥2𝜇+2

2𝜇+2

are conserved by time evolution.
Thanks to the existence of a conserved energy it is possible to introduce a notion of

nonlinear ground state: intuitively, one would define it as a minimizer of the energy among the
wavefunctions endowed with the same 𝐿2-norm, as this is the definition that naturally extends
the more familiar notion of linear ground state.

As in the linear case, it is meaningful to search for stationary states of (2.2), i.e. solutions
of the form

𝜓(𝑥, 𝑡) = 𝑒𝑖𝜔𝑡𝜓𝜔(𝑥) . (2.3)

The amplitudes 𝜓𝜔 are solutions of the stationary equation

𝐻𝛾𝜓𝜔 + 𝜔𝜓𝜔 − 𝜆∣𝜓𝜔∣2𝜇𝜓𝜔 = 0. (2.4)

This leads to the introduction of the so-called action functional

𝑆𝜔(𝜓) = ℰ(𝜓) +
𝜔

2
∥𝜓∥2, (2.5)

defined on the energy domain 𝑄. It is immediate indeed that Euler-Lagrange equations for 𝑆𝜔
are given just by (2.4). Note that the action (and the energy as well) is not bounded from below
on 𝑄. To overcome this problem, a ground state 𝜓𝜔 is usually defined as a minimizer of 𝑆𝜔
constrained on the Nehari manifold

𝐼𝜔(𝜓) = 𝑆 ′
𝜔(𝜓)𝜓 = (𝜓,𝐻𝛾𝜓 − 𝜆∣𝜓∣2𝜇𝜓 + 𝜔𝜓) = 0.

The above set is a codimension one manifold that obviously contains all stationary points of 𝑆𝜔,
and it tuns out that on it the action is bounded from below.
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The relation between the constrained variational problem for ℰ and 𝑆𝜔 is a byproduct of the
Grillakis-Shatah-Strauss theory on stability of stationary states (see [30], [31]) applied to mini-
mizers of 𝑆𝜔: a minimizer 𝜓𝜔 of the action on the Nehari manifold is a local minimizer of the
energy among the function with the same 𝐿2-norm ∥𝜓𝜔∥ if and only if it is stable (in the sense
of Definition (2.2)).

The following preliminary result is obtained through variational techniques (we remove
the subscript 𝜔 from 𝜓𝜔 when not needed to avoid ambiguity):

Theorem 2.1. For any 𝜔 > 4
𝛾2

there exists at least one minimizer of 𝑆𝜔 among all functions
on the Nehari manifold. Furthermore, the minimizer solves the stationary Schrödinger equation
with defect:

𝐻𝛾𝜓 + 𝜔𝜓 − 𝜆∣𝜓∣2𝜇𝜓 = 0. (2.6)

For 𝜔 ⩽ 4
𝛾2

, equation (2.6) admits no solutions in 𝐷(𝐻𝛾).

The line of the proof is standard, except that: first, the functional space of reference 𝑄 is
larger than 𝐻1(ℝ); second, the problem is one-dimensional, so that one must cope with a lack of
compactness when passing from weak convergence in 𝑄 to strong convergence in 𝐿𝑝; third, the
boundary condition to be reconstructed is non standard. A complete proof is in [6].

An important point about Theorem 2.1 is that, in order to find the ground states, it suffices
to determine which one among the solutions of (2.6) has least action. This can be made directly,
as the solutions to equation (2.6) can be explicitly found. It has been said, however, that the
variational analysis provides information beyond the one obtainable through the direct ODE
approach; for example, the minimum is constrained to a finite codimension (one in this case)
manifold, an information which is important for stability issues.

2.3. Symmetry breaking

Equation (2.6) can be rephrased as follows:

−∂2
𝑥𝜓 + 𝜔𝜓 − 𝜆∣𝜓∣2𝜇𝜓 = 0, (2.7)

with 𝜓 ∈ 𝐻2(ℝ+) ⊕𝐻2(ℝ−) satisfying the boundary condition (2.1).
The only solutions to (2.7) that vanish at infinity are constructed by gluing together two pieces
of a solitary wave for the NLS, namely

𝜓𝑥1,𝑥2𝜔,± (𝑥) =

{
±𝜆− 1

2𝜇 (𝜇 + 1)
1
2𝜇𝜔

1
2𝜇 cosh− 1

𝜇 [𝜇
√
𝜔(𝑥− 𝑥1)], 𝑥 < 0

𝜆− 1
2𝜇 (𝜇+ 1)

1
2𝜇𝜔

1
2𝜇 cosh− 1

𝜇 [𝜇
√
𝜔(𝑥− 𝑥2)], 𝑥 > 0

where the parameters 𝑥1 and 𝑥2 are to be adjusted so that (2.1) is satisfied. Now, it is immediately
seen by (2.5) that due to contribution of the point interaction energy, one has

𝑆𝜔(𝜓
𝑥1,𝑥2
𝜔,− ) < 𝑆𝜔(𝜓

𝑥1,𝑥2
𝜔,+ )

so we can restrict the search for minimizers to the functions 𝜓𝑥1,𝑥2𝜔,− , i.e. solutions of (2.6) that
change sign at the origin (and only there).

For any such function, the boundary condition (2.1) translates into the system{
𝑡2𝜇1 − 𝑡2𝜇+2

1 = 𝑡2𝜇2 − 𝑡2𝜇+2
2

𝑡−1
1 + 𝑡−1

2 = 𝛾
√
𝜔

, 0 ⩽ 𝑡𝑖 = ∣ tanh(𝜇√𝜔𝑥𝑖)∣ ⩽ 1, (2.8)

whose solutions can be depicted as the intersection of the full and the dashed lines in Figure 2.
One immediately finds that for 4

𝛾2
< 𝜔 ⩽ 4

𝛾2
𝜇+1
𝜇

the unique solution is given by 𝑡1 = 𝑡2 = 2
𝛾
√
𝜔
,
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𝑡1

𝑡2

𝑂

𝜔 > 4
𝛾2

𝜇+1
𝜇 𝜔 = 4

𝛾2
𝜇+1
𝜇 𝜔 < 4

𝛾2
𝜇+1
𝜇

Fig. 2. The full lines represent the solutions to the first equation in (2.8): they
consist of the line 0 ⩽ 𝑡1 = 𝑡2 ⩽ 1, and of a curve, that is concave if 𝜇 is not too
small. The dashed lines represent the solutions to the second equation of (2.8):
they consist of a family of hyperbola parametrized by 𝜔

that corresponds to an antisymmetric stationary state 𝜓𝑦,−𝑦𝜔 , where

𝑦 = 𝑥1 = −𝑥2 =
1

2𝜇
√
𝜔

log
𝛾
√
𝜔 + 2

𝛾
√
𝜔 − 2

.

At 𝜔 = 4
𝛾2

𝜇+1
𝜇

two new solutions arise, giving birth to two new branches of stationary states

that persist for 𝜔 > 4
𝛾2

𝜇+1
𝜇

; they correspond to the couple of asymmetric stationary states
𝜓𝑦1,−𝑦2𝜔 , 𝜓𝑦2,−𝑦1𝜔 , with both 𝑦1 and 𝑦2 positive but, except in the cubic case 𝜇 = 1, not in ex-
plicit form. A direct computation yields, for these values of 𝜔,

𝑆𝜔(𝜓
𝑦1,−𝑦2
𝜔 ) = 𝑆𝜔(𝜓

𝑦2,−𝑦1
𝜔 ) < 𝑆𝜔(𝜓

𝑦,−𝑦
𝜔 ) .

We conclude that with the growth of the frequency 𝜔 there exist two branches of asymmetric
ground states which bifurcate from the branch of (anti)symmetric ones. We are then in the
presence of a spontaneous symmetry breaking of the set of ground states.

2.4. Stability: a pitchfork bifurcation

The study of the stability for such a system can be made by applying the Grillakis-Shatah-
Strauss theory (see [30, 31]). This theory provides sufficient conditions for the orbital stability
of stationary states, which is stability “up to the symmetries”. Roughly speaking, the notion of
orbital stability coincides with the ordinary Ljapunov stability for orbits instead of states, where
orbits are to be understood with respect to a symmetry group. In our case the symmetry group
is 𝑈(1), corresponding to the well known phase invariance of the NLS, which persists in the
presence of point perturbation too. So, a stationary state 𝜓𝜔 is said to be orbitally stable if at any
time a solution to (2.2) remains arbitrarily close to the orbit {𝑒𝑖𝜃𝜓𝜔, 𝜃 ∈ [0, 2𝜋)}, provided that
it started sufficiently close to it. More rigorously,
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Definition 2.2. A stationary state 𝜓𝜔 is called orbitally stable if for any 𝜀 > 0 there exists a
𝜎 > 0 s.t.

inf
𝜃∈[0,2𝜋)

∥𝜓0 − 𝑒𝑖𝜃𝜓𝜔∥𝑄 ⩽ 𝜎 ⇒ sup
𝑡>0

inf
𝜃∈[0,2𝜋)

∥𝜓𝑡 − 𝑒𝑖𝜃𝜓𝜔∥𝑄 ⩽ 𝜀,

where 𝜓𝑡 is the solution corresponding to the initial condition 𝜓0.
A stationary state is called orbitally unstable if it is not orbitally stable.

The Grillakis-Shatah-Strauss theory (see [30, 31]) carries out a deep investigation of the
orbital stability of stationary states of (infinite dimensional) hamiltonian systems with symme-
tries, generalizing previous work by the same authors and independently by Michael Weinstein
(see [48–50]).
They succeeded in giving sufficient conditions for stability and instability by studying second-
order approximation of the action (linearization) around a stationary state, and carefully con-
trolling the nonlinear remainders exploiting symmetries and conservation laws. In the present
situation, as it is well known, one gets a hamiltonian system from NLS equation passing to real
variables (𝜂, 𝜌) = (Re𝜓, Im𝜓). We confine ourself to a brief operative summary of the method,
and so we omit the (however important) connection with hamiltonian systems referring to the
original literature for details.
Neglecting higher order terms, one has for the action expanded around the stationary state 𝜓𝜔
(we omit other superscripts for simplicity)

𝑆𝜔(𝜓𝜔 + 𝜂 + 𝑖𝜌) ∼= 𝑆𝜔(𝜓𝜔) +
1

2

(
𝑆 ′′(𝜓𝜔)

(
𝜂
𝜌

)
,

(
𝜂
𝜌

))
.

The Hessian operator 𝑆 ′′
𝜔(𝜓𝜔) can be represented in matrix form as (we implicitly introduced the

representation of a function 𝜂 + 𝑖𝜌 as the real vector function (𝜂, 𝜌))

𝑆 ′′
𝜔(𝜓𝜔) :=

(
𝐿1 0
0 𝐿2

)
,

where 𝐿1 and 𝐿2 are two selfadjoint operators with 𝐷(𝐿1) = 𝐷(𝐿2) = 𝐷(𝐻𝛾) given by

𝐿1 = 𝐻𝛾 + 𝜔 − 𝜆(2𝜇+ 1)∣𝜓𝜔∣2𝜇
𝐿2 = 𝐻𝛾 + 𝜔 − 𝜆∣𝜓𝜔∣2𝜇.

Now, were 𝑆 ′′
𝜔(𝜓𝜔) a positive operator, the (linear) stability of 𝜓𝜔 would be immediately estab-

lished, as the situation would be analogous to what happens for a classical particle in a potential
well. Unfortunately, this cannot be the case. First of all, the operator 𝑆 ′′

𝜔(𝜓𝜔) is endowed with
a non trivial kernel that consists of the linear span of (0, 𝜓𝜔), due to the symmetry. Second,
recall that every ground state 𝜓𝜔 is a minimizer only on the constraint provided by the Nehari
manifold, which has codimension one. On the space orthogonal to the Nehari manifold, 𝑆 ′′

𝜔(𝜓𝜔)
is surely negative, as

(𝜓𝜔, 𝑆
′′
𝜔𝜓𝜔) < 0.

It follows that there exists a cone on which 𝑆 ′′
𝜔(𝜓𝜔) is actually negative.

Nevertheless, it is possible that the dynamical constraints given by the conservation laws prevent
the wave function from further evolving far inside that cone, finally forcing the solution to remain
close to the orbit of the ground state. The Grillakis-Shatah-Strauss theory establishes that this
is the case if a certain number of conditions are satisfied. In its easiest version, such a set of
conditions can be collected as follows
𝑖) Spectral conditions:

(1) Ker𝐿2 = Span{𝜓𝜔},
(2) 𝐿2 ⩾ 0,
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𝑡1

𝑡2

𝑂

𝜔 > 4
𝛾2

𝜇+1
𝜇

𝜔 < 4
𝛾2

𝜇+1
𝜇

Fig. 3. Bifurcation diagram for 𝜇 ⩽ 2. The full line denotes stable stationary
states, while the dashed line represents unstable stationary states. Notice that
ground states are always stable

(3) Ker𝐿1 = {0},
(4) 𝐿1 has exactly one negative eigenvalue.

𝑖𝑖) Vakhitov-Kolokolov’s criterion (see [47]):

𝑑∥𝜓𝜔∥2
𝑑𝜔

> 0,

that, since 𝑑𝑆𝜔(𝜓𝜔)
𝑑𝜔

= 1
2
∥𝜓𝜔∥22, is equivalent to

𝑑2𝑆𝜔(𝜓𝜔)

𝑑𝜔2
> 0. (2.9)

In the case of interest, conditions 𝑖) and 𝑖𝑖) are verified except for the the stationary states
in the branch 𝜓𝑦,−𝑦𝜔 with 𝜔 > 4

𝛾2
𝜇+1
𝜇

, where a more sophisticated version of conditions 𝑖) and 𝑖𝑖)

is needed, again provided by the Grillakis-Shatah-Strauss theory (see [31]).
The results on stability can be summed up as follows.

Theorem 2.3. For any 𝜇 > 0

(1) If 𝜔 < 4
𝛾2

𝜇+1
𝜇

, then the unique (up to a phase) ground state 𝜓𝑦,−𝑦𝜔 is orbitally stable.

(2) If 𝜔 > 4
𝛾2

𝜇+1
𝜇

, then the stationary state 𝜓𝑦,−𝑦𝜔 is orbitally unstable.

For 0 ⩽ 𝜇 ⩽ 2, 𝜔 > 4
𝛾2

𝜇+1
𝜇

, the two ground states 𝜓𝑦1,−𝑦2𝜔 , 𝜓𝑦2,−𝑦1𝜔 are orbitally stable.

For 2 < 𝜇 < 𝜇∗ < 2.5 there exist 𝜔1 > 4
𝛾2

𝜇+1
𝜇

and 𝜔2 > 𝜔1, such that, if 4
𝛾2

𝜇+1
𝜇

< 𝜔 < 𝜔1,
then 𝜓𝑦1,−𝑦2𝜔 and 𝜓𝑦2,−𝑦1𝜔 are orbitally stable; if 𝜔 > 𝜔2, then 𝜓𝑦1,−𝑦2𝜔 and 𝜓𝑦2,−𝑦1𝜔 are orbitally
unstable.
For 𝜇 > 𝜇∗, there exist 𝜔1 > 4

𝛾2
𝜇+1
𝜇

, 𝜔2 > 𝜔1, such that, if 4
𝛾2

𝜇+1
𝜇

< 𝜔 < 𝜔1 or 𝜔 > 𝜔2, then
𝜓𝑦1,−𝑦2𝜔 and 𝜓𝑦2,−𝑦1𝜔 are orbitally unstable.

The bifurcation diagrams for the system are portrayed in Figures 3 and 4.
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𝑡1

𝑡2

𝑂

𝜔 > 4
𝛾2

𝜇+1
𝜇

𝜔 < 4
𝛾2

𝜇+1
𝜇

𝜔1

𝜔1

𝜔2

𝜔2

Fig. 4. Bifurcation diagram for 2 < 𝜇 < 𝜇∗. We have no results for the interval
(𝜔1, 𝜔2), but we conjecture that it is always possible to choose 𝜔1 = 𝜔2

3. Proof of stability

The content of this section is technical. Here we we give a proof of the stability of
all ground states in the case 𝜇 ⩽ 2. Under such a restriction, every ground state satisfies the
Vakhitov-Kolokolov’s criterion. The proof we present here differs from the one given in [6], as
it does not use the Grillakis-Shatah-Strauss theory and so it does not refer to linearization. We
decided to include in this report such a technical part in order to convey some information on the
method of proofs and on the techniques employed. An analogous analysis is given for the case
of a NLS with 𝛿 interaction in [27], and both are inspired by [25].
In order to proceed we need some preliminary definitions and results.

First, the definition of orbital stability can be reformulated using the notion of orbital
neighbourhood.

Definition 3.1. The set

𝑈𝜂(𝜙) := {𝜓 ∈ 𝑄, s.t. inf
𝜃∈[0,2𝜋)

∥𝜓 − 𝑒𝑖𝜃𝜙∥𝑄 ⩽ 𝜂}

is called the orbital neighbourhood with radius 𝜂 of the function 𝜙.

It is convenient to introduce a function that associates to any frequency 𝜔 > 4
𝛾2

the value
of the minimum attained by 𝑆𝜔 evaluated on functions in the Nehari manifold corresponding to
that frequency. Namely,

𝑑 :

(
4

𝛾2
,+∞

)
→ ℝ

𝜔 �−→ 𝑑(𝜔) := min{𝑆𝜔(𝜙), 𝜙 ∈ 𝑄, 𝐼𝜔(𝜙) = 0}.
It is then important to stress other points that we did not mention explicitly so far.
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Remark 3.2.
(1) In the energy space 𝑄 the following norm is defined:

∥𝜙∥2𝑄 := ∥𝜙∥22 + lim
𝜀→0+

∫ +∞

𝜀

∣𝜙′∣2 𝑑𝑥 + lim
𝜀→0+

∫ −𝜀

−∞
∣𝜙′∣2 𝑑𝑥.

(2) For any 𝜃 ∈ [0, 2𝜋) and any 𝜙 ∈ 𝑄, one has 𝑆𝜔(𝑒
𝑖𝜃𝜙) = 𝑆𝜔(𝜙). As a consequence, if

𝜓𝜔 is a ground state, then all the functions 𝑒𝑖𝜃𝜓𝜔 in its orbit are ground states too. In the
proof of Theorem (3.4) we will make the phase explicit by denoting

𝜓𝑥1,𝑥2,𝜃𝜔 := 𝑒𝑖𝜃𝜓𝑥1,𝑥2,0𝜔 .

The result we need to go through the proof are summarized in the following Proposition.
Their proof is contained in [6].

Proposition 3.3.

(1) For any function 𝜙 in the Nehari manifold one has 𝑆𝜔(𝜙) = 𝑆(𝜙), where 𝑆 is the
functional defined by

𝑆(𝜙) :=
𝜆𝜇

2𝜇+ 2
∥𝜙∥2𝜇+2

2𝜇+2.

(2) Any minimizer 𝜓𝜔 of the functional 𝑆𝜔 on the Nehari manifold minimizes also the func-
tional 𝑆 on the region 𝐼𝜔 ⩽ 0.

(3) Following Fibich and Wang (see [25]) we recall that the map

𝜔̂ : 𝑄 −→ ℝ, 𝜙 �→ 𝑑−1

(
𝜆

2

𝜇

𝜇 + 1
∥𝜙∥2𝜇+2

2𝜇+2

)
is well-defined. Notice that 𝜔̂ maps a function 𝜙 into the frequency of a ground state
having the same 𝐿2𝜇+2-norm as 𝜙. Such a ground state may not be unique, but the
𝐿2𝜇+2-norm always is.

(4) If 𝜓𝜔 minimizes 𝑆𝜔 on the Nehari manifold 𝐼𝜔 = 0, then 𝜓𝜔 minimizes 𝑆𝜔 on the set
{𝜙 ∈ 𝑄, ∥𝜙∥2𝜇+2 = ∥𝜓𝜔∥2𝜇+2}.

(5) For any 𝜔 > 0, the function 𝜒[0,+∞)𝜓
0,0
𝜔 minimizes the functional

𝑆0
𝜔(𝜙) :=

1

2
∥𝜙′∥22 +

𝜔

2
∥𝜙∥22 −

𝜆

2𝜇 + 2
∥𝜙∥2𝜇+2

2𝜇+2

among the functions in 𝑄 that satisfy

𝐼0𝜔(𝜙) := ∥𝜙′∥22 + 𝜔∥𝜙∥22 − 𝜆∥𝜙∥2𝜇+2
2𝜇+2 = 0.

(6) If 𝜇 ⩽ 2, then any ground state satisfies the Vakhitov-Kolokolov’s condition (2.9).

Now we can prove the

Theorem 3.4. If 1 ⩽ 𝜇 ⩽ 2, then any ground state is stable.

Proof. We specialize to the case with 𝜔 > 4
𝛾2

𝜇+1
𝜇

, namely, beyond the frequency of bifurcation.

In fact, for 𝜔 < 4
𝛾2

𝜇+1
𝜇

, this proof can be easily adapted and one recovers essentially the argument
given in [27].

Fix 𝜔0 >
4
𝛾2

𝜇+1
𝜇

and suppose that the stationary solution 𝑒𝑖𝜔0𝑡𝜓𝑦1,−𝑦2,0𝜔 is orbitally unstable.
This means that there exists 𝜀0 > 0 and a sequence 𝜑𝑘 ∈ 𝑈 1

𝑘
(𝜓𝑦1,−𝑦2,0𝜔 ) such that

sup
𝑡⩾0

inf
𝜃∈[0,2𝜋)

∥𝜑𝑘(𝑡) − 𝜓𝑦1,−𝑦2,𝜃𝜔0
∥𝑄 ⩾ 𝜀0,

where 𝜑𝑘(𝑡) is the solution to equation (2.2) with initial data 𝜑𝑘.
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With no loss of generality, we assume

𝜀0 ⩽ inf
𝜃∈[0,2𝜋)

∥𝜓𝑦1,−𝑦2,0𝜔0
− 𝜓𝑦2,−𝑦1,𝜃𝜔0

∥𝑄 = ∥𝜓𝑦1,−𝑦2,0𝜔0
− 𝜓𝑦2,−𝑦1,0𝜔0

∥𝑄. (3.1)

Let 𝑡𝑘 be the smallest positive time for which

inf
𝜃∈[0,2𝜋)

∥𝜑𝑘(𝑡𝑘) − 𝜓𝑦1,−𝑦2,𝜃𝜔0
∥𝑄 =

𝜀0
2
, (3.2)

and let us use the notation 𝜉𝑘 = 𝜑𝑘(𝑡𝑘). By conservation laws,

𝑆𝜔0(𝜉𝑘) = ℰ(𝜉𝑘) +
𝜔0

2
∥𝜉𝑘∥22 = ℰ(𝜑𝑘) +

𝜔0

2
∥𝜑𝑘∥22

−→ℰ(𝜓𝑦1,−𝑦2,0𝜔0
) +

𝜔0

2
∥𝜓𝑦1,−𝑦2,0𝜔0

∥22 = 𝑆𝜔0(𝜓
𝑦1,−𝑦2,0
𝜔0

) = 𝑑(𝜔0).
(3.3)

where we used the fact that, by construction, the sequence 𝜑𝑘 converges to 𝜓𝑦1,−𝑦2,0𝜔0
strongly in

𝑄, that implies the convergence of the energy and of the 𝐿2-norm.
Let us denote 𝜔𝑘 = 𝜔̂(𝜉𝑘). We recall the following result from [25], used in [27] also:

𝑆𝜔𝑘
(𝜉𝑘) − 𝑆𝜔𝑘

(𝜙0) ⩾ 1

4
𝑑′′(𝜔0)(𝜔𝑘 − 𝜔0)

2 (3.4)

where we denoted 𝜔𝑘 = 𝜔(𝜉𝑘). The fact that the Vakhitov-Kolokolov’s condition is satisfied
(see [6] ), together with (3.4) and (3.3), implies 𝜔𝑘 → 𝜔0, and therefore, by the definition of the
function 𝜔̂, we have

∥𝜉𝑘∥2𝜇+2 =

[
2𝜇+ 2

𝜆𝜇
𝑆𝜔𝑘

(𝜓𝜔𝑘
)

] 1
2𝜇+2

−→
[
2𝜇 + 2

𝜆𝜇
𝑆𝜔0(𝜓𝜔0)

] 1
2𝜇+2

= ∥𝜓𝑦1,−𝑦2,0𝜔0
∥2𝜇+2. (3.5)

We define the sequence 𝜁𝑘 :=
∥𝜓𝑦2,𝑦1,0

𝜔0
∥𝜇+2

∥𝜉𝑘∥𝜇+2
𝜉𝑘. By (3.5),

∥𝜁𝑘 − 𝜉𝑘∥𝑄 =

∣∣∣∣∥𝜓𝑦2,𝑦1,0𝜔0
∥𝜇+2

∥𝜉𝑘∥𝜇+2
− 1

∣∣∣∣ ∥𝜉𝑘∥𝑄 −→ 0. (3.6)

As a consequence, 𝑆𝜔0(𝜁𝑘) − 𝑆𝜔0(𝜉𝑘) → 0, so 𝑆𝜔0(𝜁𝑘) → 𝑆𝜔0(𝜓𝜔0). For this reason, and as
∥𝜁𝑘∥2𝜇+2 = ∥𝜓𝑦1,−𝑦2,0𝜔0

∥2𝜇+2, point (4) in Proposition 3.3 implies that {𝜁𝑘} is a minimizing
sequence for the problem

min{𝑆𝜔0(𝜓), 𝜓 ∈ 𝑄∖{0}, ∥𝜓∥2𝜇+2 = ∥𝜓𝑦2,−𝑦1,0𝜔0
∥2𝜇+2}.

By Banach-Alaoglu theorem there exists a subsequence, whose elements we denote by 𝜁𝑘 too,
that converges weakly in 𝑄 and therefore in 𝐿2𝜇+2. Let us call 𝜁∞ its weak limit.

First, notice that 𝜁∞ ∕= 0. Indeed, were it zero, then weak convergence in 𝑄 would imply
𝜁∞(0±) → 0, and therefore 𝑆𝜔0(𝜁𝑘) − 𝑆0

𝜔0
(𝜁𝑘) → 0, so

lim
𝑘→∞

𝑆0
𝜔0

(𝜁𝑘) = lim
𝑘→∞

𝑆𝜔0(𝜁𝑘) =
𝜆

2

𝜇

𝜇 + 1
∥𝜓𝑦1,−𝑦2,0𝜔0

∥2𝜇+2
2𝜇+2.

Then, employing the fact that 𝜙0 := 𝜒[0,+∞)𝜓
0,0
𝜔0

(0) ∕= 0, points (4) and (5) in Proposition 3.3
yield

𝜆

2

𝜇

𝜇 + 1
∥𝜓𝑦1,−𝑦2,0𝜔0

∥2𝜇+2
2𝜇+2 = lim𝑆0

𝜔0
(𝜁𝑘) ⩾ 𝑆0

𝜔0
(𝜒+𝜙0) > 𝑆𝜔0(𝜒+𝜙0) ⩾ 𝜆

2

𝜇

𝜇 + 1
∥𝜓𝑦1,−𝑦2,0𝜔0

∥2𝜇+2
2𝜇+2,

which is absurd. So it must be 𝜁∞ ∕= 0.
We claim that 𝐼𝜔0(𝜁∞) = 0. We proceed by contradiction.

Suppose indeed that 𝐼𝜔(𝜁∞) < 0. Then, by point (2) in Remark 3.2 and points (1) and (2) in
Proposition 3.3 we know that the minimizers of the functional 𝑆 on the region 𝐼𝜔0 ⩽ 0 are given
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by 𝜓𝑦1,−𝑦2,𝜃𝜔0
and 𝜓𝑦2,−𝑦1,𝜃𝜔0

, for all 𝜃 ∈ [0, 2𝜋). Furthermore, all such functions lie on the set

𝐼𝜔0 = 0. As a consequence, recalling the definition of the functional 𝑆, one obtains

∥𝜁∞∥2𝜇+2 =

[
2(𝜇 + 1)

𝜆𝜇
𝑆(𝜁∞)

] 1
2𝜇+2

>

[
2(𝜇+ 1)

𝜆𝜇
𝑆(𝜓𝑦1,−𝑦2,0𝜔0

)

] 1
2𝜇+2

= ∥𝜓𝑦1,−𝑦2,0𝜔0
∥2𝜇+2.

But this is not possible, as 𝜁∞ is the weak limit of functions having the same 𝐿2𝜇+2-norm as
𝜓𝑦1,−𝑦2,0𝜔0

.
On the other hand, suppose that 𝐼𝜔0(𝜁∞) > 0. By (3.3) and (3.5)

lim
𝑘→∞

𝐼𝜔0(𝜉𝑘) = 2 lim
𝑘→∞

𝑆𝜔0(𝜉𝑘) −
𝜆𝜇

𝜇 + 1
lim
𝑘→∞

∥𝜉𝑘∥2𝜇+2
2𝜇+2

= 2𝑆𝜔0(𝜓
𝑦1,−𝑦2,0
𝜔0

) − 𝜆𝜇

𝜇+ 1
∥𝜓𝑦1,−𝑦2,0𝜔0

∥2𝜇+2
2𝜇+2 = 𝐼𝜔0(𝜓

𝑦1,−𝑦2,0
𝜔0

) = 0.

Therefore, by (3.6),
lim
𝑘→∞

𝐼𝜔0(𝜁𝑘) = 0.

From the following inequality (see [15])

∥𝑢𝑛∥𝑝𝑝 − ∥𝑢𝑛 − 𝑢∞∥𝑝𝑝 − ∥𝑢∞∥𝑝𝑝 −→ 0, ∀ 1 < 𝑝 < ∞. (3.7)

one easily has
𝐼𝜔0(𝜁𝑘 − 𝜁∞) −→ −𝐼𝜔0(𝜁∞) < 0.

As a consequence, eventually in 𝑘 we obtain 𝐼𝜔0(𝜁𝑘 − 𝜁) < 0 and then, using point (2) in
Proposition 3.3

∥𝜁𝑘 − 𝜁∞∥2𝜇+2 > ∥𝜓𝑦1,−𝑦2,0𝜔0
∥2𝜇+2. (3.8)

But from (3.7), and knowing that 𝜁∞ ∕= 0, we have that the following inequality holds eventually
in 𝑘

∥𝜁𝑘 − 𝜁∞∥2𝜇+2 ⩽ ∥𝜓𝑦1,−𝑦2,0𝜔0
∥2𝜇+2,

that contradicts (3.8).
We conclude that 𝐼𝜔0(𝜁∞) cannot be strictly positive and, as we already proved that it

cannot be negative, it must vanish.
As a consequence, from point (2) in Proposition 3.3 again, we get ∥𝜁∞∥2𝜇+2 ⩾ ∥𝜓𝑦1,−𝑦2,0𝜔0

∥2𝜇+2.
But, since 𝜁∞ is a weak limit, it must be

∥𝜁∞∥2𝜇+2 = ∥𝜓𝑦1,−𝑦2,0𝜔0
∥2𝜇+2.

This fact has the following relevant consequences:
∙ Owing to (3.7), the sequence {𝜁𝑛} converges strongly to 𝜁∞ in the topology of 𝐿2𝜇+2.
∙ The sequence {𝜁𝑘} converges to 𝜁∞ in the strong topology of 𝑄. Indeed, by the conver-

gence of 𝑆𝜔0(𝜁𝑘) to 𝑆𝜔0(𝜁∞), the weak convergence in 𝑄, and the strong convergence of
{𝜁𝑘} in 𝐿2𝜇+2, we have

∥𝜁 ′𝑘∥2 + 𝜔0∥𝜁𝑘∥2 −→ ∥𝜁 ′∞∥2 + 𝜔0∥𝜁∞∥2. (3.9)

So the convergence is strong in the space 𝑄 endowed with the norm given by (3.9), that
is equivalent to the usual 𝑄-norm.

∙ The sequence {𝜉𝑘} also converges to 𝜁∞ in the strong topology of 𝑄. Indeed, applying
(3.6), we have

∥𝜉𝑘 − 𝜁∞∥𝑄 ⩽ ∥𝜉𝑘 − 𝜁𝑘∥𝑄 + ∥𝜁𝑘 − 𝜁∞∥𝑄 −→ 0. (3.10)

∙ The function 𝜁∞ minimizes 𝑆𝜔0 with the constraint 𝐼𝜔0 = 0, so, either 𝜁∞ = 𝜓𝑦1,−𝑦2,𝜃𝜔0

or 𝜁∞ = 𝜓𝑦2,−𝑦1,𝜃𝜔0
for some value of 𝜃 in [0, 2𝜋).
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Let us suppose that 𝜁∞ = 𝜓𝑦1,−𝑦2,𝜃𝜔0
, for a certain value of 𝜃. By (3.10) we obtain 𝜉𝑘 → 𝜓𝑦1,−𝑦2,𝜃𝜔0

strongly in 𝑄, that contradicts inequality (3.2), and thus the assumption of the orbital instability
of the stationary state 𝜓𝑦1,−𝑦2,0𝜔0

proves false.
On the other hand, consider the case with 𝜁∞ = 𝜓𝑦2,−𝑦1,𝜃𝜔0

for some value of 𝜃. By (3.2)
there exists a sequence 𝜃𝑘 such that

∥𝜉𝑘 − 𝜓𝑦1,−𝑦2,𝜃𝑘𝜔0
∥𝑄 ⩽ 2

3
𝜀0. (3.11)

Using elementary triangular identity, (3.1) and (3.11), we obtain, for any 𝜃 ∈ [0, 2𝜋),

∥𝜉𝑘 − 𝜓𝑦2,−𝑦1,𝜃𝜔0
∥𝑄 ⩾ ∥𝜓𝑦1,−𝑦2,𝜃𝑘𝜔0

− 𝜓𝑦2,−𝑦1,𝜃𝜔0
∥𝑄 − ∥𝜓𝑦1,−𝑦2,𝜃𝑘𝜔0

− 𝜉𝑘∥𝑄 ⩾ 𝜀0
3
.

This contradicts (3.10), so the proof is complete.
□

4. Perspectives

The interplay between nonlinearity and defects is, in our opinion, a promising and worth
developing field. In particular, already in simple models highly non trivial behaviour can emerge.
An enlightening example has been supplied by means of the 𝛿′ defect, in which the occurrence
of a pitchfork bifurcation with symmetry breaking has been proved for the family of nonlinear
ground states.

Such results have to be considered as the first achievements of our research project.
Many non trivial variations on the theme could be given by studying the entire family of one-
dimensional defects (a four parameters family, see [9]) and thus investigate the effect of various
self-adjoint boundary conditions, in particular, of those that give rise to two bound states. We
expect that, in the nonlinear problem, each of the two linear modes could be deformed into
nonlinear modes for any frequency greater than the energy of the corresponding linear mode.
Think, for instance, of a point interaction that, roughly speaking, is the sum of a 𝛿 and a 𝛿′ defect
at the same point. It exhibits two bound states, one of which is even (as the ground state for
a Dirac’s delta), while the other is odd (as the ground state for a delta prime). A number of
question then arises: how do the corresponding nonlinear mode interact? Does it exist a third
family of stationary (possibly ground) states that does not preserve any parity symmetry?

However, all these steps are only preliminary to the problem of studying the detailed
evolution of a travelling soliton that meets an impurity.

It remains completely open the problem of defining analogous models in higher dimen-
sion. We recall that in dimension two and three, the only point interaction is the delta interaction,
and in dimension higher than three there are no point perturbations of the laplacian. For instance,
in the three dimensional case a bare power nonlinearity seems to be too strong to be added to
a Dirac’s 𝛿 potential; so a different type of nonlinearity with a moderated behaviour at infinity
should be considered. Conversely, in space dimension two the naı̈f power nonlinearity could be
not necessarily in conflict with the domain of a delta interaction, but up to now no rigorous result
exists on this problem.

Another related topic is given by quantum graphs (see [37–39] for the relevant definitions
and analysis in the linear case). Also in the relatively simple case of a NLS on a star graph, the
richer structure provides a larger number of nonlinear stationary states, for example two stationary
states for a three edge star graph with a delta vertex, both attractive and repulsive, and the number
increases with the number of edges (see [5]). In this respect, besides the determination of the
ground state, it is an open interesting problem the analysis of stability of excited states, here
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explicitly known. Nothing is known for the a star graph with more general vertex conditions, for
example the boundary condition of 𝛿′ type.
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[43] Pelinovsky D.E., Phan T. Normal form for the symmetry-breaking bifurcation in the nonlinear Schrödinger
equation. — arXiv: 1101.5402v1, 2011.

[44] Perelman G., A remark on soliton-potential interaction for nonlinear Schrödinger equations // Math. Res.
Lett. — 2009. — V. 16(3). — P. 477-486.

[45] Pitaevskii L., Stringari S. Bose-Einstein condensation. — Oxford University Press, 2003.
[46] Sacchetti A. Universal Critical Power for Nonlinear Schrödinger Equations with a Symmetric Double Well

Potential // Phys. Rev. Lett. — 2009. — V. 103. — 194101.
[47] M. G. Vakhitov, A. A. Kolokolov: Stationary solutions of the wave equation in a medium with nonlinearity

saturation // Radiophys. Quantum Electron. — 1973. — V. 16. — P. 783–789.
[48] Weinstein M.: Nonlinear Schrödinger equations and sharp interpolation estimates // Comm. Math. Phys. —

1983. — V. 87. — P. 567-576.
[49] Weinstein M. Modulational stability of ground states of nonlinear Schrödinger equations // SIAM J. Math.

Anal. — 1985. — V. 16. — P. 472-491.
[50] Weinstein M.: Lyapunov stability of ground states of nonlinear dispersive evolution equations // Comm. Pure

Appl. Math. — 1986. — V. 39. — P. 51–68.


