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We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results con-

cern a formal solution of the geometrically inverse problem for localisation and reconstruction of the

form of absorbing domains. Here, we restrict our analysis to the one- and two-dimensional cases.

We show that the last case can be studied by the conformal mapping technique. To illustrate this, we

scrutinize the constant boundary conditions and analyze a numeric example.
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1. Introduction

1. Is is known (see e.g. [8]) that the problem of determining a conductivity matrix
field γ(p) = [γi,j(p)]

d
i,j=1, for p in a bounded open domain Ω ⊂ Rd, is related to

”measuring” the elliptic Dirichlet-to-Neumann map for the associated conductivity
equation. Notice that the solution to this problem has numerous practical applica-
tions in various domains: geophysics, electrochemistry etc. It is also an important
diagnostic tool in medicine, e.g. in the electrical impedance tomography; the tissue
in the human body is an example of highly anisotropic conductor [1].

Assuming there are no current sources or sinks, the potential v(p), p ∈ Ω,
for a given voltage f(ω), ω ∈ ∂Ω, on the (smooth) boundary ∂Ω of Ω is a solution
of the Dirichlet problem:

(P1)

{
div(γ∇v) = 0 in Ω,

v|∂Ω = f on ∂Ω.

Then, the corresponding (P1) Dirichlet-to-Neumann map (operator) Λγ,∂Ω is (for-
mally) defined by [16]

Λγ,∂Ω : f 7→ ∂vf/∂νγ := ν · γ ∇vf |∂Ω . (1.1)

Here, ν is the unit outer-normal vector to the boundary at ω ∈ ∂Ω and the function
v := vf is a solution of the Dirichlet problem (P1).
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The Dirichlet-to-Neumann operator (1.1) is also called the voltage-to-current
map, since the function Λγ,∂Ωf gives the induced current flux trough the boundary
∂Ω. The key (inverse) problem is whether one can determine the conductivity
matrix γ by knowing the electrical boundary measurements, i.e. the corresponding
Dirichlet-to-Neumann operator. In general, this operator does not determine the
matrix γ uniquely, see e.g. [4].

The main question in this context is to find sufficient conditions insuring
that the inverse problem is uniquely soluble.
2. The problem of electrical current flux in the form (P1) is an example of so-
called diffusive Laplacian transport [17]. Besides the voltage-to-current problem, the
motivation to study of this kind of transport comes for instance from the transfer
across biological membranes, see e.g. [13], [3].

Let some “species” of concentration C(p), x ∈ Rd, diffuse stationary in the
isotropic bulk (γ = I) from a (distant) source localised on the closed boundary
∂Ω towards a semipermeable compact interface ∂B of the cell B ⊂ Ω, where they
disappear at a given rate W ≥ 0. Then, the steady field of concentrations (Laplacian
transport with a diffusion coefficient D ≥ 0) obeys the set of equations:

(P2)∗


∆C = 0, p ∈ Ω \B ,

C |∂Ω (p) = C0, a constant concentration at the source ∂Ω ,

−D ∂νC |∂B (ω) = W (C − C∗) |∂B (ω), on the interface ω ∈ ∂B

Usually, one assumes that C(p) = C∗ ≥ 0, p ∈ B, is a constant concentration of the
”species” inside the cell B.

This example motivates the following abstract stationary diffusive Laplacian
transport problem with absorption on the surface ∂B:

(P2)


∆u = 0, p ∈ Ω \B , (u(p) = Const , p ∈ B),

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

(α u+ ∂νu) |∂B (ω) = h(ω), ω ∈ ∂B .

This is the Dirichlet problem for the domain Ω ⊃ B with the Dirichlet-Neumann (or
Robin [6]) boundary conditions on the absorbing surface ∂B. Varying α between
α = 0 and α = +∞ one recovers respectively the Neumann and the Dirichlet
boundary conditions.

Now, similar to (1.1), we can associate with the problem (P2) a Dirichlet-
to-Neumann operator

Λγ=I,∂Ω : f 7→ ∂νuf |∂Ω=: g . (1.2)

Domain dom(ΛI,∂Ω) belongs to a certain Sobolev space of functions on the boundary
∂Ω, which contains uf := U

(α,h)
f , the solutions of the problem (P2) for given f and

for the Robin boundary condition on ∂B fixed by α and h.
Then, there are at least two (in fact related) geometrical inverse problems

that are of interest:
(a) Given the Dirichlet data f and the corresponding (measured) Neumann data g
(1.2) on the accessible outer boundary ∂Ω, to reconstruct the shape of the interior



448 Ibrahim Baydoun, Valentin A. Zagrebnov

boundary ∂B.
(b) A simpler inverse problem concerns the localisation of the domain (cell) B of a
given shape and fixed parameters α and h.
3. The aim of the present paper is to study the above problems (a) and (b) in
the framework of application outlined in the problem (P2)* and to work out the
corresponding formalism based on the Dirichlet-to-Neumann operators.

In Section 2.1 we formulate the mathematical setup of the these problems,
and we consider uniqueness of the forward boundary value problem (P2) solution.
There, we illustrate our strategy by an explicit example of one-dimensional inverse
problem for Ω ⊂ R1 and B = (a, b).

Our main results (Section 3) concern the two-dimensional case, when the
compact Ω ⊂ R2. Notice that there are three points that need particular attention.
The first is that the problems (P2)* and (P2) are formulated for non-simply con-
nected domains Ω\B. The second point concerns the peculiarity of the combination
of Dirichlet and Robin boundary conditions. As a third point, one has to mention
that the geometrically inverse problem is poorly formulated.

The present paper first presents the formal solution for the case when α =
+∞, i.e. the Dirichlet boundary conditions u |∂B (ω) = 0, ω ∈ ∂B. For this
case, our approach is motivated by important papers [9], [12]. Here we refine their
results in the framework of the Dirichlet-to-Neumann formalism and add certain
observations in the case of a fixed geometry of domains B and Ω following [2].

In Section 4 we consider an explicit example and give numerical calculation
for constant external boundary conditions f = 1 to illustrate abstract results for
α = +∞.

For finite α ≥ 0 and h = 0 we restrict the discussion to a few remarks,
(Section 5) as a more thorough investigation will be presented in future publications.
The same concerns our formal scheme for d = 2, since the corresponding inverse
problem is ill-posed.

The case d = 1 allows explicit calculations and serves to illustrate of our
main ideas, whereas, for solution of the inverse Problems, i.e. for d = 2, we use a
method of conformal mappings for harmonic functions in doubly connected domains
Ω \B.

2. Setup of the Problems and Uniqueness

1. Below, we suppose that Ω and B ⊂ Ω be open bounded domains in Rd with
C2-smooth disjoint boundaries ∂Ω and ∂B, that is ∂(Ω \ B) = ∂Ω ∪ ∂B and
∂Ω ∩ ∂B = ∅.

Then, the unit outer-normal to the boundary ∂(Ω\B) vector-field ν(p)p∈∂(Ω\B)

is well-defined, and we consider the normal derivative in (P2) as the interior limit:

(∂νu) |∂B (ω) := lim
p→ω

ν(ω) · (∇u)(p) , p ∈ Ω \B . (2.1)
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The existence of the limit (2.1) as well as the restriction u |∂B (ω) := limp→ω u(p)
is insured since u has to be a harmonic solution of the problem (P2) for C2-smooth
boundaries ∂(Ω \B), [15].

Now, we introduce some indispensable standard notations and definitions [5].
Let H be Hilbert space L2(M) on domain M ⊂ Rd and ∂H := L2(∂M) denote
the corresponding boundary space. By W s

2 (M), we denote the Sobolev space of
L2(M)-functions, whose s-derivatives are also in L2(M), and similar, W s

2 (∂M) is
the Sobolev space of L2(∂M)-functions on the C2-smooth boundary ∂M .

Proposition 2.1. Let f, h ∈ W
1/2
2 (∂Ω) for C2-smooth boundaries ∂(Ω \ B). If

α ≥ 0, then the Dirichlet-Robin problem (P2) has a unique (harmonic) solution in
domain Ω \B.

Proof. For existence, we refer to [15]. To prove the uniqueness, we consider the
problem (P2) for f = 0 and h = 0. Then, by the Gauss-Ostrogradsky theorem, the
corresponding solution u yields:∫

Ω\B
dp (∇u(p) · ∇u)(p)) =

∫
Ω\B

dp div(u(p) (∇u)(p)) =∫
∂B

dσ(ω) u(ω) (∂νu)(ω) = −α
∫
∂B

dσ(ω) |u(ω)|2 ≤ 0 . (2.2)

The estimate (2.2) implies that u(x ∈ Ω \ B) = Const. Hence, by the Robin
boundary conditions, (αu) |∂B (ω) = 0, and by virtue of u |∂Ω (p) = f(x ∈ ∂Ω) =
0, we obtain that for α ≥ 0 the harmonic function u(p) = 0 for x ∈ Ω \B. �

The next statement is key for the analysis of inverse geometrical problems (a)
and (b). Since we use it below in the case R2, our formulation is two-dimensional.

Proposition 2.2. Consider two problems (P2) corresponding to a bounded domain
Ω ⊂ R2 with C2-smooth boundary ∂Ω and to two subsets B1 and B2 with the
same smoothness of the boundaries ∂B1, ∂B2. If for solutions u(1)

f,h, u
(2)
f,h of these

problems one has

∂νu
(1)
f,h |∂Ω= ∂νu

(2)
f,h |∂Ω , (2.3)

then ∂B1 = ∂B2.

Proof. By virtue of u(1)
f,h |∂Ω= u

(2)
f,h |∂Ω= f and by condition (2.3), the problem

(P2) has two solutions for identical external (on ∂Ω) and internal (on ∂B1 and
∂B2) Robin boundary conditions. Then, by the standard arguments based on the
Holmgren uniqueness theorem [14] for harmonic functions on R2, one obtains that
∂B1 = ∂B2. �
2. We finish this section by a simple illustration of the explicit solution of the
Inverse Problems (a) and (b) in the one-dimensional case. Motivated by the Laplace
transport (P2)* we consider the case: f = c0, h = α c∗, and α = W/D ≥ 0, for
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Ω := (−R,R) ⊂ R1 and B := (a, b):

(Pd=1)


∆u = 0, x ∈ (−R,R) \ [a, b] ,

u |∂Ω (x = ∓R) = f(∓R) =: c∓,

(α u+ ∂νu) |∂[a,b] (a) = (α u+ ∂νu) |∂[a,b] (b) = α c∗ ,

where R > 0 and −R < a < b < R.
The solution of the problem (a) is straightforward, since in the one-dimensional

case, the shape of absorbing cell is trivial: it is the interval B := (a, b).
Now notice that a general solution of the problem (Pd=1) is a combination

of linear functions supported in domain Ω := (−R,R) \ [a, b] and a constant c∗ in
the interval [a, b]:

−R < x < a : u(x) = − c− − c∗

(R + a) + α−1
(R + x) + c− , (2.4)

a ≤ x ≤ b : u(x) = c∗ ,

b < x < R : u(x) = − c+ − c∗

(R− b) + α−1
(R− x) + c+ . (2.5)

Given Dirichlet data c0 on the boundary ∂Ω and measuring on this boundary
the Neumann data in the form of the flux currents:

j− := −∂νu |∂Ω (x = −R) =
c− − c∗

(R + a) + α−1

j+ := −∂νu |∂Ω (x = +R) = − c+ − c∗

(R− b) + α−1
,

one can explicitly solve both problems (a) and (b).
In the one-dimensional case the shape of the cell is defined by its size:

(b− a), whereas localization is fixed by the points:

a = (c− − c∗)/j− −R− α−1 ,

b = (c+ − c∗)/j+ +R + α−1 .

3. Two-Dimensional Inverse Problem: Conformal Mapping and the Shape
of ∂B

1. The relevance of the conformal mapping in the study of the boundary value
problems for harmonic functions (solutions of the Laplace equation) is well-known,
see e.g. [7] (Ch.III), or [11] (Ch.13).

Recall that if the complex function w : z 7→ C is holomorphic in the open
domain {Ω ⊂ C : z = x + i y ∈ Ω}, then by the Cauchy-Riemann conditions the
functions u(x, y) := (Rew)(x, y) and v(x, y) := (Imw)(x, y) are harmonic in Ω.
Here, w(z) = u(x, y) + i v(x, y).

Remark 3.1. There is an elementary inverse problem of the complex analysis :
given a harmonic function u(x, y) in Ω to construct in this domain the harmonic
function v(x, y) (harmonic conjugate to u) such that the complex function w =
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u+ i v is holomorphic. In fact, one finds the harmonic conjugate from the Cauchy-
Riemann conditions,

∂xu = ∂yv , ∂yu = −∂xv , (3.1)

since for a given u this is a system of partial differential equations for v. Notice
that for a simply connected domain Ω, the solution of this system always exists
and it is unique up to a constant, whereas in non-simply connected domains the
harmonic conjugate may not be a single-valued function. Conversely, in any simply
connected subset Ω0 ⊂ Ω, one can select a single-valued branch of this function.
Consequently this means a selection of the single-valued branch of the total complex
function w.

Application of conformal mappings to the analysis of harmonic functions
and the Laplace equation are based on the following observations:

Proposition 3.2. Let ζ : z 7→ ζ(z) be a conformal mapping ζ(z) : N → M by a
holomorphic function ζ(z) = ξ(x, y) + iη(x, y). If the function ũ(ξ, η) is harmonic
in M , then the composition

u(x, y) := (ũ ◦ ζ)(x, y) = ũ(ξ(x, y), η(x, y)) , (3.2)

is a harmonic function of x, y in N .

In particular one obtains:

(∆zu)(x, y) = |∂zζ(z)|2 (∆ζ ũ)(ξ(x, y), η(x, y)) . (3.3)

(Here we explicitly distinguish Laplacians in different coordinates, ∆z := ∂2
x + ∂2

y

and ∆ζ := ∂2
ξ + ∂2

η , but we ignore these subindexes below, in order to avoid any
confusion.) Notice that this statement is based only on a straightforward application
of the Cauchy-Riemann conditions for the mapping ζ(z), i.e. it does not assume the
existence of a harmonic conjugate neither for ũ, nor for u. Although, for a simply
connected N0 ⊂ N , one can show that every harmonic function is a real part of a
branch of holomorphic in N0 function.

The second observation is related to the Dirichlet-to-Neumann formalism and
makes clear the importance of the notion of the harmonic conjugate function, [7],
Ch.III.

Proposition 3.3. Let Ω be open simply connected bounded domain in R2 with a
C2-smooth boundary ∂Ω. Then the solution of the Neumann problem

(PN)

{
∆u = 0, p ∈ Ω \B ,

∂νu |∂Ω (p) = g(p), p ∈ ∂Ω ,

reduces to the Dirichet problem for the function v, which is harmonic conjugate to
the function u.

To make this evident, notice first that the normal derivative here is defined in the
sense of (2.1). Let the boundary ∂Ω be parameterized by the natural parameter of
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its arc-length: ∂Ω = {Γ(τ) ∈ C}τ∈[0,l). Then, the Cauchy-Riemann conditions (3.1)
imply that

∂τv |∂Ω (p) = ∂νu |∂Ω (p) = g(p). (3.4)

Since by integration along the contour Γ, one obtains

v(p1) = v(p0) +

∫ τ1

τ0

dτ ∂τv(Γ(τ)) = v(p0) +

∫ τ1

τ0

ds g(Γ(τ)) =: f(p1) ,

the solution of (PN) is equivalent to the Dirichlet problem (PD) for v and the
boundary conditions f .
2. To outline the main steps in reconstructing the unknown boundary ∂B, we
consider first the problem (P2) for the Dirichlet case α = +∞:

(P∞d=2)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

u |∂B (ω) = 0, ω ∈ ∂B .

It is well-known, see e.g. [7], [10], that the doubly connected bounded
domain Ω \B is the image of a conformal mapping of an annulus

AB := {z ∈ C : 0 < ρB < |z| < 1} (3.5)

produced by a bijective holomorphic function ζ(z). This function maps boundaries
to boundaries: ζ : CρB → ∂B and ζ : Cr=1 → ∂Ω.
(i) The first step is to find the trace ζ |C1 of the unknown function ζ(z) on the
external unit circle Cr=1.
(ii) Then the next step is to reconstruct the function ζ(z) in the whole annulus AB,
which solves the geometrical inverse problem (see Introduction 1.2 (a)) by tracing
the boundary ∂B as the limit of ζ from inside: ∂B = {ζ(z)} |z→CρB := ζ(CρB).
(i) Let external boundary in the problem (P∞d=2) be parameterized by the natural
parameter of its arc-length: ∂Ω = {Γ(τ) ∈ C}τ∈[0,l). Then the trace of the conformal
mapping ζ : C1 → ∂Ω defines by the equation:

ζ(eiφ) = Γ(τ) , for φ ∈ [0, 2π) , (3.6)

with the condition ζ(eiφ) |φ=0= Γ(0), a bijective function φ : τ 7→ φ(τ) ∈ [0, 2π).
Therefore, to calculate the trace of the function ζ(z) on the external unit

circle Cr=1 is equivalent to finding a solution φ(τ) of (3.6), or the corresponding
inverse function τ(φ).

To this end, let uf be a solution of the problem (P∞d=2). Then, by Proposition
3.2, the function ũf̃ := uf ◦ ζ is harmonic in the annulus AB and is a solution of
the Dirichlet problem

(P̃∞d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

ũ |CρB (ω) = 0, ω ∈ CρB .

Here f̃(p) = (f ◦ ζ)(p) = f(ζ(p)) = f(ξ(x, y), η(x, y)) and p = (x, y) ∈ C1.
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Consider the solution uf of the Dirichlet problem (P∞d=2). Then, the
Dirichlet-to-Neumann operator Λ∂Ω for the external boundary ∂Ω is defined sim-
ilarly to (1.2):

Λ∂Ωf = ∂νuf |∂Ω=: g . (3.7)

Let vf be harmonic conjugate to uf . Then by (3.4) we obtain that for external
boundary ∂Ω

∂τvf |∂Ω (τ) = ∂τvf (Γ(τ)) = ∂νuf (Γ(τ)) = (Λ∂Ωf)(Γ(τ)) =

(Λ∂Ωf)(ζ(eiφ(τ))) = (Λ∂Ωf ◦ ζ)(eiφ(τ)) . (3.8)

With conformal mapping ζ , the relation (3.8) can be rewritten as:

∂τvf (Γ(τ)) = ∂τvf (ζ(eiφ(τ))) = ∂φ(vf ◦ ζ)(eiφ(τ)))∂τφ(τ) . (3.9)

Since ũf̃ := uf ◦ ζ and ṽf̃ := vf ◦ ζ , see (P̃∞d=2), by (3.4), we obtain

∂φ(vf ◦ ζ)(eiφ)) = ∂φṽf̃ (φ) = ∂ν ũf̃ |C1 (φ) = ΛC1(f ◦ ζ)(eiφ) , (3.10)

with a usual convention about the normal derivative ∂ν(·) |C1 on the unit circle C1.
Here, ΛC1 : f̃ 7→ ∂ν ũf̃ |C1 is the Dirichlet-to-Neumann operator corresponding to

the problem (P̃∞d=2).
Relations (3.8)-(3.10) yield the following differential equation for φ = φ(τ):

∂τφ =
(Λ∂Ωf ◦ ζ)(eiφ)

ΛC1(f ◦ ζ)(eiφ)
. (3.11)

For a given boundary Γ, the solution φ(τ) of equation (3.11) gives a trace of the
function ζ(z) on the circle C1. Indeed, by (3.6), we obtain that on C1 it is defined
by:

ζ(eiφ) = Γ(τ(φ)) , for φ ∈ [0, 2π) , (3.12)

where τ(φ) is the function, which is inverse to φ(τ).
3. Hence, for a fixed boundary Γ, one can in principle find the trace ζ(z) |C1 using
the scheme outlined above. To this end, let f̃ ∈ W 1

2 (C1), where we identify C1 with
[0, 2π], see problem (P̃∞d=2). Then, the solution of this problem takes the form:

ũf̃ (ρ, φ) = a0 ln ρ+ b0 + (3.13)
∞∑
n=1

[
(anρ

n + bnρ
−n) cosnφ+ (cnρ

n + dnρ
−n) sinnφ

]
,

The coefficients in expansion (3.13) are equal to the following:

an =
f̃1,n

(1− ρ2n
B )

, bn = − ρ2n
B f̃1,n

(1− ρ2n
B )

, a0 = − f̃1,0

ln ρB
, b0 = f̃1,0 , (3.14)

cn =
f̃2,n

(1− ρ2n
B )

, dn = − ρ2n
B f̃2,n

(1− ρ2n
B )

. (3.15)
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They are related to the Fourier series coefficients for f̃(φ):

f̃1,0 =
1

2π

∫ 2π

0

dφf̃(φ), f̃1,n =
1

π

∫ 2π

0

dφf̃(φ) cosnφ, f̃2,n =
1

π

∫ 2π

0

dφf̃(φ) sinnφ.

Then, the corresponding Dirichlet-to-Neumann operator (3.10) acts as a bounded
operator from W 1

2 (C1) to L2(C1):

ΛC1 f̃(φ) = ∂ν ũf̃ |C1 (φ) = (3.16)

− f̃1,0

ln ρB
+
∞∑
n=1

n [(an − bn) cosnφ+ (cn − dn) sinnφ] .

By (3.10) and (3.16), we obtain the identity:∫ 2π

0

dφΛC1 f̃(φ) = − 1

ln ρB

∫ 2π

0

dφf̃(φ) ,

which implies by (3.8)-(3.10) that the radius of the internal circle is defined as

ρB = exp

{
−
(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

)(∫
∂Ω

dτ ∂τφ(τ)∂φ(vf ◦ ζ)(eiφ(τ))

)−1
}

= exp

{
−
(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

)(∫
∂Ω

dτ ∂νuf (Γ(τ))

)−1
}

. (3.17)

Relation (3.17) allows the calculation of ρB if one knows the trace ζ(z) |C1 ,
but by (3.12), we have ζ(eiφ(τ)) = Γ(τ), the first equation to solve is (3.11).
Notice that by definition ∂Ω = {Γ(τ) ∈ C}τ∈[0,l) and by (3.6),(3.11) one notes this
constraint:

l =

∫ 2π

0

dφ
ΛCρB ,C1(f ◦ ζ)(eiφ)

(Λ∂B,∂Ωf ◦ ζ)(eiφ)
, (3.18)

as well as that the solution τ(φ) of (3.11) must be a 2π-periodic function of φ.
Here, we explicitly recall the second boundary dependence for the both Dirichlet-
to-Neumann operators: ΛC1 = ΛCρB ,Cρ=1 and Λ∂Ω = Λ∂B,∂Ω.

Example 3.4. We illustrate the above by a trivial example of the round Dirichlet
absorbing cell. Let boundaries ∂Ω = CR and ∂B = CrB be two concentric circles
with radius rB, which the only unknown parameter that should be defined as a
solution of the inverse geometrical problem. Following our scheme, the domain
Ω \B is the image of a conformal mapping of an annulus

AB := {z ∈ C : 0 < ρB < |z| < 1} (3.19)

produced by a bijective holomorphic function ζ(z). This function maps boundaries
to other boundaries: ζ : CρB → ∂B and ζ : Cr=1 → ∂Ω.

By virtue of the rotational symmetry, one can try to solve this problem for
∂B via (P∞d=2) with boundary conditions u |∂Ω (p) = f independent of arg(p).
Then solution of the direct problem (P∞d=2) is given by the n = 0 version of (3.13):
uf (ρ, φ) = a ln ρ + b for rB < ρ < R. Taking into account boundary conditions
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one finds a and b and the explicit form of the corresponding Dirichlet-to-Neumann
operator:

Λ∂B,∂Ω : f 7→ ∂νuf |CR =
1

R (lnR− ln rB)
f . (3.20)

(Note that our example is so simple that the one-measure of the ”voltage-current”
data {f, j := Λ∂B,∂Ωf} is enough to uniquely define the operator Λ∂B,∂Ω that solves
the problem of rB explicitly.)

Since the conformal mapping for the exterior boundaries gives ζ(eiφ) =

R eiφ, for p ∈ C1 (trace ζ |C1), one gets f̃(p) := (f ◦ ζ)(p) = f(ζ(eiφ)) =
f(Reiφ) = f . Then, by (3.13), the Dirichlet-to-Neumann operator for the problem
(P̃∞d=2) has the form:

ΛCρB ,Cρ=1 : f̃ 7→ ∂ν ũf̃ |C1= −
1

ln ρB
f̃ . (3.21)

Then, by (3.20), we get for the numerator in (3.11):

(Λ∂B,∂Ωf ◦ ζ) =
1

R (lnR− ln rB)
f ◦ ζ =

{
R ln

R

rB

}−1

f̃ , (3.22)

and by (3.21) one obtains for denominator in (3.11):

ΛCρB ,Cρ=1(f ◦ ζ) = − 1

ln ρB
f̃ . (3.23)

Inserting (3.22) and (3.23) into (3.17) (or into (3.18), where l = 2π R) we obtain
that ρB = rB/R, i.e. for internal boundaries, the conformal mapping gives:
ζ(ρBe

iφ) = rBe
iφ = R ρBe

iφ. This implies that the mapping is ζ(z) = R z (see
(ii)), and also the evident final result about the form of the boundary ∂B as the
trace of ζ(z) on the CρB .

4. This example shows that τ(φ) is a 2π-periodic extension of the linear function

τ0(φ) :=
l

2π
φ , φ ∈ [0, 2π) . (3.24)

The result is a simple linear form of the corresponding conformal mapping. Any
deviation from concentric domains ∂Ω = CR and ∂B = CrB makes the function
τ(φ) non-linear, but still obeying condition (3.18).

A less trivial application of the scheme presented above is the example of
non-concentric domains ∂Ω = CR and ∂B = CrB . In this case the conformal
mapping ζ is a priori known: it is the Möbius transformation, and one can proceed
with this trial ζ along the same line of reasoning as in Example 3.4, see [2].
Illustration of the inverse geometrical problem solution needs a complete application
of the above formalism, since now, one has to solve two coupled equations (3.11)
and (3.17) with condition (3.18). (ii) We rewrite these equations (incorporating the
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constraint (3.18)) in the following form:

ρB = exp

{
−
(∫ 2π

0

dφ (f ◦ ζ)(eiφ)

)(∫
∂Ω

dτ ∂νuf (Γ(τ))

)−1
}
, (3.25)

∂φτ =
l

2π
+

ΛCρB ,C1(f ◦ ζ)

(Λ∂B,∂Ωf ◦ ζ)
− 1

2π

∫ 2π

0

dφ
ΛCρB ,C1(f ◦ ζ)(eiφ)

(Λ∂B,∂Ωf ◦ ζ)(eiφ)
. (3.26)

Notice that by (3.22) and (3.23) for concentric domains ∂Ω = CR and ∂B = CrB
the last two terms in (3.26) cancel. Therefore, one can consider this case as the zero-
order approximation τ = τ0(φ) for the solution of (3.26) with ζ = ζ0(z) := z and
ρB = ρ0 := rB/R. This observation implies that one can consider equations (3.25)
and (3.26), together with relations ζn(eiφ) = Γ(τn(φ)), see (3.12), as a non-linear
iterative scheme to obtain ρB and the function τ(φ) (or ζ(z)), cf [9]:

ρn = exp

{
−
[∫ 2π

0

dφ(f ◦ ζn)(eiφ)

] [∫
∂Ω

dτ∂νuf (Γ(τ))

]−1
}
, (3.27)

∂φτn+1 =
l

2π
+

ΛCρn ,C1(f ◦ ζn)

(Λ∂B,∂Ωf ◦ ζn)
− 1

2π

∫ 2π

0

dφ
ΛCρn ,C1(f ◦ ζn)(eiφ)

(Λ∂B,∂Ωf ◦ ζn)(eiφ)
, (3.28)

ζn(eiφ) = Γ(τn(φ)) . (3.29)

Remark 3.5. Suppose that for n→∞ the iterations converge: ρn → ρB, τn(φ)→
τ(φ) and for given Γ: ζn(z)→ ζ(z). Then, the function Γ(τ(φ)) can be presented
as the Fourier series:

Γ(τ(φ)) =
∑
s∈Z

γse
isφ . (3.30)

Since Γ(τ(φ)) is the image of the external boundary C1 by the seeking function
ζ(z), the coefficients γs are the same as in the Laurent series for this function in
the annulus AB:

ζ(z) =
∑
s∈Z

γsz
s . (3.31)

Now, the final step is to observe that the unknown internal boundary ∂B
coincides with the conformal image {Γ∂B(φ)}0≤φ<2π = ζ(CρB) of the internal AB-
circle CρB with the radius ρB < 1 calculated by iterations (3.27):

Γ∂B(φ) =
∑
s∈Z

(ρB)s γse
isφ . (3.32)

The relation (3.32) formally solves the inverse geometrical problem for Dirichlet
boundary conditions on the unknown contour ∂B = {Γ∂B(φ)}0≤φ<2π.

4. Constant boundary conditions

1.1 Problem (Pf±=1,0). Below we suppose that Ω and B ⊂ Ω are open bounded
domains in R2 with C2-smooth disjoint boundaries ∂Ω and ∂B, that is, ∂(Ω \B) =
∂Ω ∪ ∂B and ∂Ω ∩ ∂B = ∅.
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The unknown internal boundary ∂B should be found from the solution u of
the Dirichlet problem:

(Pf±=1,0)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f+(p) = 1, p ∈ ∂Ω ,

u |∂B (p) = f−(p) = 0, p ∈ ∂B ,

with help of the given (measured) Neumann data: g(p) = ∂νu |∂Ω (p), exterior
normal derivative on the external boundary p ∈ ∂Ω.

Remark 4.1. Notice that one can always find a conformal mapping that transforms
domain Ω into a unit disc. Therefore, we put for simplicity Ω = Dr=1, the unit
disc, i.e. ∂Ω = C1, is the unit circle.

Remark 4.2. Since below we use a conformal map approach to the localization of
the internal boundary ∂B, we identify the R2-points p = (x, y) with those of the
complex plane C by: p 7→ z(p) := x + iy ∈ C. Then it is known, see e.g. [7],
that the harmonic function solving (Pf±=1,0) can be viewed as the real part of a
holomorphic in domain Ω \ B function û(z) , i.e., u(p) = Re û(z(p)). We put
û(z) = u(x, y) + iv(x, y), where v(x, y) is harmonic conjugate to u(x, y), [7].
Recall that for a doubly-connected domain, the function û(z) may be multi-valued.
Then, we consider for û(z) only one (principle) branch.

Remark 4.3. Recall that in polar coordinates z = reiφ ∈ C the measured Neumann
data g on C1 take the form:

g(φ) = er · ∇u |z∈C1= (cosφ ∂xu+ sinφ ∂yu) |z∈C1=

= ∂ru(r cosφ, r sinφ) |r=1 . (4.1)

We also recall that the Cauchy-Riemann conditions in these coordinates can be
written as:

∂ru =
1

r
∂φv ,

1

r
∂φu = − ∂rv . (4.2)

1.2 Problem (P ∗f±=1,0). Let the holomorphic function w : z = (x+iy) 7→ (w1 +iw2)

Map the doubly-connected bounded domain D1 \B ⊂ C into annulus

AB := {w ∈ C : 0 < ρB < |w| < 1} . (4.3)

This function maps boundaries to other boundaries: w : ∂B → CρB and w : ∂Ω =
C1 → C1 and define the function U(w1, w2) by

u(x, y) = (U ◦ w)(x, y) = U(w1(x, y), w2(x, y)) . (4.4)

Then, the problem (Pf±=1,0) transfers into

(P∗f±=1,0)


∆U = 0, p ∈ D1 \DρB ,

U |C1 (p) = 1, p ∈ C1 ,

U |CρB (p) = 0, p ∈ CρB ,
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with the exterior normal derivative:

∂νU |z∈C1 (w(z)) =

(
1

|w′(z)|
g(z)

) ∣∣∣
z∈C1

. (4.5)

Notice that the value of the normal derivative (4.5) is B-dependent via conformal
mapping w.
1.3 Solution of the Problem (P ∗f±=1,0). For the general solution, one easily finds a
representation in the (complex) polar coordinates w = ρeiϕ:

U(ρ, ϕ) = a+ b ln ρ+
∑
n∈Z\0

(anρ
neinϕ + bnρ

−ne−inϕ) ,

which is simply the standard Fourier-series representation. By virtue of the boundary
conditions, we obtain:

a = 1 , b = − 1

ln ρB
, an = bn = 0 .

Then, Consequently, we get for the solution the explicit form:

U(w1, w2) = U(ρ, ϕ) =
ln(ρ/ρB)

ln(1/ρB)
=

1

ln(1/ρB)
ln
|w|
ρB

, (4.6)

and the corresponding B-dependent normal derivative on the external boundary C1,
cf. (4.5):

∂νU |C1 (w) = ∂ρU(ρ, ϕ) |ρ=1=
1

ln(1/ρB)
. (4.7)

Notice that in contrast to the Problem (Pf±=1,0), the Neumann data (4.7) for the
Problem (P ∗f±=1,0) are isotropic and they depend on B only via radius ρB.

It is clear that to proceed with localization of the internal boundary ∂B, one
has to find the conformal mapping w(z). The relations (4.5) and (4.7) yield the
functional equation:

1

ln(1/ρB)
=

(
1

|w′(z)|
g(z)

) ∣∣∣
z∈C1

(4.8)

for w. This equation is insufficient, since it is localized only on the boundary C1.
To overcome this difficulty, we use complex extensions of (Pf±=1,0) and (P ∗f±=1,0)
indicated in Remark 4.2.
2.1 Complex extension. Let us define the complex extension of (4.6) by

Û(w = w1 + iw2) :=
1

ln(1/ρB)
ln

w

ρB
= (U + iV )(w) , (4.9)

where V = argw is the harmonic conjugate to U = ln |w| and corresponds to the
principle branch of the logarithm. Hence, one can similarly introduce the function

û(z) := Û(w(z)) = (u+ iv)(z) =
1

ln(1/ρB)
ln
w(z)

ρB
, (4.10)

where v is the harmonic conjugate to u.
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2.2 Complex extension and the Problem (Pf±=1,0). By (4.10), one gets

u(x, y) = Re û(z) =
1

ln(1/ρB)
ln
|w(z)|
ρB

.

Let z = reiφ. Then by virtue of (4.1), (4.10) and

∂rû(z) = (∂ru+ i∂rv)(z) = û
′
(z) eiφ =

1

ln(1/ρB)

w
′
(z)

w(z)
eiφ , (4.11)

we obtain the following equation:

∂ru |C1= Re

{
1

ln(1/ρB)

w
′
(eiφ)

w(eiφ)
eiφ
}

= g(φ) . (4.12)

Notice that the Cauchy-Riemann conditions (4.2) implies:

∂rv(z = reiφ) = −1

r
∂φu(reiφ) = − 1

r ln(1/ρB)
∂φ ln |w(reiφ)| . (4.13)

Since for r = 1, we have |w(eiφ)| = 1, one gets ∂rv(z) |C1= 0, i.e. the condition
Re in (4.12) is superfluous as soon as we stick to the external boundary C1:

1

ln(1/ρB)

w
′
(eiφ)

w(eiφ)
eiφ = g(φ) . (4.14)

2.3 Solution for conformal mapping w(z). Motivated by (4.14), we define a
continuation of (4.12) from the external boundary C1 into domain Ω \ B. To this
end, we introduce a holomorphic in Ω\B function F with the corresponding Laurent
series:

F (z) :=
1

ln(1/ρB)

w
′
(z)

w(z)
z = F0 +

∞∑
n=1

(Fn z
n + F−n z

−n) . (4.15)

Then by periodicity of g and by (4.14), (4.33) we obtain the relation

g(φ) =
∑
n∈Z

gne
inφ = F (z = eiφ) , (4.16)

which implies Fn = gn and gn = g−n, for n ∈ Z, as well as equation

1

ln(1/ρB)

w
′
(z)

w(z)
z = g0 +

∞∑
n=1

(gnz
n + g−nz

−n) . (4.17)

Therefore, one has

∂z lnw(z) = ln(1/ρB)

[
g0

z
+
∞∑
n=1

(gnz
n−1 + g−nz

−n−1)

]
. (4.18)

Hence, we obtain:

w(z) = w0 z
g0 ln(1/ρB) exp

[
ln(1/ρB)

∞∑
n=1

(gnz
n − g−nz−n)/n

]
. (4.19)
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Since w : C1 → C1, one obviously gets

w(eiφ) = eiϕ(φ) and w(ei(φ+2π)) = eiϕ(φ+2π) = eiϕ(φ) , (4.20)

which implies that g0 ln(1/ρB) = 1 and

ρB = e−1/g0 , (4.21)

i.e., we must put g0 > 0. Notice that |w(eiφ)| = 1 and (4.21) yield |w0| = 1, which
we can choose to be real. Therefore, one finally obtains for the conformal mapping
w the expression:

w(z) = z exp

[
(1/g0)

∞∑
n=1

(gnz
n − g−nz−n)/n

]
, (4.22)

which is completely defined by the measured Neumann data g(p) on the external
boundary C1.

Remark 4.4. In spite of the obvious remark: ∂φ|w(eiφ)| = 0, which we used to
establish (4.14), the derivative ∂φw(eiφ) = eiϕ(φ) ∂φϕ(φ) 6= 0. This means that ϕ(φ)
is a nontrivial periodic function on C1 , see (4.20).

3.1 Inverse conformal mapping. According to our construction (see 1.2), the
inverse function z(w) maps CρB into the contour ∂B, i.e. formally ∂B = {z(w =
ρBe

iϕ)}ϕ∈[0,2π).
Note that by using (4.33), we can introduce the holomorphic function:

G(w) := F (z(w))−1 = ln(1/ρB)
z
′
(w)

z(w)
w = G0 +

∞∑
n=1

(Gnw
n +G−nw

−n) , (4.23)

where the last sum is the corresponding Laurent series. Hence, following the same
line of reasoning as in Section 2, we obtain:

z(w) = z0 w
G0/ ln(1/ρB) exp

[
(ln(1/ρB))−1

∞∑
n=1

(Gnw
n −G−nw−n)/n

]
. (4.24)

Notice that on the circle C1 the function z(w = eiϕ) is periodic. Then, the
same is true for G. By arguments similar to those in Section 2, this function has the
Fourier coefficients satisfying the same properties as gn in (4.16), i.e. by (4.23) one
gets:

Gn = G−n =
1

2π

∫ π

−π
dϕ G(eiϕ) e−inϕ . (4.25)

3.2 Localization of ∂B. Since z : C1 → C1, then similar to Section 2, the
representation (4.24) for this periodic function implies that we can choose z0 = 1
and that G0/ ln(1/ρB) = 1, or G0 = 1/g0. By virtue of (4.16) and (4.23) the other
coefficients are given by

Gm =
1

2πi

∫
C1

dw
1

wm+1

1

F (z(w))
=

1

2π

∫ 2π

0

dφ
eiφ

g(φ)

w′(eiφ)

wm+1(eiφ)
. (4.26)
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Since the conformal mapping w has been already calculated in (4.22) for given
Neumann data g, formulae (4.26) solve the problem of inversion z(w) , see (4.24).

Hence in the cases f+ = 1 and f− = 0, the position of unknown boundary
∂B is defined for a given Neumann data g as a set:

∂B = {z(w = ρBe
iϕ)}ϕ∈[0,2π) , (4.27)

which is uniquely defined by (4.24),(4.26) and auxiliary radius ρB = e−1/g0 .
3.3 Existence and uniqueness. Notice that existence and uniqueness of the solution
(4.27) follow from the explicit construction in the above subsection 3.2. This
statement is not unconditional. The first necessary condition is:
(i) g0 > 0, see (4.21).
Another restriction follows directly from the f±-boundary conditions for the Problem
(Pf±=1,0):
(ii) g(φ) > 0, see (4.5) and (4.7).
(iii) A more subtle constraint for the given Neumann data g(φ) follows from the
conditions insuring the invertibility of the conformal mapping w. We study this
restriction first for the particular example in the next subsection 4.1.
4.1 Let g0 > 0 and g1 > 0. By (4.22) one gets

w(z) = z exp
[
(g1/g0)(z − z−1)

]
, (4.28)

but our aim is to inverse the function w(z), i.e. to find (4.24) and then to calculate
the unknown boundary ∂B (4.27).

It is worth noting that despite |w(z = eiφ)| = 1, the conformal mapping
(4.28) acts nontrivially on C1 since, see (4.20):

w(eiφ) = eiφ exp [2i(g1/g0) sinφ] = eiϕ(φ) . (4.29)

Equation (4.29) yields for the function ϕ(φ) the expression:

ϕ(φ) = φ+ 2(g1/g0) sinφ . (4.30)

4.2 Notice first that the general conditions on g(φ) imply: g0 > 0 and g0 > 2g1,
see (i) and (ii). For example, the importance of g0 > 2g1 is directly related to
monotonicity of the function (4.30).

A more delicate condition (iii) requires that w : ∂B → CρB and in particular:

w(z = r(φ)) |φ=0= r(φ) exp
[
(g1/g0)(r(φ)− r(φ)−1)

]
|φ=0= ρB ,(4.31)

w(z = −r(φ)) |φ=π= −r(φ) exp
[
(g1/g0)(−r(φ) + r(φ)−1)

]
|φ=π= −ρB .(4.32)

Notice that for given g0 > 0 and g0 > 2g1, the solution of (4.31) for r(φ = 0)
always exists and is unique. Whereas for r(φ = π), this is not true. Indeed, for any
r < 1, the function defined by the left side of (4.32):

Fε(r) := r exp
[
ε(−r + r−1)

]
> 0 , ε := g1/g0 < 1/2 , (4.33)

is monotonously increasing, for increasing ε. Hence, there is a critical value εcr :
0 < εcr < 1/2, corresponding to condition

min
r≤1

Fεcr(r) = ρB , (4.34)
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and there are no solutions r(φ = π) < 1 of (4.32) for ε > εcr. Let g0 = 1. Then,
one obtains from (4.34) the equation for εcr in the form:

ln[(1−
√

1− 4ε2)/2ε] +
√

1− 4ε2 + 1 = 0 . (4.35)

Equation (4.35) implies that a solution for r(φ = π) does not exist, when 1/2 > g1,
but g1 > gcr = 0, 13796148... . This means that for g1 > gcr, the conformal map w
is not invertible, i.e. the image ∂B is not correctly defined.

We illustrate this evolution of conformal mapping and the form of the internal
absorbing boundary ∂B as a function of g1 for g0 = 1 by Figures 1-5.

FIG. 1. Internal boundary ∂B for g0 = 1 and g1 = 0, 125 < gcr

On the last two figures, one observes that the boundary ∂B is not closed
because of small gaps for ϕ(φ = π) = π, see (4.30). This is a numerical indication
that the conformal map w is not invertible for g1 > gcr.

5. Concluding remarks

1. First, we comment the case α = 0, i.e. the Neumann boundary conditions on
the absorbing cell ∂B, see (P2). Then, (P∞d=2) is transformed into the following
problem:

(Pα=0
d=2)


∆u = 0, p ∈ Ω \B ,

u |∂Ω (p) = f(p), p ∈ ∂Ω ,

∂νu |∂B (ω) = g(ω), ω ∈ ∂B .

To map domain Ω \ B onto annulus (4.3), we use the same holomorphic func-
tion ζ(z). Since conformal mappings preserve angles, the corresponding problem
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FIG. 2. Internal boundary ∂B for g0 = 1 and g1 = 0, 135 < gcr

FIG. 3. Internal boundary ∂B for g0 = 1 and g1 = 0, 13796148 < gcr

assumes the form:

(P̃α=0
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

∂ν ũ |CρB (ω) = |∂zζ(ω)|g̃(ω), ω ∈ CρB .

Here ∂ν(·) |CρB is the external normal derivative at the point ω ∈ CρB = ζ(∂B) for
a value proportional to g̃(ω) = (g ◦ ζ)(ω).
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FIG. 4. Internal boundary ∂B for g0 = 1 and g1 = 0, 13815648 > gcr

FIG. 5. Internal boundary ∂B for g0 = 1 and g1 = 0, 13824948 > gcr

It is clear now that our scheme must be considerably modified (simplified),
since the actual boundary conditions depend on an unknown conformal mapping ζ .
Note that this cannot be aided by Proposition 3.3 to reduce the Neumann boundary
condition to Dirichlet, since our domain is not simply connected. The external data
for solving the inverse geometrical problem correspond to f̃(p), so we prefer to
simplify the conditions on the cell surface ∂B and set g = 0, which excludes the
annoying dependence of the Neumann boundary conditions on derivative ∂zζ .
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2. Consider the problem (P̃α=0
d=2) for g̃ = 0.

(P̃0
d=2)


∆ũ = 0, p ∈ AB ,

ũ |C1 (p) = f̃(p) , p ∈ C1 ,

∂ν ũ |CρB (ω) = 0 , ω ∈ CρB .

Example 5.1. As above (see Example 3.4) we first illustrate a possible strategy to
solve (P̃0

d=2) by a simple example of the round Neumann absorbing cell.
Let boundaries ∂Ω = CR and ∂B = CrB be two concentric circles with

radius rB, which is the only unknown parameter that should be defined as a
solution of the inverse geometrical problem. Moreover, since ζ : CρB → ∂B = CrB
and ζ : Cr=1 → ∂Ω = CR, we find this conformal mapping coincides with the same
linear mapping, ζ(z) = Rz, as in Example 3.4, i.e. ρB = rB/R.

Notice that the constant external condition f̃(p) = (f ◦ζ)(p) = f(Reiφ) = f ,
p ∈ C1, implies a trivial constant solution uf = ũf = f . Therefore, we consider
the one-mode boundary condition defined by f̃(eiφ) = (f ◦ ζ)(eiφ) = f(Reiφ) =
f(φ) := f cosφ. Then by general solution (3.13) in annulus one obtains for the
Dirichlet-to-Neumann operator, (Pα=0

d=2) with g = 0:

Λ∂B,∂Ω : f(φ) 7→ ∂νuf |CR =
R2 − r2

B

R (R2 + r2
B)
f(φ) . (5.1)

Similarly one obtains for for the problem (P̃0
d=2):

ΛCρB ,Cρ=1 : f(φ) 7→ ∂ν ũf̃ |C1=
1− ρ2

B

(1 + ρ2
B)

f(φ) . (5.2)

By virtue of ρB = rB/R, (5.1) and (5.2) imply that relations (3.17) and (3.18),
where l = 2π R, are valid with solution (3.24): τ0(φ) := (l/2π)φ , φ ∈ [0, 2π) .

This example shows that following along verbatim through the arguments of
Section 3.4, one obtains the same iterative scheme (3.27)-(3.29), but with Dirichlet-
to-Neumann operators that are defined by the Neumann problems (Pα=0

d=2) and
(P̃0

d=2). Example 5.1 gives the zero-order approximation for solution. 3. Re-
call that the aim of present note is to advocate a formal solution of some d = 2
inverse geometrical problems, see e.g. Remark 3.5. Since the error in calculations
of the coefficients {γs}s∈Z, see (3.30), can be exponentially amplified in expression
(3.32) for the boundary ∂B, it is clear that the problem is ill-posed, i.e. it demands
further analysis.

We plan to return to numerical implementations of this formal iterative
scheme elsewhere. The cut-offs and regularizations, as well as their possible gener-
alizations to Robin boundary conditions need to be studied.
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