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The problem of kernel determination from viscoelasticity system
integro-differential equations for homogeneous anisotropic media
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We consider the problem of reconstructing the time-dependent history of the viscoelasticity medium from the viscoelasticity system of equations

for an homogeneous anisotropic medium. As additional information, the Fourier image of the displacement vector for values ν = ν0 6= 0 of

transformation parameter is given. It is shown that if the given functions satisfy some conditions of agreement and smoothness, the solution

for the posed problem is uniquely defined in the class of a continuous functions and it continuously depends on given functions.
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1. Setting up the problem and main result

We consider the integro–differential system for x = (x1, x2, x3) ∈ R3, t ∈ R:

ρ
∂2ui
∂t2

=

3∑
j=1

∂Tij
∂xj

+ f(x, t), i = 1, 2, 3, (1)

at the initial conditions

ui |t<0≡ 0. (2)

Here, u(x, t) = (u1(x, t), u2(x, t), u3(x, t))
∗ is the displacement vector function, ∗ is the sign of transposition, Tij

denotes the stress tensor related to the viscoelastic medium. More exactly, we have:

Tij(x, t) =

3∑
k,l=1

cijkl

∂uk∂xl
(x, t) +

t∫
0

Ki(τ)
∂uk
∂xl

(x, t− τ)dτ

 , (3)

f(x, t) = (f1(x, t), f2(x, t), f3(x, t))∗ is the external force; ρ > 0 is the density of the medium. In equality (3),
coefficients cijkl are the elastic moduli of the medium. It is convenient and customary to describe the elastic moduli
in the terms of a 6× 6 matrix according to the following conventions relating a pair (i, j) of indices i, j = 1, 2, 3
to a single index α = 1, 2, . . . , 6 : (11) → 1, (22) → 2, (33) → 3, (23) = (32) → 4, (13) = (31) → 5,
(12) = (21) → 6. This correspondence is possible due to the symmetry properties cijkl = cjikl = cijlk. The
additional symmetry property cijkl = cklij implies that the matrix C = (cαβ)6×6 of all moduli is symmetric, where
α = (ij), β = (kl). We will also assume that ρ > 0, cijkl are constants and the matrix C = (cαβ)6×6 is positive
definite.

Many important materials used in modern technologies (such as nanotechnology) are viscoelastic and anisotropic.
Viscoelastic materials have the properties of viscosity and elasticity upon deformation. Some mathematical models
in the field of nanotechnology are contained, for example, in articles [1, 2] (see also references in them). In math-
ematical modeling of processes taking place in viscoelastic materials, there is a so-called system with memory,
whose behavior is not completely determined by the state at the moment, but depends on the systems entire history,
and therefore, describes an integro–differential equation that contains the corresponding integral with respect to the
time variable. The system of equations (1), taking into account the integral term (3) is the basic in the linear theory
of viscoelastic anisotropic media.

A study of inverse problems for hyperbolic integro–differential equations and systems is the subject of research
by many authors. Among the problems that are closer to the present work can be identified [3–9]. In papers [3,4],
the unique solvability and stability of the solution for the inverse problem for the identification of a memory
kernel from Maxwell’s system integro-differential equations for a homogeneous anisotropic media are studied. In
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work [5], the inverse problem for a second order hyperbolic equation with an integral member of convolution
type with respect to one-dimensional time - dependent memory function of the medium and solution of the direct
problem is investigated. By Fourier’s method, this problem is reduced to solving the Volterra integral equations
with respect to the unknown functions of the time-dependent variable. In papers [6,7] (see also references therein)
the problem of determining the multidimensional kernel in viscoelasticity equation for an inhomogeneous isotropic
medium is investigated. In [8, 9], the problem of the one-dimensional kernel reconstruction from viscoelasticity
equation in the bounded and unbounded domains has been studied. The theorems for the global unique solvability
of these problems in the class of continuous functions with weighted norms were proved. The basic feature inherent
in [3, 4, 6–9] and this paper is to use a boundary-localized and/or a fixed point of the spatial domain source, for
the initiation of the physical process of wave propagation. Finally, we recall that the papers [10–13] are concerned
with the problems of kernel determination from integro-differential equations with an integral of the convolution
type. In the present paper, the approach of the works [3, 4] will be used.

We will consider the problem (1) – (2) for the case in which the function f(x, t) has the form:

f(x, t) = ~eδ(x)δ′(t), (4)

where ~e =

(
1√
3
,

1√
3
,

1√
3

)
is unit vector; δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function of the space

variable concentrated at x1 = 0, x2 = 0, x3 = 0; δ′(t) is the derivative of Dirac delta function of the time variable
concentrated at t = 0.

The problem in which the vector u(x, t) = (u1, u2, u3) (x, t) should be determined from (1) – (4) for given
matrices K(t) = diag (K1,K2,K3) (t), C = (cαβ)(6×6) and number ρ > 0 will be called the direct problem.

Let U(ν, t) = (U1, U2, U3) (ν, t) be the Fourier image of u(x, t) with respect to x = (x1, x2, x3) ∈ R3,
respectively, i.e.:

Uj(ν, t) =

∫
R

uj(x, t)e
i(x,ν)dx, ν = (ν1, ν2, ν3) ∈ R3, (x, ν) =

3∑
λ=1

xλνλ, j = 1, 2, 3,

where ν is the parameter of transformation. We pose the following inverse problem: find the matrix function
K(t) = diag (K1,K2,K3) (t), t ≥ 0 occurring in the integral in equations (3) from the information on the Fourier
image U(ν, t) at an arbitrary time t ≥ 0 for the values ν = ν0 of the Fourier transformation:

U(ν0, t) = g(t), g(t) = (g1, g2, g3). (5)

Definition. A solution of the inverse problem is a matrix function
K(t) = diag (K1,K2,K3) (t) such that the corresponding solution of problem (1) – (4) satisfies condition (5).

The main results of the present paper are the following theorems:

Theorem 1. Let us fix some arbitrary T , T > 0. Suppose that g(t) ∈ C3[0, T ] and the agreement conditions:

g(0) =
~e

ρ
, g′(0) = 0, g′′(0) =

1

ρ2
Q(ν0)~e,

holds. Besides, detQ(ν0) 6= 0, ν0 6= 0, where Q(ν) is matrix definite by formula (12). Then, the inverse problem
(1) – (5) has a unique solution K(t) = diag (K1,K2,K3) (t) ∈ C[0, T ].

Let G(γ) be the set of functions g(t), satisfying the conditions of theorem 1 and ‖gi(t)‖C3[0,T ] ≤ γ < ∞,
t ∈ [0, T ], i = 1, 2, 3, γ – the given number.

Theorem 2. Let Km(t) = diag (Km
1 (t),Km

2 (t),Km
3 (t)) be solution to the inverse problem (1) – (5) with

gm(t) ∈ G(γ), m = 1, 2, respectively. Then, there exists positive constant C, depending on numbers T , ρ, γ and
elements of matrix Q(ν0) so that the following estimate of stability is valid:

3∑
i=1

∥∥K1
i −K2

i

∥∥
C[0,T ]

≤ C
3∑
i=1

∥∥g1i − g2i ∥∥C3[0,T ]
. (6)
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2. The main equations with respect to Fourier’s image

Denote

T̄ij :=

3∑
k,l=1

cijkl
∂vk
∂xl

(x, t). (7)

Then, (3) can be written as the following:

Tij(x, t) = T̄ij(x, t) +

t∫
0

Ki(τ)T̄ij(x, t− τ)dτ, i = 1, 2, 3; j = 1, 2, 3.

Using the symmetry properties of the elastic moduli and the rule of the renumbering of indices, accepted above,
relation (7) obtains the form:

T̄α = cα1
∂v1
∂x1

+ cα6
∂v1
∂x2

+ cα5
∂v1
∂x3

+ cα6
∂v2
∂x1

+ cα2
∂v2
∂x2

+ cα4
∂v2
∂x3

+ cα5
∂v3
∂x1

+ cα4
∂v3
∂x2

+ cα3
∂v3
∂x3

,

α = 1, 2, . . . , 6. (8)

Therefore, for each i = 1, 2, 3, the first terms on the right side of (1) can be written as:

3∑
j=1

∂T̄1j
∂xj

=
∂T̄1
∂x1

+
∂T̄6
∂x2

+
∂T̄5
∂x3

,

3∑
j=1

∂T̄2j
∂xj

=
∂T̄6
∂x1

+
∂T̄2
∂x2

+
∂T̄4
∂x3

,

3∑
j=1

∂T̄3j
∂xj

=
∂T̄5
∂x1

+
∂T̄4
∂x2

+
∂T̄3
∂x3

.

(9)

Formulae (8) and (9) will be used for computing the Fourier’s transformation with respect to the variable x of
the right sides in (1).

We apply the Fourier transformation to both parts of (1) – (4). The Fourier transform of the vector function
u(x, t) exists at any finite t, since the vector function u(x, t), as the solution of the direct problem (1) – (4), is
the sum of a certain singular generalized vector function and a regular vector function, the support of the vector
function u(x, t) being finite [14, chapter 4]. At any fixed ν, the vector function U(ν, t), U(ν, t) – the Fourier
transformation of u(x, t) with respect to x satisfies differential equation:

ρI
∂2U

∂t2
= Q(ν)U(ν, t) +

t∫
0

K(t− τ)Q(ν)U(ν, τ)dτ + ~eδ′(t), ν ∈ R3, t ∈ R, (10)

for the initial conditions:

Ṽ |t≤0 = 0. (11)

In equation (10), we denoted I – the unit matrix of third order, U(ν, t) = (U1, U2, U3)
∗

(ν, t), ~e = (e1, e2, e3) =(
1√
3
,

1√
3
,

1√
3

)
,

Q(ν) =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 , (12)

Qij(ν), 1 ≤ i ≤ 3, 1 ≤ j ≤ 3 – uniform polynomials of second order with respect to ν:
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Q11 (ν) = c11ν
2 + 2c16ν1ν2 + c66ν

2
2 + 2c15ν1ν3 + 2c56ν2ν3 + c55ν

2
3 ;

Q12 (ν) = c16ν
2
1 + (c12 + c66) ν1ν2 + c62ν

2
2 + (c14 + c56) ν1ν3 + (c52 + c64) ν2ν3 + c54ν

2
3 ;

Q13(ν) = c15ν
2
1 + (c14 + c65) ν1ν2 + c64ν

2
2 + (c13 + c55) ν1ν3 + (c63 + c54) ν2ν3 + c53ν

2
3 ;

Q21 (ν) = c61ν
2
1 + (c21 + c66) ν1ν2 + c26ν

2
2 + (c41 + c65) ν1ν3 + (c25 + c46) ν2ν3 + c45ν

2
3 ;

Q22 (ν) = c66ν
2
1 + 2c26ν1ν2 + c22ν

2
2 + 2c64ν1ν3 + 2c24ν2ν3 + c44ν

2
3 ;

Q23 (ν) = c65ν
2
1 + (c64 + c25) ν1ν2 + c24ν

2
2 + (c45 + c63) ν1ν3 + (c23 + c44) ν2ν3 + c43ν

2
3 ;

Q31 (ν) = c51ν
2
1 + (c41 + c56) ν1ν2 + c46ν

2
2 + (c31 + c55) ν1ν3 + (c36 + c45) ν2ν3 + c35ν

2
3 ;

Q32 (ν) = c56ν
2
1 + (c46 + c52) ν1ν2 + c42ν

2
2 + (c54 + c36) ν1ν3 + (c32 + c44) ν2ν3 + c34ν

2
3 ;

Q33 (ν) = c55ν
2
1 + 2c45ν1ν2 + c44ν

2
2 + 2c35ν1ν3 + 2c34ν2ν3 + c33ν

2
3 ,

Thus, the inverse problem (1) – (4) is reduced to the problem of determining the kernel K(t), t > 0 of the
integral part in the equation (10) on the bases of equalities (10), (11) and (5).

3. Proof of the main results

Taking into consideration the fact that tθ(t), where θ(t) – the Heavyside step function, is the fundamental
solution of differential operator ∂2/∂t2, the solution to the direct problem (10), (11) can be represented in the
form:

U(ν, t) =

∫
R

(t− τ)θ(t− τ)

1

ρ
Q(ν)

U(ν, t) +

τ∫
0

K(α)U(ν, τ − α)dα

+
~e

ρ
δ′(τ)

 dτ
= θ(t)

~e
ρ

+
1

ρ

t∫
0

(t− τ)Q(ν)

U(ν, t) +

τ∫
0

K(α)U(ν, τ − α)dα

 dτ

 .
To prove Theorem 1, we begin by setting ν = ν0 in this equation and using supplementary condition (5). This
results in the following equality:

g(t) =
~e

ρ
+

1

ρ

t∫
0

(t− τ)Q(ν0)

g(t) +

τ∫
0

K(α)g(τ − α)dα

 dτ. (13)

Differentiating equation (13) twice with respect to the variable t, we have the following equalities:

g′(t) =
Q(ν0)

ρ

 t∫
0

g(τ)dτ +

t∫
0

τ∫
0

K(α)g(τ − α)dαdτ

 ,
g′′(t) =

Q(ν0)

ρ
g(t) +

Q(ν0)

ρ

t∫
0

K(α)g(t− α)dα.

To obtain an integral equation for K(t), we differentiate the last relation again with respect to t. Multiplying the
left-hand side of result equality by Q−1(ν0), after easily transforming, one gets:

K(t) =
√

3ρ2Q−1(ν0)g′′′(t)−
√

3ρg′(t)−
√

3ρ

t∫
0

K(α)g′(t− α)dα. (14)

For each fixed i (14), is a linear integral second-order equation with respect to the unknown vector function
K(t). As is known, these equations have unique solutions.

We now prove Theorem 2. Consider the integral equation (14) for each i for gm(t), m = 1, 2. Corresponding
to these functions, the solutions of the integral equation (14) are denoted by Km

i (t), m = 1, 2, making the
difference K1

i (t)−K2
i (t), from which we estimate it. From (14), one gets:
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∣∣K1
i (t)−K2

i (t)
∣∣ ≤ C1

∥∥g1i − g2i ∥∥C3[0,T ]
+ C2

t∫
0

∣∣K1
i (τ)−K2

i (τ)
∣∣ dτ, i = 1, 2, 3.

Therefore, taking into account Gronwall’s inequality, we have:∣∣K1
i (t)−K2

i (t)
∣∣ ≤ C3

∥∥g1i − g2i ∥∥C3[0,T ]
, i = 1, 2, 3.

Constants Cj , j = 1, 2, 3 depend on the numbers T , ρ, γ and elements of matrix Q(ν0). The last equalities yield
estimate (6).
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