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ABSTRACT Some approaches to machine learning (ML) such as Boltzmann machines (BM) can be reformu-
lated as energy based models, which are famous for being trained by minimization of free energy. In the
standard contrastive divergence (CD) learning the model parameters optimization is driven by competition of
relaxation forces appearing in the target system and the model one. It is tempting to implement a physical
device having natural relaxation dynamics matching minimization of the loss function of the ML model. In the
article, we propose a general approach for the design of such devices. We systematically reduce the BM,
the restricted BM and BM for classification problems to energy based models. For each model we describe a
device capable of learning model parameters by relaxation. We compare simulated dynamics of the models
using CD, Monte-Carlo method and Langevin dynamics. Benchmarks of the proposed devices on generation
and classification of hand-written digits from MNIST dataset are provided.
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1. Introduction

The recent machine learning (ML) development revolutionized the field of artificial intelligence and unleashed rapid
progress in natural language processing, robot motion planning, art generation and so on. Part of the rapid development
can be attributed to the appearance of new ML models such as transformers, but the appearance of human-like behavior
is connected with the increase of capacity of the models [1]. At the moment, training of large models is an expensive task
requiring 105 hours of A100 GPU and costs millions of dollars. To obtain even more complex models further increase
of performance and memory size of hardware simulating the models is required. The state of the art hardware originates
from computer graphics accelerators and is not optimal for computation of essentially analogue artificial neural networks
(ANN) and similar models. This leads in particular to the huge energy consumption of electric computers based ML
compared to biological neural networks.

Various new approaches for implementation of ML using new physical principles are proposed, e.g. photoelectronic
circuits speed up image processing thousands times faster than Tesla A100 [2]. One of the approaches lies in designing
ML models on top of magnetic devices [3, 4]. The approach extends the boundaries of spintronics, which is a likely
replacement of modern electronics. Some ML models are especially appealing for implementation as magnetic devices
since they originated from physical models. One approach uses topological solitons to transmit impulses between artifi-
cial neurons [5]. Probably before the emergence of such neuromorphic devices, we will see the appearance of magnetic
racetrack memory working on the same principle [6, 7]. The ML model, which is most close to a physical system is the
Boltzmann machine (BM) [8], that can be considered the stochastic Ising machine, and therefore can be physically imple-
mented as interconnected spin islands [9]. BM has a variety of uses including associative memory, solving combinatorial
optimization problems, generation of images, features extraction and so on.

BM consists of spins, which interact with each other and the environment, resulting in Boltzmann distribution of
the spins energy. The BM is trained by variation of the interaction constants to match the probability distribution (PD)
to a target one. In the simulation, sequence of states of BM are computed by Monte-Carlo methods and its weights
are optimized using contrastive divergence (CD) method. The CD method implements a variant of Hebbian rule, which
makes training of BM similar to the learning of biological organisms. Earlier attempts to train BM showed that it is not
practical for any hard problems, but BM with restricted connections (RBM) can be efficiently simulated and are in use
now especially in the form of stacked BMs.

Besides numerical simulation of BM as a variant of ANN, BM has been implemented as a number of physical
devices, including the one based on tunnel magnetic junctions [10]. The Ising model also forms a basis for D-Wave
quantum computer, which however uses quantum annealing instead of stochastic dynamics for computations [11]. The
vast majority of BM implementations do not support training in hardware. Instead they rely on traditional computers to
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solve the optimization problem. We will pursue the goal to develop a self-training device capable of adapting to continuous
feed of training data. An especially simple device can be obtained, if training can be reformulated as a naturally occurring
physical process.

BM belongs to the class of so-called energy-based models (EBM) [12]. A useful feature of the models is that
minimization of the loss function is equivalent to energy minimization [13, 14]. The observation makes it possible to
apply a physically inspired method to ML, e.g. simulation of Langevin dynamics achieving better results than other
likelihood models [15].

Our initiative is to implement BM loss minimization as a relaxation in a magnetic device. In the article [16], we
proposed an extended BM machine whose weights are included to degrees of freedom (DoF). We showed that the energy
minimization of the system leads to memorization of the trained samples. This kind of device can be used as an associative
memory, but it is not suitable for answering questions with a non-deterministic answer. In the present article we generalize
the approach to a stochastic model capable of generation of arbitrary probability distributions. Similar idea was carried out
in [17] that made it possible to implement plasticity of the energy landscape of a few atom BM demonstrating self-learning
to some extent.

In the article, we systematically derive EBMs for BM with only visible neurons (Section 2), BM containing hidden
neurons (Section 3) and BM with loss function specialized for classification problems (Section 4). For all the variants
of BM, we propose an approach for physical implementation of a device, whose relaxation matches minimization of
the corresponding loss functions. We also provide examples of application of the approach, studying a simple model of
tuning variation of normal distribution in Section 2.1 and benchmarking hand-written digits generation (Section 3.2) and
classification (Section 4.1).

2. Dissipative training

Consider an arbitrary physical system with energy functional E[x] depending on the system state x. Suppose the
system is in thermal equilibrium with a thermal reservoir, hence the state of the system is random and is described by
Boltzmann probability distribution:

p(x) = Z−1Z(x), Z(x) = e−βE[x],

where β = 1/kBT is the inverse temperature, and Z is the partition function:

Z =
∑
x

Z(x) ⇒
∑
x

p(x) = 1.

We use notation for summation over a discrete state space for simplicity of presentation, however, the theory is valid
for arbitrary measurable state space and the Lebesgue–Stieltjes integral can be substituted for sums, and an appropriate
probability measure for Z(x). Helmholtz free energy is defined by

F = − 1

β
logZ ⇒ p(x) = e−β(E[x]−F ). (1)

The Shannon entropy is defined by

H(p) = Ex∼p[− log p(x)] = −
∑
x

p(x) log p(x).

It coincides with the Gibbs entropy up to the Boltzmann constant factor: S = kBH . Due to (1), the entropy is related to
the free energy and mean value of energy with respect to the distribution p:

H(p) = βEp[E − F ] = β(Ep[E]− F ).

The mean energy can be computed in terms of the partition function:

∂(βF )

∂β
= −∂ logZ

∂β
= −Z−1 ∂Z

∂β
= Z−1

∑
x

Z(x)E[x] = Ep[E]. (2)

In machine learning, the system can be used as a generator of samples with PD p. In practice, we want the distribution
to match a given distribution p̃. To compare the model distribution p with a target one p̃, the Kullback–Leibler (KL)
divergence can be used:

DKL(p̃ ‖ p) = Ex∼p̃
[

log
p̃(x)

p(x)

]
=
∑
x

p̃(x) log
p̃(x)

p(x)
= H(p̃, p)−H(p̃),

where H(p̃) is the entropy for the distribution p̃ and the cross-entropy is defined by:

H(p̃, p) = Ex∼p̃[− log p(x)] = −
∑
x

p̃(x) log p(x).

The KL divergence is not-negative and is equal to zero if and only if the distributions p and p̃ coincide. Although DKL

is not a metric, since it is not symmetric, the two mentioned properties make the KL divergence a good choice for loss
function for system parameters optimization for the system to learn the target distribution p̃. The learning is possible, if
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the system depends on parameters θ then we can minimize loss function with respect to the parameters. The parameters
will be discussed below, for the moment, we can work in very general settings.

Since the model PD p is generated by the considered system, the cross-entropy can be expressed in terms of the mean
and free energy using (1):

H(p̃, p) = βEp̃[E − F ] = β(Ep̃[E]− F ).

The expression for the cross-entropy differs from the entropy of p only by the distribution used for averaging the energy.
Suppose that the distribution p̃ is generated by an analogous system, but with a different expression for the energy.

We will put tilde above all values related to the system with the PD p̃ over the states, in particular,

p̃(x) = exp
(
−β(Ẽ(x)− F̃ )

)
.

The KL divergence simplifies to:

DKL(p̃ ‖ p) =

H(p̃,p)︷ ︸︸ ︷
β(Ep̃[E]− F )−

H(p̃)︷ ︸︸ ︷
β(Ep̃[Ẽ]− F̃ ) = βEp̃[E − Ẽ] + β(F̃ − F ).

Therefore, the learning of the distribution p̃ is equivalent to equalization of the free energies for p̃ and p.
Let both energies E and Ẽ be two implementations of the same model for different parameters:

E(x) = E(x; θ), Ẽ(x) = E(x; θ̃).

Then the learning is done by optimizing the loss with respect to θ. The simplest optimization procedure is the gradient
descend, when the parameters are updated according to the rule:

θ 7→ θ − ν ∂DKL

∂θ
,

where ν defines learning rate. Since the values with tilde do not depend on θ, the KL divergence simplifies:

∂DKL

∂θ
= β

∂

∂θ
(Ep̃[E]− F ).

In virtue of independence of p̃ on θ, the differentiation and averaging can be swapped. The free energy derivative can be
computed as follows:

∂F

∂θ
= − 1

βZ

∂Z

∂θ
= − 1

βZ

∑
x

∂Z(x)

∂θ
=

1

Z

∑
x

Z(x)
∂E(x)

∂θ
=
∑
x

p(x)
∂E(x)

∂θ
= Ep

[
∂E

∂θ

]
. (3)

Finally, the parameter update rule is driven by the velocity f :

θ 7→ θ + (νβ)f, f = Ep̃
[
∂E

∂θ

]
− Ep

[
∂E

∂θ

]
. (4)

It is worth noting that the parameter θ̃ does not present in the final expression. Moreover, the origin of p̃ does not matter
below, so we will not restrict p̃ in any way below.

The key observation of the article is that the update rule coincides with the relaxation dynamics for the variable θ.
Indeed, suppose θ is a DoF for the considered system, but we assume θ to be a slow variable, so that at each moment of
time, the distribution of x is given by the p for the fixed θ. The relaxation dynamics of θ is described by:

θ̇ = −α∂E
∂θ

,

where α is the damping parameter. Averaging over the ensemble, we obtain the second addendum in (4). Moreover,
assuming ergodicity, the addendum can be approximated by the time average:

Ex∼p
[
∂E(x; θ)

∂θ

]
=

〈
∂E

∂θ

〉
t

.

The first addendum in (4) is more complex, since the distribution p̃ is external for the system. To take p̃ into account, we
extend our system, including new degrees of freedom x̃. The vector x̃ belongs to the same state space as x, but we assume
x̃ be externally driven, so that its distribution at every moment of time is given by p̃ and they are uncorrelated at different
moments of time. Then the first addendum can be obtained as time averaging of:

Ex̃∼p̃
[
∂E(x̃; θ)

∂θ

]
=

〈
∂E(x̃; θ)

∂θ

〉
t

.

We define total energy of the new system according to the requirements:

(1) Energy E[x̃] is opposite to the energy E[x].
(2) x̃ and x interact with the same parameters state θ.
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FIG. 1. Proposed designs of self-training BM. Circles represent DoF: bold line marks slow vari-
able/weights, double-line marks fast variables, punctured boundary marks externally driven DoF. The
system is split to two lobes: the right one is a copy of the left one with externally driven DoFs sub-
stituted for some fast variables. Segments between circles indicate interactions. (a) BM learning PD
demonstrated on x̃ and generating the PD on x. (b) BM contains hidden neurons y and ỹ; training data
is demonstrated on x̃, the result is read from x. (c) BM for classification problem; features x̃ and labels
ỹ from the training set are driven by external forces; predicted PD over labels is read from y.

Then the total energy is defined by:
ET = E(x; θ)− E(x̃; θ).

Summing up all properties above, we conclude that f can be obtained by averaging of the relaxation force:

f =

〈
∂ET

∂θ

〉
t

.

We conclude that the relaxation dynamics of the extended system is a continuous version of the stochastic gradient
descent for the minimization of the KL divergence. Since the approach is quite general, it opens many opportunities for
implementation of self-learning devices. In the following sections, we consider several examples.

2.1. Standard deviation learning

Consider simple case of a single continuous random variable x having normal distribution with mean m and standard
deviation σ = θ−

1
2 :

p(x) = Z−1 exp

(
−θ(x−m)2

2

)
.

The PD can be considered Boltzmann distribution for the energy

E =
θ(x−m)2

2
,

and the constant temperature β = 1. The partition function in the case is well known:

Z =
√

2π/θβ.

The optimization of the mean m is relatively simple and was already solved in [16]. Here we let m = 0 and focus on
optimization of θ. The free energy of the model system:

F =
1

2β
(log θ + log β − log(2π)) .

According to (2) the mean energy is:

Ep[E] =
∂(βF )

∂β
=

1

2β
. (5)

Suppose target distribution p̃ is also normal with standard deviation σ̃ = θ̃−
1
2 . The expectation value of E with

respect to p̃ is obtained by rescaling:

Ep̃[E] =

〈
θ

θ̃
Ẽ

〉
p̃

=
1

2β

θ

θ̃
.

KL divergence between the distributions is given by:

DKL(p̃ ‖ p) = βEx∼p̃[E(x)− Ẽ(x)] + β(F̃ − F ) =
1

2

(
θ

θ̃
− 1

)
+

1

2

(
log θ̃ − log θ

)
.
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FIG. 2. Convergence of estimation of standard deviation parameter θ using EBM: CD learning (solid
line), free energy minimization using Metropolis–Hastings algorithm (dashed line) and Langevin dy-
namics (dotted line). Target value of the parameter is 1, initial value is 3. Mean value of the parameter
estimate (left panel) and standard deviation of (right panel) obtained by averaging over 20 runs and
1000 consecutive samples.

The divergence has only one minimum at θ = θ̃ as expected. The derivative of the KL divergence will be used below to
make optimization algorithms:

∂DKL

∂θ
=

1

2

(
1

θ̃
− 1

θ

)
. (6)

2.2. Dissipative learning

Above we considered the parameter θ to be fixed. Here we suppose that θ a slow DoF of the system. Then relaxation
dynamics will push θ in the direction opposite to

∂E

∂θ
= −x

2

2
.

Assuming x is a fast variable, the derivative can averaged over x:

Ex∼p
[
∂E(x; θ)

∂θ

]
= −

√
θ

2π

∫ ∞
−∞

x2

2
exp

(
−θx

2

2

)
dx = − 1

2θ
.

It is worth noting that the derivative of the mean energy with respect to θ is zero according to (5), that is the expectation
value and the differentiation do not commute. It turns out that the dissipation generates the same dynamics as the second
addendum in (6). The first addendum here gives a reference point and is essential to obtain the correct stationary state.
The first addendum can also be interpreted as mean energy, but with respect to the target distribution p̃:

Ex̃∼p̃
[
∂E(x̃; θ)

∂θ

]
= − 1

2θ̃
.

Then optimization direction will coincide with mean relaxation force if we expand the system with the second part
depending on x̃ and assuming the second part has opposite energy to the first one:

∂DKL

∂θ
= Ex∼p,x̃∼p̃

[
∂ET

∂θ

]
, ET (x, x̃; θ) = E(x; θ)− E(x̃; θ).

In the real system, the expectation values can be obtained either by averaging over ensembles or over time. The distribution
p̃ can be enforced to the variable x̃ by an external force demonstrating the training set to the device. Obtaining opposite
signs of energy for two parts of the system for the same value of the parameter θ is the most challenging task in designing
real devices. Consider one example of such an implementation. Energy of liquid crystal interaction with an external
electric field has the following form [18]:

E = −∆ε(n ·E)2

8π
,

where E is electric field, n is the director vector, and ∆ε is anisotropy of permittivity. Let the electric field have fixed
direction z and be proportional to the parameter θ. Let x be projection of the director n to z. Then the energy coincides
with the considered above up to a constant. Sign of the constant is determined by ∆ε which can be both positive and
negative depending on the exact choice of the liquid crystal. It means that by choosing ∆ε of opposite signs for two lobes
x and x̃ we will obtain opposite energies for the same value of the external field θ.
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2.3. Contrastive divergence training

Contrastive divergence (CD) is probably the most popular method used for training EBMs. The method belongs to
the family of gradient descent methods sharing the update rule:

θ 7→ θ + ηf, f ≈ −∂DKL

∂θ
,

where η > 0 is the learning rate constant and f is an approximation to the steepest descent direction on the loss surface.
The optimization algorithm here is a variant of stochastic gradient descent:

(1) Get a sample x̃ from the training set.
(2) Sample x from the distribution p given for the current θ.
(3) Compute dissipation force f = ∂E(x̃; θ)/∂θ − ∂E(x; θ)/∂θ .
(4) Update weights θ 7→ θ + ηf .
(5) Repeat.

To estimate the force f more accurately, one can sample values in batches and then average the force over all batches.
Nevertheless, if the learning rate η is sufficiently small, the averaging of the generated force in time gives a good enough
estimate of the expectation value to obtain convergence.

2.4. Metropolis–Hastings algorithm

For complex systems sampling values x from the PD p is generally difficult since the partition function Z is not
known. It is common in this case to sample values using Metropolis–Hastings (MH) algorithm. In this case, values of x
are not independent between steps, but rather form a Markov chain. To define the chain we need an auxiliary probability
density g(y|x) called proposal density, which gives us a new candidate y given a previous value x. We will assume g
symmetric: g(x|y) = g(y|x). The generation of x according to MH algorithm is done as follows:

(1) Sample y according to the distribution g(y|x) for the given previous value of x.
(2) Calculate the acceptance rate α = Z(y; θ)/Z(x; θ).
(3) Generate a uniform random number u ∈ [0, 1].
(4) If u ≤ α, accept y as a new value of x.
(5) Otherwise let x preserve its value.
The optimization algorithm with MH sampling is the same as in the previous section, but the previous value of

x is used to generate its new value. The emerging correlations between adjacent samples can increase spread of the
optimization direction estimates f , which will require a decrease of the training rate constant to maintain convergence.

For the benchmark below we took proposal density g(y|x) to be normal with the mean value y and standard deviation
0.5.

2.5. Langevin dynamics

Dynamics arising from the Monte-Carlo method described in the previous section is suitable to obtain correct es-
timates of expectation values, however it does not correspond to the real dynamics. In many cases, the dynamics is
described by a variant Langevin equation, such as the stochastic Landau–Lifschitz–Gilbert (LLG) equation for magnetic
systems. In the discretized form the Langevin equation for one variable can be written as follows:

xt+1 = xt − η′ ∂E(xt; θt)

∂x
+W t,

whereW t has a normal distribution with zero mean and standard deviation
√

2/η′ andW t for different t are independent.
The distribution of xt is the same Boltzmann distribution as above for the inverse temperature β. Dynamics of the slow
variable θ are described by relaxation in the same way as above:

θt+1 = θt − ηf t, f t =
∂E(x̃t; θt)

∂θ
− ∂E(xt; θt)

∂θ
.

For the benchmark below we generated training samples x̃ by Langevin equation with parameter θ set to the target
value θ̃. Time scale for the fast variable was defined by the ratio: η′/η = 500.

2.6. Benchmark

We compared performance of CD, dissipative learning with MH sampling and Langevin dynamics on the learning
parameter θ of the normal distribution introduced in Section 2.1. The initial value of parameter was set to 3, while the
target value equals 1. We set learning rate to 2 · 10−4 and made 1.6 · 105 steps by all algorithm repeating the procedure
20 times. For each of the algorithms we averaged estimates of the parameter θ over 1000 consecutive samples, and also
estimated standard deviation of the estimates on the same intervals. The results are presented in Fig. 2.2. All the methods
perform equally well on average having the same convergence rate. Correlations between adjacent samples in Monte-
Carlo based method and in Langevin dynamics produce 3 − 4 times large variation of the estimate as expected. We can
conclude that real-world physical dynamics is as suitable for training the ML model as a generally accepted CD method.
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3. Hidden neurons

In Section 2, we described a general approach for turning arbitrary dissipative systems into a self-training machine.
The class of generated PDs is defined by energy functional E. Although we have not imposed any restrictions on the
energy (except of being bounded from below) and arbitrary PD can be generated under appropriate choice of the energy,
in practice we have rather restricted choice of energies available for physical implementations. Standard BM is based on
the Ising model, having the quadratic energy functional:

E[x] =
1

2

∑
jk

wjkxjxk +
∑
j

bjxj , (7)

with xj representing the state of a spin j (playing the role of a neuron) taking values xj = ±1. The parameters θ = (w, b)
consist of connection strengths wjk between neurons j and k and biases bj for every neuron j. The functional E allows to
tune mean values and covariance of components of x, but it is impossible to obtain a nontrivial joint distributions of three
and more neurons. More complex inter-dependencies between neurons can be obtained using the same quadratic energy
functional, if we include new hidden DoF.

Suppose the variables x describe visible neurons, whose state is described by the training set, and which are output of
the model. Introduce new DoF denoted y playing the role of hidden variables. Now the energy functional depends on x,
y and θ. We do not impose any constraints on the energy functional, but for clarity of presentation we recall an example
of such functional used in restricted BM (RBM):

E[x] =
1

2

∑
jk

wjkxjyk +
∑
j

ajxj +
∑
k

bkyk, (8)

where a and b are biases for visible and hidden neurons, respectively, and the interaction is nonzero only between units of
different classes (visible, hidden, weight). The energy functional for RBM coincides with (7) with the vector x extended
by y with additional constraints forbidding interaction between neurons of the same type.

As in Section 2, we assume θ to be slow variables, then for given θ we have joint PD

p(x, y; θ) = Z−1Z(x, y), Z(x, y) = exp(−βE[x, y; θ]), Z =
∑
x,y

Z(x, y). (9)

The visible neurons state is described by the marginal PD:

p(x) =
∑
y

p(x, y) = Z−1Z(x), Z(x) =
∑
y

Z(x, y). (10)

For example, the marginal distribution for RBM is notably easy to compute, since for a fixed x the components of y
are independent. Easy algebra leads us to the result:

p(x|y) = Z−1
∏
j

e−βajxj

∏
k

∑
j

e−β∆j + eβ∆j

−1

, ∆j =
∑
k

wjkyk. (11)

Introducing sufficiently many hidden neurons, an arbitrary PD p(x) can be attained.
The training problem is to find parameters θ such that the marginal distribution p(x; θ) minimizes distinction with a

target PD p̃(x). The loss function can be defined as cross-entropy, which as we have seen above gives the same minimum
as KL divergence, since entropy of p̃ does not depend on θ and does not affect the result:

H(p̃; p) = Ex∼p̃[− log p(x)] = −
∑
x

p̃(x) log p(x).

The only change here compared to Section 2 is that p(x) is a marginal distribution. In virtue of (10),

H(p̃; p) = F −
∑
x

p̃(x) logZ(x), F =
∑
x

p̃(x) logZ, (12)

where F is the Helmholtz free energy.
Now we compute the gradient of the loss with respect to parameters, which is used for the loss minimization. The

derivative of the free energy is the same as in Equation (3):

∂F

∂θ
= −β

∑
x,y

p(x, y)
∂E(x, y)

∂θ
= −βEx,y∼p

[
∂E(x, y)

∂θ

]
.

For a fixed x the second addendum in (12) is a conditional expectation of the relaxation force:

∂

∂θ
logZ(x) = Z−1

∑
y

∂Z(x, y)

∂θ
= −β

∑
y

p(y|x)
∂E(x, y)

∂θ
= −βEx,y∼p

[
∂E(x, y)

∂θ

∣∣∣∣x], (13)
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where the conditional probability is given by:

p(y|x) =
p(x, y)

p(x)
=
Z(x, y)

Z(x)
.

Taking mean over the target PD we obtain the derivative over the second addendum:

∂

∂θ

∑
x

p̃(x) logZ(x) = −β
∑
x,y

p̃(x)p(y|x)
∂E(x, y)

∂θ
= −βEx∼p̃

[
Ey∼p

[
∂E(x, y)

∂θ

∣∣∣∣x]].
Finally, the loss derivative is mean difference between energy gradients averaged on the target and model distributions:

∂L

∂θ
= β

(
Ex∼p̃

[
Ey∼p

[
∂E(x, y)

∂θ

∣∣∣∣x]]− Ex,y∼p
[
∂E(x, y)

∂θ

])
. (14)

The averaging over hidden variables y both times happens with respect to the model distribution p, hence we obtain the
same result as in Section 2, but all values should be considered as values averaged over hidden DoF.

The system whose relaxation coincides with minimization of the loss can be constructed applying the same principles
as in Section 2.

(1) The average over the ensemble is changed to the time average.
(2) Every addendum in (14) is generated by one of two copies of the system, which share weights θ and exchanges,

but has its own examples of x and y. The energies of the copies are chosen opposite.
(3) The variables x̃ are controlled by external forces, which recreate distribution p̃.
(4) The dynamics of the weights θ are dominated by relaxation. The weights must be slow variables, x and y are fast

variables.
A schematic of the proposed device with hidden variables is shown in Fig. 2.b. The exact dynamics of the device is

not important as soon as it guaranties the condition (4). For example, Monte-Carlo simulation results in the contrastive
divergence method widely used for training RBM in ML. Langevin dynamics can be a more adequate method for real
physical system simulation.

3.1. Monte-Carlo simulation

Correct distribution of variables x, y and ỹ for a fixed θ can be generated using Metropolis–Hastings algorithm. The
approach does not take into account exact dynamics, but generates correct mean values of energy and energy gradients,
which are the only values affecting the dynamics of slow variables θ. This method allows us to cover wide range of
physical implementations of BM including magnetic in the approximation of the Ising model.

Here we focus on RBM, which energy is defined by (8). By definition visible and hidden neurons in RBM do
not interact, therefore for a fixed hidden neurons state y the individual components of the visible neurons state x are
independent and vice versa. In particular, conditional distribution of x given y is given by (11). This allows us to
efficiently generate in the parallel manner samples of y given x and x given y. For example, the following algorithm is
used to generate samples of x.

(1) Compute difference of energies of states that differs by single bit j:

∆j = 2
∑
jk

Ejkyk + 2aj .

(2) Compute conditional probability of xj = 1 given y:

pj = p(xj = 1|y) =
1

1 + e∆j
.

(3) Generate vector ξ of uniformly distributed values ξj ∈ [0, 1].
(4) Set component j of the generated vector xj to 1 if ξj <= pj and to −1 otherwise.
The simulation is done step by step. We put the upper index t over all values for the time step t. The initial value of

x0 is arbitrary. On each iteration all the values are updated as follows:
(1) x̃t+1 is sampled from the training set.
(2) Random ỹt+1 is generated by the above algorithm for the given x̃t+1 and θt.
(3) Random yt is generated by the algorithm above for the given xt and θt.
(4) Random xt+1 is generated by the algorithm above for given yt and θt.
(5) The relaxation force is computed:

f t+1 =
∂

∂θ
E(xt+1, yt+1; θ)− ∂

∂θ
E(x̃t+1, ỹt+1; θ).

(6) Update the parameters:
θt+1 = θt + ηf t+1 +W t.

(7) Repeat.
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FIG. 3. (Upper panel) First 256 images of MNIST dataset scaled to 14×14 and converted to black and
white. (Lower panel) State of visible neurons of the RBM after 800 epoch of training shown on every
16-th simulation step. Images are listed from left to right and from top to down.

The parameter update on step (6) is done simulating Langevin dynamics for slow variables θ. The “learning rate”
parameter η should be small enough to ensure convergence, which in physical terms means that dynamics of θ must be
much slower than of fast variables x and y. The addendum W is a random noise, whose amplitude is proportional to the
temperature T . Since the smallest value of the error is reached at minimum of the energy, the temperature should not be
large. On the other hand, small variations of θ due to the noise allows one to avoid overfitting and can be beneficial.

It is worth noting that the presented algorithm is called contrastive divergence in ML, if no noise is appended. The
algorithm with the noise was earlier proposed in [15], where it was shown that it demonstrates better convergence than
the CD. In most implementations of the CD the value xt+1 is sampled using conditional distribution p(x|ỹt+1). In our
approach, dynamics of x̃ and x are not directly connected, which allows us to estimate positive and negative parts of the
loss gradient independently in two copies of the system.

The most difficult part of the physical implementation of the training algorithm is to obtain both positive and negative
parts of the gradient as relaxation forces. In Section 2, the problem is almost non-existent, since the state of x̃ is externally
driven and does not depend on θ, therefore, to obtain negative gradient, one can change ferromagnetic exchange to
antiferromagnetic leading to negation of the energy. The trick however does not work, if there are hidden variables.
Indeed, change of the exchanges energy landscape and therefore, PD of the hidden variables, which invalidates mean
values of the gradient.

Pure mathematically the positive and negative terms can be considered an adversarial learning procedure, where dis-
criminator time-flow is reversed [19]. Effective reversed time can appear in quantum mechanics [20], but it is hard to use
in practice. Fortunately, the same negative gradient can be achieved by formal change of sign of β. Negative temperatures
of spin systems were reported in a number of works [21–23]. Although the statistical physics for negative temperatures is
studied for a long time [24, 25], a practical realization of local negative temperatures is extremely challenging.

Another possible strategy for generation of negative gradients is to shield hidden variables from the thermostat al-
lowing its interaction only with weights and visible neurons. In the case dynamics of the hidden state y is determined
exclusively by x and θ. Therefore the change of sign of all interaction constants negates energy and its gradient, but
does not affect PD of y. Following this approach the self-trained system should contain two copies of x and y, with
ferromagnetic exchange in one copy and antiferromagnetic in another, both interacting with the same weights θ.

One more strategy is based on reformulation of the optimization problem, abandoning the dynamics defined by (14).
Considering the loss minimization method as an iterative procedure with the fixed point p = p̃, other energy functionals
can be proposed, whose relaxation procedure has the same property. For example, let the hidden variables be shared by
two parts of the system y = ỹ. Define the total energy

E = −(x− x̃) · wy − (x− x̃) · a.

Here x̃ is defined by external impulses and x and y are subjected to Langevin dynamics. If the distributions of x and x̃
coincide then the system is in thermal equilibrium. The relaxation with respect to w and a can be used to adjust the PD of
x, but the error measure is no longer KL divergence, and in practice leads to much worse results than the CD method. A
practical choice for implementation of the negative gradient in presence of hidden variables is still an open question.
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3.2. MNIST digits generation

We benchmarked performance of the proposed approach for implementation of RBM on generation of images of
hand-written digits trained in MNIST dataset. MNIST dataset [26] is split to the training set of 60 000 and the test set of
10 000 gray scale images of ten different digits together with labels, which digit the image represents. We downsampled
the images to size 14× 14 and converted to black and white, considering the pixel black, if its luminosity is smaller than
90% of the maximum. All 60 000 images were used for the training, setting a new image to x̃ on each iteration. The
beginning of the dataset is shown in the upper panel in Fig. 3.2.

The images were flattened to vectors of 196 visible neurons states, and 1000 more hidden neurons were introduced.
Looping over all 60 000 images is considered one epoch, the training took 800 epoch in total. The training step was set
η = 10−4. To track convergence we calculated mean − logZ(x; θ) over samples x taken from the test set for θ obtained
on the corresponding epoch. This value is an estimation of Ex∼p̃[− log p(x; θ)], which is different from the cross entropy
by the absence of the free energy term logZ. The applied training method does not compute free energy directly, which
makes it fast, but this also prevents us from accurate estimation of the loss function. The obtained metrics are not reliable,
if a lot of noise is introduced in the parameters θ on each iteration, showing rapidly decreasing loss, while real cross
entropy can increase. However, in our experience the free energy does not vary significantly close to the minimum, and
the metric can be used for comparison of different methods. The success of the convergence was checked by inspection
of the generated images, which indeed showed close resemblance with real hand-written digits.

We run two numerical experiments: one without noise and another with normally distributed W with amplitude
0.001. The generated PD in both cases converges to the target distribution. In the presence of the noise the convergence
was smooth, while without noise the loss decrease happens in step-like manner stagnating between the steps. Overall
convergence rate is higher without noise. While trained BM in both cases produces correctly looking digits, the BM
obtained by training without loss demonstrates faster switching between digits classes, that is smaller correlation between
adjacent states.

The dynamics of the dissipative BM trained without noise is shown in Fig. 3.2 (bottom panel). The BM started from
a random state, then after a burnout period of 16 steps. We recorded 256 states of the visible neurons skipping every 15
intermediate steps. The generated images reconstruct distribution of pixel colors matching MNIST dataset, but adjacent
images are correlated resulting in smooth change of the digit shape. Visual inspection confirms that the dissipative BM
correctly generalizes the training set producing images indistinguishable from those produced by humans.

4. BM solving classification problem

In previous sections, we considered generative models producing random values w with a learned distribution p(x).
For classification problems, it is often convenient to have a discriminative model, which produce random values of labels
y distributed according to a learned conditional probability p(y|x) given an observation of features x. This discriminative
model can be implemented on top of BM with some modifications required.

The BM energy in the case is a function of features x, labels y and weights θ. The joint PD of x and y is given by
Boltzmann distribution (9). In contrast to Section 3 both x and y are states of visible neurons. As shown above, addition
of hidden neurons allows complex PDs, but in all formulas they are averaged out, therefore we do not list the hidden
neurons explicitly in this section.

Given target distribution of labels p̃(y|x) for fixed features values x, the model distribution can be compared with it
using cross-entropy:

H(p̃, p|x) = −
∑
y

p̃(y|x) log p(y|x) = Ey∼p̃[− log p(y|x)|x].

The loss function is commonly defined as mean of the cross-entropy over all x:

L =
∑
x

p̃(x)H(p̃, p|x) = −
∑
x,y

p̃(x, y) log p(y|x) = Ex,y∼p̃[− log p(y|x)].

Noticing (see Eq. (9)) that

p(y|x) = Z(x)−1Z(x, y),

the loss function can be written in the following form:

L = β
∑
x,y

p̃(x, y)E(x, y) + β
∑
x,y

p̃(x, y) logZ(x).

The first term here is the mean energy with respect to the target distribution. The second addendum is the Helmholtz free
energy for a fixed x averaged over x. Consider the gradient of the loss over parameters θ. Since p̃ does not depend on
θ, the averaging over p̃ can be swapped with differentiation over θ, which gives us the derivative of the first term. Using
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FIG. 4. Results of classification of hand-written digits from MNIST dataset. (Left panel) Confusion
matrix on the test data after 100 epoch of training. (Right panel) Convergence history for accuracy and
averaged over all classes precision and recall, demonstrating good agreement of all metrics. Metrics on
the test set (red lines) and the training set (black lines) are almost identical.

earlier computed in (13) derivative of logZ(x), we obtain the loss derivative:

∂L

∂θ
= β

∑
x,y

p̃(x, y)
∂E(x, y)

∂θ
−
∑
x,y

p̃(x, y)
∑
y′

p(y′|x)
∂E(x, y′)

∂θ


= βEx∼p̃

[
Ey∼p̃

[
∂E(x, y)

∂θ

∣∣∣∣x]− Ey∼p
[
∂E(x, y)

∂θ

∣∣∣∣x]] .
The argument of the outermost expectation value is exactly the derivative over θ of the cross-entropy H(p̃, p) obtained in
Section 2 assuming x fixed. Therefore, the discriminative model differs from the generative model in the way we treat the
features state x: for the discriminative model x is always distributed according to the target distribution p̃.

The physical system whose dynamics coincides with the minimization of loss procedure, is designed using the prin-
ciples stated in Section 2.

(1) The parameters θ are treated as slow DoF of the system.
(2) While the state x̃ = x is always driven by external forces defining target PD, a copy ỹ of y is introduced in such

a way that interactions between x, y, θ are the same as for x, ỹ, θ, except for the opposite sign.
(3) Assuming ergodicity the expectation values are approximated by the time averages.
(4) The energy derivatives are treated as relaxation forces for the weight θ.

The proposed schematics of the self-training device is shown in Fig. 2.c. Its part involving labels variables y, ỹ is
essentially the same as the schematic of the generative dissipative BM shown in Fig. 2.a, but now we have additional
externally driven DoF encoding target distribution for the features x̃.

4.1. Digits classification benchmark

To validate the capability of the proposed method to solve complex problems, we do classification of hand-written
digits from MNIST dataset using the dissipative BM. For the test, we used full size 28×28 black and white images, where
the color was encoded in z projection of the spin: 1 for pure white and−1 for pure black pixel. 60 000 samples were used
for training and 10 000 for testing. One loop over all training samples is considered an epoch. The training procedure
took 100 epoch.

The state of the used BM consists of the features vector x, the labels vector y and the hidden units vector z. The size
of the feature vector equals 784 and matches the number of pixels of the image. The labels vector y has 10 components,
each component encodes the probability of the image to belong to the corresponding class, that represents one of ten
digits. Both x and y compose the vector of visible neurons. For the benchmark, we set the number of hidden neurons to
200.

The energy of BM is defined by the functional:

E(x, y, z; θ) =
∑
ij

wxzxizk +
∑
ij

wyzyjzk +
∑
i

bxi xi +
∑
i

byi yi +
∑
i

bzi zi,



624 I. S. Lobanov

0 25 50 75 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

0 1 2 3 4 5 6 7 8 9

0 25 50 75 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0 1 2 3 4 5 6 7 8 9

FIG. 5. Convergence history for precision (left panel) and recall (right panel) for individual classes
computed on the test set.

where interaction matrices w and biases b form parameters vector θ = (wxz, wyz, bx, by, bz). The proposed dissipative
BM contains two copies of x, y and z; we mark the second copy by tilde above the letter. The total energy of spin BM
consists of energies of the two copies sharing the same parameters:

ET = E(x, y, z; θ)− E(x̃, ỹ, z̃; θ).

The possible strategies to negate energy of the second contribution are discussed in Section 3. During the training x̃ and
ỹ are controlled by the external forces specifying training samples. The variables x, y, z and z̃ are distributed according
to Boltzmann distribution. The dynamics was approximated by Monte-Carlo sampling of fast variables and relaxation
dynamics of slow variables θ according to the algorithm:

(1) Sample new x̃, ỹ from the training set.
(2) Sample z̃ according to (11).

(3) Update θ 7→ θ − η ∂E
T

∂θ
.

(4) Repeat.

To reduce jitter we sample all variables in batches of 10 elements, that correspond to the physical system with 10 inde-
pendent copies of each subsystem sharing the same weights.

The simulation was run on hand-written Python code using Numpy and JAX for GPU acceleration. The relaxation
rate η was set to 10−4. Initial weights θ were randomly sampled from the normal distribution with zero mean and standard
deviation 0.1. Results of the training are shown in Fig. 4.1 and Fig. 4.1.

After 100 epoch we reached ∼ 73% accuracy and very close values of precision and recall averaged over all classes.
Although the metrics are much smaller than attainable by other methods, the result is comparable with the result of RBM
with 200 hidden units. Increasing the number of hidden units and changing architecture of the machine including more
hidden layers can significantly improve the result [15]. In the article, our main concern was comparison of the performance
classical RBM and the proposed adaptation suitable for nanomagnetic implementation.

Confusion matrix shown in the left panel in Fig. 4.1 demonstrates that the most errors arise in misclassification of
9 as 4, 3 as 5 or 8, which is not much different from the errors of other methods. The same errors are confirmed by the
convergence history plots shown in Fig. 4.1, pointing out that digits 4 and 5 are most confused with other digits. The
metrics on the training set and on the test set are very close with precision and recall of individual digits continue to grow
with every epoch, indicating the prolongation of training can lead to even better results.

Since in the proposed dissipative BM subsystem generating positive and negative update steps for the weights are
generated by independent subsystems, the time required for averaging the contributions is larger than in CD method. In
the BM, we are forced to use smaller training steps than in CD, therefore, convergence of simulated SBM is slower. In real
magnetic nanosystems, the natural time scale defined by Larmor precession is orders of magnitude smaller than obtainable
in simulation. Despite a slower convergence rate in simulation, the physical implementation of the BM is expected to be
drastically faster than the ML model of BM used currently.
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5. Discussion

Above, we proposed several approaches to implement energy-based ML models as physical devices. In particular,
nanomagentic-devices are a natural candidate for the implementation of BM. Two problems are not completely solved
and remain challenging for experimental implementation of the devices. The first problem is the necessity of three
spin interactions between two neurons and the connection weight. Multispin connections in some cases give significant
contribution to the total energy [27], but at the moment, it is not clear how to design magnetics with the desired multi-spin
interactions. Probably more promising is creation of an effective multispin exchange by introducing auxiliary spins and
averaging over them in the spirit of the work [28].

The second challenging problem is learning the weights of the hidden spins by relaxation. In this case, the introduc-
tion of lobes with opposite energies also affects the PD of the hidden neurons. The solution here can lay in avoidance
of the hidden neurons interaction with the thermostat, and considering stochastic LLG dynamics of the spins, instead
of Fokker–Planck equation. At least a similar approach allowed one to create a simple self-learning device experimen-
tally [17].
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