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ABSTRACT The spectral problem for the Schrödinger operator with a magnetic field on the flat Möbius strip is
considered. The model construction is described. It is compared with the case of the Laplace operator.
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1. Introduction

The quantum Hall effect discovered at the end of the twentieth century (see, e.g., [1–5]) is intensively used in nano-
electronics. From the mathematical point of view the problem is related to the investigation of two-dimensional magnetic
Schrödinger operator HL [3–5]. The magnetic Schrödinger operator in a strip on the plane was studied in many pa-
pers [6–9]. There are papers devoted to the spectral problem for three-dimensional Hamiltonian with a magnetic field
(see, e.g., [10, 11]).

We use the results of work [12] which studied the magnetic Schrödinger operator in an infinite strip on the plane.
Last time, curved nanostructures attract a special attention. Physicists investigate the properties of nanosystems

caused by the nanostructure curvature (see, e.g., [13–18]). We can mention also a model based on quantum mechanics in
spaces of constant curvature [19,20]. Hamiltonians on curved manifolds are especially interesting. In the present paper we
deal with the Möbius strip. Recently, a work [21] appeared which considers the Dirichlet Laplacian on the Möbius strip.
The authors deal with Courant-sharp property for Dirichlet eigenfunctions on the flat Möbius strip. In the present paper
we consider the Dirichlet eigenfunctions for the magnetic Schrödinger operator (Landau operator) on the flat Möbius
strip.

Let us describe the flat Möbius strip. Usually, it was made by the following way [21]. We start with the infinite
strip S∞ = (−a, a) × (−∞,∞) with width 2a, equipped with the flat metric dx2 + dy2 of R2. Given b > 0, define the
following isometry of Sinfty:

σb : (x, y)→ (−x, y + b).

Define the groups

G = {σkb |k ∈ Z}, G2 = {σkb |k ∈ 2Z}.

The group G2 is a subgroup of G, of index 2, generated by σ2
b . The action of G on S∞ is smooth, isometric, totally

discontinuous, without fixed points. Correspondingly, we can consider the quotient manifolds with boundary

Cb = S∞/G2, Mb = S∞/G,

equipped with the flat metric induced from the metric of S∞. Here Cb is the cylinder and Mb is the flat Möbius strip.
This construction is convenient for the authors of [21] because they deal with the Laplacian which “doesn’t feel” a

direction, i. e. it is invariant in respect to the map (x, y)→ (−x, y). We will deal with the magnetic Schrödinger operator
(Landau operator) which “feels” the direction. That is why, we will use another construction of the flat Möbius strip
related to gluing of rectangles.

In the present short rapid note we present the main theorem only. Detailed proof, description of the model and
analysis of the result will be published in the next paper.
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2. Flat Möbius strip in the magnetic field

For the case of the magnetic Schrödinger operator (Landau operator), the situation is more complicated than for the
Laplace operator. Consider four copies Ωj , j = 1, 2, 3, 4, of the rectangle Ω = (−a, a)× (−b, b). The initial operator is
the orthogonal sum of operators HM

j defined in L2(Ωj): HM = HM
1 ⊕HM

2 ⊕HM
3 ⊕HM

4 where

HM
1,2 = − ∂2

∂x2
− (

∂

∂y
− 2iπξx)2,

HM
3,4 = − ∂2

∂x2
− (

∂

∂y
+ 2iπξx)2.

(1)

It is the Hamiltonian of free two-dimensional particle with charge e in the homogeneous magnetic field B orthogonal to
the plane of the particle confinement. Here the vector potential of the magnetic field is chosen in the Landau gauge. Let
Φ0 = 2π~c/|e| be the magnetic flux quantum playing a role of a unit for the magnetic flux in the system, ξ = |B|/Φ0

is the density of the magnetic flux, i.e. the number of the magnetic flux quanta through the unit area on the plane of the
system, x, y are the Cartesian coordinates on the plane. The system of physical units is chosen in such a way that the
charge of the particle e, the speed of light c and the Planck constant ~ equal 1, the mass of the particle is one half.

We include in the domain of HM functions (u1, u2, u3, u4) ∈
j=4∑
j=1

⊕W 2
2 (Ωj), W 2

2 (Ωj) is the Sobolev space in Ωj ,

satisfying the following conditions:

D(HM ) :



uj(−a, y) = uj(a, y) = 0, j = 1, 2, 3, 4

u1(x, b) = u2(−x, b), ∂u1
∂y1

(x, b) = −∂u2
∂y2

(−x, b),

u2(x,−b) = u3(x,−b), ∂u2
∂y2

(x,−b) = −∂u3
∂y3

(x,−b),

u3(x, b) = u4(−x, b), ∂u3
∂y3

(x, b) = −∂u4
∂y4

(−x, b),

u4(x,−b) = u1(x,−b), ∂u4
∂y4

(x,−b) = −∂u1
∂y1

(x,−b).

(2)

Remark. Each rectangle Ωj presents, actually, one side of the rectangular sheet. The magnetic flux is related to the
side of the surface. Correspondingly, if the sheet is turned over, then the sign of the flux (ξ) changes. That is why, there
are different signs in expressions for HM

1,2 and HM
3,4 in (1). There is no change of the sign between HM

1 and HM
2 (HM

3

and HM
4 ) because when one glues Ω1 to Ω2 (Ω3 to Ω4) in accordance with (2), there is, simultaneously, a replacement

x→ −x.
Solving equations HMΨ = EΨ at each rectangle and satisfying the gluing and boundary conditions (2), one obtains

the spectral equation and the eigenfunctions.
The spectral equation is as follows: ∣∣∣∣∣∣ Φ1,n(−a) Φ2,n(−a)

Φ1,n(a) Φ2,n(a)

∣∣∣∣∣∣ = 0. (3)

Here

Φ1,n(x; ξ) = e−π|ξ|(x−
n
Tξ )

2

Φ

(
− E

8π|ξ|
+

1

4
,

1

2
;

(
x− n

Tξ

)2

2π|ξ|

)
, (4)

Φ2,n(x; ξ) = e−π|ξ|
2

(
x− n

Tξ

)√
2π|ξ|Φ

(
− E

8π|ξ|
+

3

4
,

3

2
;

(
x− n

Tξ

)2

2π|ξ|

)
, (5)

where T = 8b, Φ(ã,
1

2
; z) is the Kummer function:

Φ(ã,
1

2
; z) = 1 +

∞∑
k=1

(ã)k
(1/2)k

zk

k!
, (6)

(ã)k = ã(ã+ 1)...(ã+ k − 1), (ã)0 = 1.

Roots En,m of equation (3) gives us the eigenvalues of the operator. It is known [12] that the roots of equation (3)
can be ordered increasingly. Correspondingly, En,m is the m−th root of n−th equation (3).

The main result is the following theorem.
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Theorem 2.1. The eigenvalues Enm of the operator HM are the roots of equation (3) with T = 8b. The corresponding
eigenfunctions have the following form:

Ψ(1)
n,m = An,me

iπny4b φn,m(x; ξ), (x, y) ∈ Ω1

Ψ(2)
n,m = inAn,me

−iπny4b φn,m(x; ξ), (x, y) ∈ Ω2,

Ψ(3)
n,m = (−1)nAn,me

iπny4b φn,m(x; ξ), (x, y) ∈ Ω3

Ψ(2)
n,m = (−i)nAn,me−i

πny
4b φn,m(x; ξ), (x, y) ∈ Ω4,

(7)

where An,m is some constant, φn,m(x; ξ) is given by (8).

φn,m(x; ξ) = Φ2,n,m(a; ξ)Φ1,n,m(x; ξ) + Φ1,n,m(a; ξ)Φ2,n,m(x; ξ), (8)

where Φj,n,m(x; ξ) is Φj,n(x; ξ) for E = Enm.

Functions Φ1,n(x; ξ) and Φ2,n(x; ξ) are two linearly independent solutions of the following equation

ψ”(x)−

(
(2πξ)2

(
x− n

Tξ

)2

− E

)
ψ(x) = 0. (9)

One can note that function φn,m(x; ξ) satisfies the following property:

φn,m(−x; ξ) = φn,m(x;−ξ) = φ−n,m(x; ξ). (10)
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