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This study investigates the influence of nanoparticle concentration on the Marangoni effect in the boundary layer

near the free boundary of an incompressible fluid with small kinematic viscosity and thermal conductivity. The

study was conducted on the basis of a single-phase model derived from the Navier-Stokes equations by replacing

thermal parameters for their effective values. Two cases of stationary axisymmetric fluid flow are considered. In

the first case, the fluid is cooled on the free surface near the symmetry axis, and in the second case, the fluid is

heated. In the first case, a rotation of the fluid in a thin boundary layer appears near the free boundary, while there

is no rotation outside the layer. In both cases, as the concentration of nanoparticles increases, the heat flux and the

fluid velocity at the free boundary decrease.
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1. Introduction

The idea of the heat transport by fluid with micron-sized particles was proposed by
Maxwell in the late nineteenth century [1]. However, at that time, the method failed to develop.
The model of heat transport by a fluid containing metal nanoparticles was offered by Choi
S. and Estman J. in 1995 [2]. It was thought that the thermal conductivities of some metals
are hundreds of times greater than the thermal conductivities of some liquids. In an initial
paper, several calculations were made for heat transport in the convective motion of a fluid
with nanoparticles in areas with solid boundaries [2]. It was shown that the heat flux can be
changed by tens of percent, depending on the concentration and type of nanoparticles. The
calculations were based on single-phase and two-phase models. These studies indicated that
the quantitative differences in these models were small, so, in this paper, a simple single-
phase model was used. Recently, a number of reviews and articles on the convection of fluid
with nanoparticles have been published [3–5]. The experimental results on the problem [5]
confirmed the theoretical calculations. The heat transport in Marangoni layers in the plane case
was previously studied [6]. In this article, the axisymmetric case was studied using constant
thermal parameters. The flow of fluid at a given longitudinal temperature gradient on the free
surface was calculated. Two cases were considered; when the temperature of the free boundary
either increased or decreased with distance from the axis of symmetry. In the first case, a
rotation of the fluid in the boundary layer appears near the free boundary with an absence of
rotation outside this layer. In both cases, the heat flux on the free boundary decreased with
increasing nanoparticle concentration and may be reduced by tens of percent, depending on the
concentration of the nanoparticles and their composition.
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2. The Equations of the Model

This study investigates the stationary axisymmetric flow of a viscous heat-conducting
incompressible fluid in a layer of infinite thickness, limited to the top by the free boundary Γ.
Along Γ, a temperature gradient is given which is positive in the first case and negative in
the second. For small values of the kinematic viscosity and thermal diffusivity near the free
boundary, there occurs a thin boundary Marangoni layer, outside of which, the fluid flow is
slow and in the first approximation is described by the equations of an inviscid fluid. The study
explores cases when metallic nanoparticles such as copper, silver, alumina and titanium oxide
are placed in the base fluid, water. In these calculations, the single-phase model of nanofluids is
used. It is assumed that the base fluid and the nanoparticles are in thermodynamic equilibrium,
with no slide occurring between the fluid and the nanoparticles. The nanoparticles are spherical
in shape and of uniform size. The equations of motion in the case of single-phase fluid issue
from the Navier-Stokes equations by replacing the physical parameters on their effective values:

(v, ∇)v = −ρ−1
nf∇p+ µnfρ

−1
nf∇

2v,

(v, ∇)T = χnf∇2T, div v = 0,

where v = (vr, vθ, vz) is the velocity vector, p is the pressure, T is the temperature. (r, θ, z) are
cylindrical coordinates. Parameters ρnf , µnf , χnf are the effective values of density, dynamic
factor of viscosity, thermal diffusivity of fluid with nanoparticles. The fluid motion is axially
symmetric, i.e. velocity vector, pressure and temperature are independent of the circumferential
coordinate θ. It is assumed that the surface tension is linearly dependent on the temperature
σ = σ0 − |σT | (T − T∗), where σ0, |σT |, T∗ are constant. Deformability of the free boundary is
to be neglected. On the free surface Γ, there are satisfied dynamic conditions for shear stresses,
the kinematic condition and the temperature is set [6]:

2µnf (Πn− (nΠn)n) = ∇Γσ,

vn = 0, T = TΓ(r, z), (r, z) ∈ Γ,

where Π is the strain rate tensor, n is the normal vector to the free boundary Γ. ∇Γ is the
gradient along Γ, TΓ is the set temperature of the free boundary. Along Γ, a temperature
gradient satisfies the condition ∇ΓTΓ 6= 0 at r ≤ L and TΓ = const at r > L. We turn to
the dimensionless variables in equations of motion and boundary conditions, having selected
as a scale of length, velocity, pressure and temperature the following parameters L, U , σ0/L,

ATL. Where U =
(
|σT |2A2

TLρ
−2
f ν−1

f

)1/3
and AT are the scale of the temperature gradient

along the surface Γ. Parameters ρf , νf indicate the density and viscosity kinematic factor of
the base fluid. With large temperature gradients along the free surface and small diffusion
coefficients, the boundary layer that arises near Γ is characterized by a large value for the
velocity gradient across the boundary layer. We introduce a small parameter of the formula

ε =
(
ρfν

2
f |σT |

−1 L−2A−1
T

)1/3
and note that the order of the thickness of the boundary layer is

εL.
The effective values of the physical parameters for a fluid with nanoparticles ρnf , µnf ,

χnf , knf are expressed by the parameters of the base fluid ρf , µf , χf , kf and the parameters of
metal particles – density ρS and coefficient of thermal conductivity kS of the known formulas [7,
8]:

ρnf = (1− ϕ)ρf + ϕρS, µnf = µf (1− ϕ)−5/2,

χnf = knf/(ρcp)nf , (ρcp)nf = (1− ϕ)(ρcp)f + ρ(ρcp)s,
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where ϕ is the volume concentration of nanoparticles in the mixture. The coefficient knf is
determined by the formula [9]:

knf = kf
kS + 2kf − 2ϕ(kf − kS)

kS + 2kf + ϕ(kf − kS)
,

where knf , kf denote the thermal conductivity coefficients of nanofluids and base fluid. The
thermal parameters are considered constant. The dynamic viscosity of nanofluids is shown
in [7], published by Brinkman H.C. in 1952.

3. Asymptotic Method

The solution to the problem is built though the boundary layer method. The top of the
cylindrical coordinate system is put on a free surface whose equation is in the form z = 0.
Furthermore, in the boundary layer DΓ we introduce a stretching transformation, z = εs. Note
that s ≤ 0 is in the field DΓ. Asymptotic expansion of the velocity and temperature components
are built in the form of series in powers of a small parameter ε with ε→ 0 [10]:

vr = hro + ε(hr1 + vr1) + . . . , vz = ε(hz1 + vz1) + . . . .

vθ = hθ0 + ε(hθ1 + vθ1) + . . . , T = θ0 + εθ1 + . . . .

Similar series are built for the pressure as well. Note that the functions hr0, hz1, hθ0
are defined in the field of the boundary layer DΓ; as they depend on the coordinates s, r and
disappear outside of DΓ. Functions vr1, vz1 are defined outside the boundary layer; depending
on the cylindrical coordinates z, r and satisfying the Euler equations that describe the first
approximation for an ideal fluid outside DΓ. Asymptotic expansions are substituted in the
Navier-Stokes equations, heat-conductivity equation, the boundary conditions, here we pass to
the variables s, r in DΓ, and the sum of the coefficients of the same powers of the parameter ε
equate to zero. As a result, the leading asymptotic term satisfies the equations:

hr0
∂hr0
∂r

+Hz1
∂hr0
∂s
− h2

θ0

r
= A

∂2hr0
∂s2

,

∂hr0
∂r

+
hr0
r

+
∂Hz1

∂s
= 0,

hr0
∂hθ0
∂r

+Hz1
∂hθ0
∂s

+
hr0hϑ0

r
= A

∂2hθ0
∂s2

,

hr0
∂θ0

∂r
+Hz1

∂θ0

∂s
=
B

Pr

∂2θ0

∂s2
.

(1)

Here, we introduce the designation: Hz1 = hz1 + vz1|Γ.
For this system of equations, we give the boundary conditions:

1

(1− ϕ)5/2

∂hr0
∂s

= −∂TΓ

∂r
, Hz1 = 0,

∂hθ0
∂s

= 0, θ0 = TΓ (s = 0),

hr0 → 0, hθ0 → 0, θ0 → T∞ (s→ −∞).

(2)

It should be noted that T∞ = const is the constant temperature at infinity. Pr = νf/χf is
the Prandtl number for water. The coefficients A and B in the equations of the boundary layer
are expressed via the parameters of nanoparticles and the base fluid by the following formulas:

A = D (1− ϕ)−5/2 , D = (1− ϕ+ ϕρf/ρS)−1 ,
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B = D
kS/kf + 2− 2ϕ(1− kS/kf )
kS/kf + 2 + ϕ(1− kS/kf )

.

We consider the case when the temperature at the free surface is defined by the power
law TΓ = T∞+ τrn+1/(n+ 1), (n 6= −1). Here, the parameter τ takes only two values τ = ±1.
In the first case, for τ = 1, the temperature is the lowest value on the free surface of Γ at r = 0
on the symmetry axis and the fluid temperature increases with distance from the axis. In the
second case, at τ = −1, the temperature reaches its highest value on the axis of symmetry on
Γ and the fluid cools with distance from the axis. Here the self-similar solution of the problem
(1), (2) is determined. We introduce the stream function ψ(s, r) by the formulas: hr0 = ∂ψ/∂s,
Hz1 = −r−1∂(rψ)/∂r. The solution of the problem is performed as:

ψ = −r(n+2)/3f(ξ), θ0 = T∞ + τrn+1θc(ξ)/(n+ 1), hθ0 = r(2n+1)/3G(ξ), (3)

where ξ = −sr(n−1)/3 (the minus sign is chosen for the realization of the inequality ξ ≥ 0, as
here s ≤ 0). The functions f(ξ), θc(ξ), G(ξ) are determined by the boundary value problem:

3Af ′′′ = (2n+ 1)f ′2 − (n+ 5)ff ′′ − 3G2,

3AG′′ = (2n+ 4)Gf ′ − (n+ 5)fG′,

B Pr−1 θ′′c = (n+ 1)θcf
′ − (n+ 5)fθ′c/3,

f(0) = 0, f ′′(0) = τ(1− ϕ)5/2, θc(0) = 1, G′(0) = 0,

f ′(∞) = 0, G(∞) = 0, θc(∞) = 0.

(4)

The heat flux on the free boundary is determined after solving the problem (4)

qΓ = −knf∂T/∂z = ε−1knfr
(4n+2)/3τθ′c(0)/(n+ 1), (z = 0)

and local Nusselts number Nu = −ε−1knfk
−1
f r(n+2)/3θ′c(0).

We note the particular case when n = 4. The system (4) admits an exact solution at
τ = −1, depending on the variable by exponential law f(ξ) = a (1− exp(−γξ)), G ≡ 0.
Here we have γ = 3

√
3/A(1 − ϕ)5/6, a = Aγ/3. The temperature distribution is calculated

numerically.

4. The Results of the Calculations

The boundary value problem (4) was solved numerically by the shooting method. We
note that the problem (4) was divided into two boundary value problems: at first we count
the function f(ξ), G(ξ) and then we determine the function θc(ξ). When nanoparticles were
absent in liquid for ϕ = 0, A = B = 1 and at τ = −1 , the solution of the problem without
rotation of a thin layer was found in paper [10] for different values of the parameter n. In
this paper, the solution was constructed when ϕ 6= 0 for the four types of nanoparticles –
copper (Cu) , silver (Ag), titanium oxide (TiO2 ) and alumina (Al2 O3). Concentration of the
nanoparticles corresponding to the parameter ϕ was varied from zero to 0.2. The numerical
values of thermodynamic parameters k, µ, ρ, cp were given in paper [6]. The calculations were
made at n = 0. It was shown that cooling at the point of r = 0 on the free boundary for τ = 1,
the rotation of the liquid appears in a thin boundary layer near the free surface. Additionally,
there is no rotation outside this layer. The presence of nanoparticles in the liquid slows down
the rotation of the layer, correspondingly, the higher the nanoparticle concentration, the larger
the degree of inhibition. Liquid can rotate both clockwise and counterclockwise. The boundary
value problem (4) for each fixed set of initial parameters admits two symmetric solutions: f ,
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±G, θc. At n = 0, τ = 1, ϕ = 0 for system (4), we give numerical values f ′(0) = −0.5793,
G(0) = ±0.9934, θ′c(0) = 1.1039. In the case when τ = −1 the rotational effect is absent.
Here, f ′(0) = 1.0563, θ′c(0) = −3.3629, G = 0 at ϕ = 0.

FIG. 1. The dependence of the amplitude of the radial velocity component on
the transverse coordinate. Curves 1 and 2 correspond to the fluid flow without
rotation, curves 3 and 4 – to the flow with rotation.

Figure 1 shows graphs of the radial velocity components’ amplitude f ′(ξ) depending on
a function of the transverse coordinate ξ in the boundary layer at various concentrations ϕ of
copper nanoparticles. The flow without rotation corresponds to curves 1 and 2. The absence of
nanoparticles in the layer (ϕ = 0) corresponds to curve 1, and value ϕ = 0.2 corresponds to
curve 2. The radial component of the velocity decreased monotonically with distance from the
free boundary. The presence of nanoparticles slowed down the flow of a liquid, with the braking
effect appearing most prominently at the free surface. Curves 3 and 4 correspond to the values
ϕ = 0 and ϕ = 0.2 for the flow of liquid with rotation. Without rotation, the velocity of the
liquid decreased monotonically with the increased ξ and was positive, in this case, the rotational
speed is not monotonic and a zone of countercurrent appears by the free surface (where vr < 0).

Calculations showed that the circumferential velocity component hθ0 decreased mono-
tonically with distance from the free surface. When the concentration of nanoparticles increased,
fluid flow inhibition occurred and the rotational effect weakened.

The graph of the function θc(ξ), which influences the temperature distribution in the
boundary layer, in accordance with (3), is shown on Fig. 2. Curves 1 and 2 correspond to
the flow of liquid with rotation, and curves 3 and 4 correspond to the flow of liquid without
rotation. Curves 1 and 4 represent a nanoparticle concentration of 0 (ϕ = 0), while curves 2
and 3 correspond to a concentration of ϕ = 0.2. The temperature of the liquid with rotationless
flow was defined by the function θ0(r, ξ) in (3) and increased monotonically in the direction
of the free surface inside the boundary layer with r > 0 and remained constant equal to T∞
on the rotation axis r = 0. With higher nanoparticle concentrations, the temperature decreased
monotonically in fixed section within the layer ξ = const. With a rotating boundary layer
(τ = 1), the temperature distribution inside the layer was not monotonous and differed from
the one without rotation. A thin sublayer appeared inside the boundary layer DΓ near the free
boundary Γ, where the temperature increased with distance from Γ, and then fell outside this
sublayer to a value of T∞ on leaving DΓ. Depending on the parameter ϕ, the temperature
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FIG. 2. The dependence of the function θc on the transverse coordinate in the
boundary layer. Curves 1 and 2 correspond to the fluid flow with rotation, curves
3 and 4 – to the flow without rotation.

FIG. 3. The dependence of the amplitude of the heat flow on the volume con-
centration of nanoparticles on the free boundary. Curves 1 and 2 correspond to
the fluid flow without rotation, curves 3 and 4 – to the flow with rotation.

distribution inside the layer was not monotonic at fixed transverse coordinate ξ. The value ξ∗
exists for each value of the parameter ϕ. The temperature of the liquid decreased at 0 < ξ < ξ∗
with an increase of the concentration parameter, ϕ. The temperature of the liquid increased at
ξ > ξ∗.

Figure 3 shows graphs of the amplitude of the heat flux τθ′c(0) on the free surface
depending on the nanoparticle concentration ϕ of titanium oxide (curves 1 and 3) and copper
(curves 2 and 4). The flow of liquid without rotation corresponds to curves 1 and 2, while curves
3 and 4 were calculated for a rotating layer. In all cases, increased nanoparticle concentrations
reduced the amount of heat flux monotonically. Moreover, the heat flux reduction was dependent
upon the nanoparticle composition.
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5. Conclusion

The influence of nanoparticle concentration on heat transfer in a thin Marangoni bound-
ary layer near a free, nondeformable boundary with given uneven temperature distribution along
this boundary was researched in this paper. It was shown that depending on the temperature
gradient’s direction along the boundary, there might be a flow either with or without rotation.
During the rotation of the liquid, a countercurrent zone appears near the free surface. It was
shown that in both cases, with higher nanoparticle concentrations, the heat flux on the free
surface decreased monotonically on the order of several tens of percent, depending on the con-
centration and composition of the nanoparticles. The liquid velocity inside the Marangoni layer
decreased with higher nanoparticle concentrations. The rotational effect was weakened with the
presence of nanoparticles in the liquid.
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