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The asymmetric Stokes flow in a circular cylinder due to a rotlet is considered. This is a model for nanotube
flow induced by a small rotating particle. The 3D Stokes and continuity equations are reduced to boundary
problems for two scalar functions. Analytical solutions in terms of the Fourier transform is obtained.
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1. Introduction

The Stokes flow description is a classical problem of fluid mechanics, having a long
history. In recent years, it attracted new interest due to appearance of a new field, related
with the development of nanotechnology. The flow through nanostructures is known to
have many interesting unusual peculiarities [1]. Particularly, one observes a phenomenon
analogous to superfluidity [2], dependence of the viscosity on the nanotube diameter [3]
and other effects. The theory of nanoflow is not well-developed. There are only a few
works suggesting theoretical explanation of these phenomena (see, e.g., [4], [5], [6]). It
has been shown that hydrodynamic equations should be modified for nanoflows [7], but
the Stokes approximation is appropriate due to the smallness of the Reynolds number [8].

In the present paper, we use the Stokes model for nanotube flow. Namely, we study
the creeping flow inside the nanotube induced by a rotlet. From a physical point of view,
a molecule rotating due to external magnetic field in the nanotube can play the role of the
rotlet. A rotlet is the point source of vorticity, i.e. it is the solution of the Stokes equation
with point singularity (see, e.g., [9], [10]). Correct mathematical description of such type
of singular solutions was given in the framework of the theory of self-adjoint extensions of
symmetric operators [11], [12], [13]. The advantage of the approach is that it allows one
to obtain analytical solutions in many interesting cases. In the present paper we consider
asymmetric Stokes flow in a cylinder caused by a rotlet having the axis orthogonal to
the cylinder axis. Earlier the asymmetric Stokes flow was describe only for the domain
between two parallel planes [14].

2. Problem formulation

Consider a cylinder of radius R0 having OZ as the axis. We deal with the Stokes
flow inside the cylinder caused by a rotlet at the origin having OX as the axis. Let v be
the flow velocity, p be the pressure. Then the Stokes and continuity equations takes place:

Δv = ∇p, ∇ · v = 0. (1)
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We assume that the flow is induced by a rotlet, hence, we seek the solution in the form:

v = v0 + v1, v0 =
i× r

|r| ,

r is radius-vector of a point, i is the unit vector, parallel to the OX axis.
We will use the cylindrical coordinates (ρ, ϕ, z). There is an interesting technique

suggested in [15] which allows one to reduce the system (1) of the Stokes and continuity
equation to two equations for two scalar functions ψ, χ. Namely, the solution of (1) can be
represented in the form:

v = rot(rot(
ψ

ρ
k cosϕ) +

χ

ρ
k sinϕ),

p =
1

ρ

∂

∂z
(L−1ψ) cosϕ,

where ψ, χ are scalar functions of two variables (ρ, z) satisfying the equations:

L2
−1ψ = 0, L−1χ = 0,

L−1 =
∂2

∂z2
+

∂2

∂ρ2
− 1

ρ

∂

∂ρ
.

The velocity components is related with these functions by the following manner:

vz = − ∂

∂ρ
(
1

ρ

∂ψ

∂ρ
) cosϕ, (2)

vρ = (
∂

∂ρ
(
1

ρ

∂ψ

∂z
) +

χ

ρ2
) cosϕ, (3)

vϕ = −(
1

ρ2
∂ψ

∂z
+

∂

∂ρ
(
χ

ρ
)) sinϕ. (4)

The no-slip boundary condition (zero velocity at the boundary) is as follows:

(
∂

∂ρ
(
1

ρ

∂ψ

∂ρ
))

∣∣∣∣
ρ=R0

= 0,

(
∂

∂ρ
(ρ
∂

∂ρ
(
1

ρ

∂ψ

∂z
))− 1

ρ2
∂ψ

∂z
)

∣∣∣∣
ρ=R0

= 0,

(
∂

∂ρ
(ρ
∂

∂ρ
(
χ

ρ
))− χ

ρ2
)

∣∣∣∣
ρ=R0

= 0.

Moreover, v → 0 if z → ∞.

3. Problem solution

Note that the functions ψ, χ corresponding to the rotlet in free space are as follows

ψ0 = −
√
z2 + ρ2, χ0 = − z√

z2 + ρ2
.

We seek the solution in the form ψ = ψ0 + ψ1, χ = χ0 + χ1. At first, let us consider the
problem for χ1 :

∂2χ1

∂z2
+
∂2χ1

∂ρ2
− 1

ρ

∂χ1

∂ρ
= 0,
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(
∂

∂ρ
(ρ
∂

∂ρ
(
χ1

ρ
))− χ1

ρ2
)

∣∣∣∣
ρ=R0

= − (
∂

∂ρ
(ρ
∂

∂ρ
(
χ0

ρ
))− χ0

ρ2
)

∣∣∣∣
ρ=R0

.

Making the Fourier transform F in respect to z, one gets

−k2X +X ′′
ρρ −

1

ρ
X ′

ρ = 0,

(
∂

∂ρ
(ρ
∂

∂ρ
(
X

ρ
))− X

ρ2
)

∣∣∣∣
ρ=R0

= − (
∂

∂ρ
(ρ
∂

∂ρ
(
X0

ρ
))− X0

ρ2
)

∣∣∣∣
ρ=R0

.

Here X(k, ρ) = F (χ1(z, ρ)), X0(k, ρ) = F (χ0(z, ρ)). Note that X,X0 should be considered
as distributions. One can solve the problem and find X and, correspondingly, χ :

χ = χ0 + χ1, (5)

χ1 = F−1(X) =
1√
2π

∞∫
−∞

AJ1(ikρ)e
ikzdk,

A = −
( ∂
∂ρ
(ρ ∂

∂ρ
(X0

ρ
))− X0

ρ2
)
∣∣∣
ρ=R0

( ∂
∂ρ
(ρ ∂

∂ρ
(J1(ikρ)

ρ
))− J1(ikρ)

ρ2
)
∣∣∣
ρ=R0

,

where J1 is the Bessel function.
Consider the problem for ψ. Making the Fourier transform in respect to z, one

obtains the equation

(−k2 + ∂2

∂ρ2
− 1

ρ
)2Ψ = 0,

where Ψ(k, ρ) = F (ψ(z, ρ)). To construct the solution to the boundary problem, we need
two linearly independent solutions having no singularity at zero. One of them is, evidently,
J1(ikρ). The second solution is sought in the form f(ρ)J1(ikρ). Routine procedure gives
us the expression for f(ρ) :

f(ρ) =

∫ ρ

0

ρ1dρ1
J1(ikρ1)

(

∫ ρ1

0

J2
1 (ikρ2)

ρ2
dρ2).

The solution is linear combination of these two functions with coefficients determined by
the boundary conditions. As a result, one has:

ψ = ψ0 + ψ1, (6)

ψ1 = F−1(Ψ1) =
1√
2π

∞∫
−∞

Ψ1(k, ρ)e
ikzdk,

Ψ1(k, ρ) =
b1a22 − b2a12
a11a22 − a21a12

J1(ikρ) +
b2a11 − b1a21
a11a22 − a21a12

f(ρ)J1(ikρ),

a11 = (
∂

∂ρ
(
1

ρ

∂J1(ikρ)

∂ρ
))

∣∣∣∣
ρ=R0

, a12 = (
∂

∂ρ
(
1

ρ

∂(f(ρ)J1(ikρ))

∂ρ
))

∣∣∣∣
ρ=R0

,

a21 = (
∂

∂ρ
(ρ
∂

∂ρ
(
J1(ikρ)

ρ
))− J1(ikρ)

ρ2
)

∣∣∣∣
ρ=R0

,

a22 = (
∂

∂ρ
(ρ
∂

∂ρ
(
f(ρ)J1(ikρ)

ρ
))− f(ρ)J1(ikρ)

ρ2
)

∣∣∣∣
ρ=R0

,
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b1 = − (
∂

∂ρ
(
1

ρ

∂Ψ0(ρ)

∂ρ
))

∣∣∣∣
ρ=R0

,

b2 = −(
∂

∂ρ
(ρ
∂

∂ρ
(
Ψ0(ρ)

ρ
)) +

Ψ0(ρ)

ρ2
)

∣∣∣∣
ρ=R0

.

Inserting of expressions (5), (6) for χ and ψ into (2), allows one to obtain the velocity and
the pressure fields.
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