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INTERATOMIC INTERACTION IN FCC METALS

V.E. Zalizniak

Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia
vzalizniak@sfu-kras.ru

PACS 34.20.Ci, 61.50.Ah

The parameters of interatomic potential for 10 fcc metals are presented in this paper. The potential is based
on the embedded atom method [6]. Parameters are determined empirically by fitting to the equilibrium
lattice constant, cohesion energy, vacancy formation energy, bulk modulus and three elastic constants.
The proposed potentials are suitable for atomistic computer simulations of practical applications in areas of
material science and engineering.
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Notation

a — equilibrium lattice constant,

E., By — cohesion energy per atom and unrelaxed vacancy formation energy,
B — bulk modulus,

C11, C12, Ca4 — crystal elastic constants,

(@) (a) (@) p(a)

a .
Ci1» Clg's Cag s — calculated values of elastic constants.

1. Introduction

Computer simulations have become an increasingly powerful tool for studying ma-
terial properties. While first principle quantum methods generally give the most accurate
results, they can rarely be applied to complex systems, which require a large number of
atoms or longer calculations. However, empirical potentials have proven to be efficient for
investigating the structure and properties of materials in many fields, though these results
are less accurate than first principle quantum calculations. The embedded-atom method
(EAM) is widely used to represent the interaction between metal atoms. A general de-
scription of the method was done by Daw and Baskes [1, 2]. In the framework of EAM,
the total energy of a system can be written as

N N N
1
Etot - ZEH > En = F(pn) + 5 Z Sa(rnm) s Pn = Z p(rnm)a
n=l m=1 m=1
m#n m#n

where F,,; — total energy of the system of IV atoms, F,, — the internal energy associated
with atom n, p, — the electron density at atom n due to all other atoms, p(r,,) —
the contribution to the electron density at atom n due to atom m at the distance r,,,
from atom n, F(p,) — the embedding energy of the atom into the electron density p,,
©(rnm) — the two body central potential between atoms n and m separated by 7,,,.
Interpretation and functional form of ¢(r), p(r), and F(p) depend on a particular method.
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The popularity of the EAM model results from its quantum mechanical justification, as well
as its mathematical simplicity, which makes this model conducive to large-scale computer
modeling.

In recent years, a number of EAM potential models for fcc metals have been
proposed. For example, Sheng et al. [3] have developed EAM potentials for fourteen
fcc metals. The potentials were developed by fitting the potential-energy surface of each
element derived from high-precision first-principles calculations. The three determining
functions were expressed with quintic spline functions for each element. Typically, 15
equidistant spline knots were used for both the density and the pair functions, and 6 spline
knots were used for the embedding function. This results in a great quantity of fitting
parameters. Hijazi and Park [4] have proposed potential for seven fcc metals: Ag, Al, Au,
Cu, Ni, Pd and Pt. They have used the following potential functions:

p(r) = poexp (—a(r —re)),

a1
P =) (1-am (L)) (pﬁ)

where 7. is the equilibrium nearest distance. This potential has six adjustable parameters,
a, B, 7, a and p.. Dai et al. [5] have proposed an extended Finnis-Sinclair potential for
six fcc metals: Ag, Au, Cu, Ni, Pd and Pt. The following potential functions have been
employed

Y

B (r—r1)2+a2(r—7"1)4,7“<7"1
p(r){o LT >

9

0 , T > Ty

F(p) = Foy/p,

where 7, and ry are cut-off parameters assumed to lie between the second and third
neighbor atoms. By this means, one needs to fit nine parameters.

The above mentioned potential models do not provide an equally accurate description
of basic properties for all fcc metals to which those potentials have been applied to. The
purpose of this paper is to present potential parameters for a consistent and practicable
EAM model [6], which can be applied to widely used fcc metals.

(,0(7”):{ (7"—7“2)2 (CO+C17'+C27’2—|—637-3+C4T4) <y

2. Embedded atom potential

Zalizniak and Zolotov [6] have assumed that the atomic electron density has the
following functional form:

p(r) = po(1+ Br)* exp (—ar), (1)

where « and [ are parameters of the atomic electron density distribution. Pair potential
follows from the electrostatic interaction of two atoms that have positively charged nuclei
and the electron densities defined by expression (1). The resulting expression is rather
cumbersome and it can be written in a concise form as follows [6]:

6

@ (r) =e-exp(—ar) Z an, (ar)", (2)

n=-—1
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where parameters a, depend on « and 5. The embedding function F(p) is taken in the
polynomial form

(3)

where p. — equilibrium electron density.

3. Results of potential fitting

In order to define the potential of interaction between the same metal atoms one
need to fit only two parameters: a and B. The experimental data used in the fitting
procedure consist of the equilibrium lattice constant, the cohesive energy, the vacancy

formation energy, the bulk modulus and three elastic constants, given in Table 1.

Table 1. Pure metal properties used in fitting

a, A

E., eV

Evf, eV

B,
eV/A3

C11,

eV/A3

C12,

eV/A3

Cy4,

eV /A3

Al

4.05 [7]

3.34 [7]

0.64 [9]

0.474 [12]

0.666 [12]

0.377 [12]

0.177 [12]

5.58 [7]

1.84 [7]

0.70 [9]

0.133 [13]

0.173 [13]

0.114 [13]

0.102 [13]

Ni

352 [7]

144 [7]

.79 [10]

161 [12]

1,548 [12]

0.967 [12]

0.775 [12]

Cu

361 [7]

3.49 [7]

.28 [10]

0.863 [14]

[.042 [14]

0.754 [14]

0.466 [14]

Pd

3.89 [7]

3.89 [7]

1.85 [11]

1.205 [12]

417 [12]

1.099 [12]

0.447 [12]

409 [7]

2.95 [7]

I.10 [10]

0.632 [12]

0.763 [12]

0.566 [12]

0.283 [12]

Ir

3.84 [7]

6.94 [7]

1.97 [8]

9916 [15]

3.683 [15]

[.554 [15]

1.635 [15]

Pt

3.92 [7]

5.84 [7]

1.35 [10]

1.765 [12]

2.164 [12]

1.565 [12]

0.478 [12]

Au

108 [7]

3.81 [7]

0.90 [10]

1.083 [12]

1.204 [12]

1,022 [12]

0.259 [12]

Pb

4.95 [7]

2.03 [7]

0.58 [10]

0.279 [12]

0.310 [12]

0.264 [12]

0.094 [12]

Table 2. Parameters of the atomic electron density distribution (1)

a, /AT B, 1/A [ po, e/A?
AT [1.8008 | -2.5380 | 0.1844
Ca [ 1.0958 | -6.0630 | 0.0031
Ni | 1.5900 | 14.6900 | 0.0041
Cu | 1.6300 | -28.0390 | 0.0014
Pd [ 1.5239 | -18.3850 | 0.0039
Ag | 15568 | -5.0950 | 0.0642
Ir | 2.6116 | -1.4845 | 37.2065
Pt | 2.9320 | -1.7440 | 9.4854
Au | 2.0585 | -1.7950 | 5.6041
Pb [ 1.2000 | -13.2940 | 0.0040

As the fitting procedure [6] suggests, the equilibrium lattice constant, cohesive
energy, vacancy formation energy and bulk modulus are reproduced exactly. The fitting
procedure is performed using a cutoff distance of 2a, so that long-range interactions are
included.

The results of fitting for ten fcc metals are presented below. Table 2 lists the
parameters of the atomic electron density distribution. Parameters of pair potential are
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Table 3. Parameters of pair potential (2)

Al Ca Ni Cu Pd
e, eV 4.4736 4.2963 9.1686 7.2840 10.3465
a_y 1 1 1 1 1
ag 0.7236 0.6932 0.6747 0.6854 0.6867
a 0.8981 0.5757 0.4606 0.5229 0.5331
as | 5.6170E-02 | 2.2931E-02 | 1.0457E-02 | 1.7243E-02 | 1.8342E-02
as | -1.4951E-02 | -1.3498E-02 | -1.2742E-02 | -1.3173E-02 | -1.3238E-02
as | -1.9584E-03 | -1.6589E-03 | -1.5067E-03 | -1.5930E-03 | -1.6062E-03
as | -1.9226E-04 | -1.4436E-04 | -1.2237E-04 | -1.3462E-04 | -1.3654E-04
ag | -1.3088E-05 | -7.4251E-06 | -5.5519E-06 | -6.5523E-06 | -6.7185E-06
Table 4. Parameters of pair potential (2)
Ag Ir Pt Au Pb
g, eV 7.2321 28.0893 10.4249 6.4193 2.6628
a_q 1 1 1 1 1
aop 0.7010 0.6979 0.7351 0.7360 0.6874
a 0.6366 2.4252 1.5272 1.3442 0.5361
as | 2.9404E-02 0.19029 0.1149 9.8534E-02 | 1.8674E-02
as | -1.3835E-02 | -1.8071E-02 | -1.6559E-02 | -1.6179E-02 | -1.3258E-02
ag | -1.7277E-03 | -2.4684E-03 | -2.2677E-03 | -2.2009E-03 | -1.6101E-03
as | -1.5489E-04 | -2.2692E-04 | -2.3969E-04 | -2.3129E-04 | -1.3711E-04
ag | -8.4546E-06 | -4.3189E-05 | -2.5063E-05 | -2.1497E-05 | -6.7690E-06

Table 5. Parameters of embedding function (3)

Al Ca Ni Cu Pd
pe, /A% ] 0.6726 | 0.4105 | 2.3029 | 2.2059 | 2.7952
co, €V | -3.3376 | -1.8389 | -4.4357 | -3.4868 | -3.8874
c1, eV 1 -0.5328 | -0.6987 | -1.7850 | -1.2768 | -1.7893
co, €V | 1.0845 | 0.0032 | 0.0098 | 0.0006 | 0.8255
c3, €V | -0.6668 | 0.1761 | 0.5071 | 0.2571 | 1.8814
ce, €V | 1.0536 | 1.3131 | 3.1479 | 2.4665 | 3.1539

Table 6. Parameters of embedding function (3)

Ag Ir Pt Au Pb
pe, €/A3 | 2.4369 | 3.8042 | 4.0881 | 3.7648 | 2.4181
co, €V | -2.9485 | -6.9379 | -5.8390 | -3.8094 | -2.029765
c1, eV | -1.0896 | -1.9624 | -0.9382 | -0.6167 | -0.4593
co, €V | 0.1118 | 0.0404 | 3.4135 | 2.4495 | 1.7075
cs3, eV | 0.4725 | -1.8474 | -0.0709 | 0.3350 | 0.6488
cq, €V | 2.2196 | 3.0877 | 1.4164 | 1.0778 | 0.5118
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Table 7. Calculated and experimental properties of pure metals, the proposed
potential (1)—(3). The first lines present the experimental values of the three
elastic constants (they are used in fitting procedure) and the commonly
accepted values of vacancy formation energies. The second lines present the
values predicted by the potential

C11, C19, Cy4, B, E,Uf, eV d, %
eV/A3 | eV/A3 | eV/A3 | eV/A3

Al | 0.666 | 0.377 | 0.177 | 0.474 0.62-0.66 [8] 0.14
0.666 | 0.377 | 0.176 | 0.474 0.64

Ca| 0.173 | 0.114 | 0.102 | 0.133 0.7 [9] 10
0.177 | 0.111 | 0.066 | 0.133 0.70

Ni | 1.548 | 0.967 | 0.775 | 1.161 | 1.6, 1.79 [16, 10] | 7.1
1.583 | 0.950 | 0.586 | 1.161 1.79

Cu| 1.042 | 0.754 | 0.466 | 0.863 | 1.28, 1.3 [10, 17] | 5.3
1.130 | 0.729 | 0.422 | 0.863 1.28

Pd | 1.417 | 1.099 | 0.447 | 1.205 | 1.7, 1.85 [10, 11] | 1.9
1.422 | 1.096 | 0.478 | 1.205 1.85

Ag | 0.763 | 0.566 | 0.283 | 0.632 1.1 [10, 17] 0.25
0.762 | 0.567 | 0.281 | 0.632 1.1

Ir | 3.683 | 1.554 | 1.635 | 2.216 | 1.79, 2.27*[10, 18] | 5.5
3.823 | 1.412 | 1.484 | 2.216 1.97

Pt | 2.164 | 1.565 | 0.478 | 1.765 | 1.35, 1.5 [10, 17] | 0.05
2.165 | 1.565 | 0.479 | 1.765 1.35

Au| 1.204 | 1.022 | 0.259 | 1.083 | 0.89, 0.93 [11, 10] | 0.6
1.217 | 1.016 | 0.257 | 1.083 0.9

Pb | 0.310 | 0.264 | 0.094 | 0.279 0.58 [10] 9
0.304 | 0.266 | 0.060 | 0.279 0.58

* — result of ab initio calculations

listed in Tables 3 and 4, while coefficients of the embedding function F'(p) are given in
Tables 5 and 6.

The calculated properties of pure metals from the proposed potential were compared
with the experimental values, to which they were fitted in Table 7. The first lines con-
tain the experimental values, while the second lines contain the values predicted by the
potential. The last column presents the average discrepancy

|6 —en| |ds —en| | —cu| |B@ _p)
d=- + + +
4 C11 C12 Ca4 B

computed for every metal. For softer materials, such as Ca, Pb and Ni, the average
discrepancies between the calculated and experimental results were found to be relatively
large, but for other metals, the match between experiment and the proposed EAM model
was good.

For comparative purposes, pure metal properties derived for ten fcc metals using
the optimized EAM potential [3] and analytic EAM potential [4] are shown in Tables 8
and 9. The equilibrium lattice constant and the cohesive energy were reproduced exactly
by all potentials. Generally, the proposed potential and the optimized EAM potential [3]
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Table 8. Calculated and experimental properties of pure metals, optimized
EAM potential [3]. The first lines present the experimental values of the
three elastic constants (they are used in fitting procedure) and the commonly
accepted values of vacancy formation energies. The second lines present the
values predicted by the potential

C11, C19, Cy4, B, Evf, eV d, %
GPa | GPa | GPa GPa

Al | 114 | 61.9| 31.6 76 0.62-0.66 [8] 1
113 | 61.6 | 32 77 0.67

Ca| 28 |18.2]16.3|14.1-19.3 0.7 [9] 7.8
28 18 17 21 0.95

Ni | 261 | 151 | 132 | 180 | 1.6, 1.79 [16, 10] | 2.5
263 | 154 | 127 186 1.12

Cul 176 | 125 | 82 | 140 | 1.28 1.3 [i0, 17] | 14
175 | 124 | 79 141 0.99

Pd| 234 [ 176 |71.2| 180 | 1.7, 1.85 [10, 1] | 5.7
235 | 180 | 82 188 1.44

Ag| 132 [ 97 | 51 100 I.1[10, 17] 0.7
131 | 97 | 5l 98 1.17

Ir | 582 | 241 | 262 320 1.79, 2.27*[10, 18] | 4.3
578 | 241 | 243 350 1.67

Pt | 347 | 951 | 77 | 228-275 | 1.35, 1.5 [10, 17] | 3
347 | 253 | 78 282 1.50

Au| 193 | 163 | 42 180.3 10.89, 0.93 [11, 10] | 2.9
197 | 165 | 45 178 0.98

Pb 494 | 421|149 46 0.58 [10] 15
50.1 | 42 | 15.2 45 0.45

* — result of ab initio calculations

provide similar descriptions of the elastic properties for ten fcc metals (see Tables 7 and 8).
The values of vacancy formation energy estimated by the EAM potential [3] were not in
satisfactory agreement with the data measured for most metals. Analytic EAM potential
[4] provided a better description of elastic properties for Cu and Ni in comparison with
the proposed potential, but for the other metals, the proposed potential gave a better fit to
the experimental data (see Tables 7 and 9).

4. Conclusion

This paper presents parameters of a new EAM potential model to describe pure fcc
metals. The potential model has a simple function form with two adjustable parameters
and is easy to use in computer simulations. The potential parameters were determined
by fitting the pure metal bulk properties: equilibrium lattice constant, cohesive energy,
bulk modulus, three elastic constants and vacancy formation energy. The fitting proce-
dure was applied to ten fcc metals: Al, Ca, Ni, Cu, Pd, Ag, Ir, Pt, Au, and Pb. The
equilibrium lattice constant, cohesive energy, bulk modulus and vacancy formation energy
were reproduced exactly. The agreement between the calculated elastic constants and the
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Table 9. Calculated and experimental properties of pure metals, analytic
EAM potential [4]. The first lines present the experimental values of the
three elastic constants (they are used in fitting procedure) and the commonly
accepted values of vacancy formation energies. The second lines present the
values predicted by the potential

C11, C12, Cq4, B, Evf, eV d, %
GPa | GPa | GPa | GPa

Al | 114 | 619 | 316 | 79 0.62-0.66 [8] 17.1
98 1699 | 447 | 79 0.866

Ni | 246.5 | 147.3 | 124.7 | 180.4 | 1.6, 1.79 [16, 10] | 3.3
232.4 | 154.8 | 127.6 | 180.2 1.7

Cu| 170 [1225] 75.8 | 138 | 1.28, 1.3 [10, 17] | L.
167 |124.3| 77.3 | 138 1.3

Pd|234.1| 176 | 71.2 | 195 | 1.7, 1.85 [10, 11] | 3.8
225.5| 180 | 77.7 | 195 1.54

Ag| 124 | 934 | 46.1 | 104 1.1 [10, 17] 1.4
122 | 94.2 | 475 | 103 1.1

Pt | 347 | 251 | 76,5 | 283 | 1.35, 1.5 [10, 17] | 8.9
324 | 262 | 954 | 283 1.6

Au| 186 | 157 42 167 |0.89, 0.93 [11, 10] | 0.9
184 157 43 167 0.9

experimental data was good. The proposed EAM potentials are believed to find applications
in diverse areas of materials science and engineering.
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