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We consider Green’s function for layered system. We express it in terms of the well-known scalar s and p ones.

For a single NIM layer in vacuum and with a single dispersive Lorentz form for equal electric and magnetic

permeabilities ε(ω) and µ(ω), we obtain an explicit form for Green’s function. Also we find Green’s function for

multilayered system and obtain recurrence relations for its coefficients.
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1. Introduction

Metamaterials are artificial materials engineered to have properties that may not be
found in nature. In particular, they may have negative refractive index. Such materials are
called negative index materials (NIMs). In general, a NIM system is defined by the property
that for certain frequencies ω the electric permeability ε(ω) or the magnetic permeability µ(ω)
becomes negative. The NIM situation is the case where both at the same frequency ω̂ become
negative and are equal –1. Recently, NIMs have come under increased scrutiny (see [1], [2]).

The existence of NIMs has been debated in previous theoretical literature (see [3–8]). In
particular, the sign of the index of refraction, which involves taking a square root n = ±√εµ,
has been the subject of discussion. Naively it equals +1, in both vacuum and a NIM system
but this result is challenged for the NIM situation. The use of the phenomenological Maxwell’s
equations should solve possible ambiguities.

2. Model

As in [9], where the following model is fully described, the starting point is the set
of phenomenological Maxwell’s equations for the case where the permanent polarization and
magnetization are absent (ε0 = µ0 = 1),

∂tD (x, t) = ∂x ×H (x, t) , ∂tB (x, t) = −∂x × E (x, t) ,

∂x ·D (x, t) = 0, ∂x ·B (x, t) = 0,
(1)

with the constitutive equations

D (x, t) = E (x, t) + P (x, t) , P (x, t) =

∫ t

t0

dsχe (x, t− s) · E (x, t) ,

H (x, t) = B (x, t)−M (x, t) , M (x, t) =

∫ t

t0

dsχm (x, t− s) ·H (x, t) ,

where χe (x, t) and χm (x, t) are the electric and magnetic susceptibility tensors. We assume that
the system is dispersive, nonabsorptive and use causality and passivity conditions. Causality
requires that the susceptibilities χe (x, t) = χm (x, t) = 0 for t ≤ t0 (t0 = 0). Passivity means
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that the electromagnetic energy εem(t) =
1

2

∫
dx
{
E (x, t)2 +H (x, t)2} cannot increase as a

function of time. We use the Fourier transform,

f̂(z) =

∫ ∞
0

dt exp [izt] f(t), f(t) =
1

2π

∫
Γ

dz exp [−izt] f̂(t),

where Γ is a path running from −∞ to +∞ at some distance δ > 0 parallel to the real axis,
z = ω + iδ, δ → 0 (=z > 0). We consider the isotropic system, χ̂(x, z) = χ̂(x, z)U where U is
the unit matrix 3× 3, and we are dealing with a single dispersive Lorentz contribution ε(ω) =

µ(ω) = 1− Ω2

ω2 − ω2
0

. Then ω̂ =

√
ω2

0 +
Ω2

2
is the NIM frequency as ε(±ω̂) = µ(±ω̂) = −1.

Maxwell’s equations (1) can be expressed in terms of Fourier transforms,

Le(z) · Ê(x, z) = ge(x, z), Lm(z) · Ĥ(x, z) = gm(x, z),

where

Le(z) = z2ε(x, z) + (∈ ·p) · µ(x, z)−1 · (∈ ·p),
Lm(z) = z2µ(x, z) + (∈ ·p) · ε(x, z)−1 · (∈ ·p),

ge(x, z) = izE(x, 0) + i(∈ ·p) ·
{
µ(x, z)−1 ·H(x, 0)

}
,

gm(x, z) = izH(x, 0)− i(∈ ·p) ·
{
ε(x, z)−1 · E(x, 0)

}
.

Here Le(z) and Lm(z) are the electric and magnetic Helmholtz operators, ∈ is the
Levi-Civita symbol, and p = −i∂x so (∈ ·p) · f = i∂x × f . Let now

Re(z) = Le(z)−1, Rm(z) = Lm(z)−1.

Then
Ê(x, z) = Re(z) · ge(x, z), Ĥ(x, z) = Rm(z) · gm(x, z).

Next we introduce Green’s functions
Ge,m(x, y, z) = 〈x|Re,m|y〉 ,

Le,m(z) ·Ge,m(x, y, z) = δ(x− y)U.

Then E(x, t) is given by the inverse Fourier transform of

Ê(x, z) =

∫
dyG(x, y, z) · g(y, z),

where g(y, z) is some integrable initial field configuration or an external current density.
We only consider the electric Green’s function and drop the superscript e. We also

assume that the system is layered, and layers are parallel to the X1X2-plane and there is the
translation invariance in the X1 and X2 directions (the three Cartesian axes are denoted by X1,
X2 and X3 with corresponding unit vectors e1, e2 and e3). Then the permeabilities only depend
on x3,

ε(x, z) = ε(x3, z) = εj(z), µ(x, z) = µ(x3, z) = µj(z).

We denote x = x3, y = y3 and let k = (k1, k2, k3), κ = (k1, k2, 0) = κeκ = k⊥⊥e3,

ζ2(x, κ, z) = z2ε(x, z)µ(x, z)− κ2.

We obtain

G(x, y, z) =
1

2π

∫
dκ exp[−iκ · (x⊥ − y⊥)]Gκ(x, y, z),

Gκ(x, y, z) = Gs(x, y, z, κ) +Gp(x, y, z, κ),
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where
Gs(x, y, z, κ) = Gs(x, y, z, κ) e3 × eκe3 × eκ,

Gp(x, y, z, κ) =

(
eκ +

iκ

ζ(x)2
∂xe3

)(
eκ −

iκ

ζ(y)2
∂xe3

)
Gp(x, y, z, κ),

s-polarization part Gs and p-polarization part Gp of Green’s function are scalar and satisfy{
z2ε(x, z)− p z

2ε(x, z)

ζ(x, κ, z)2
p

}
Gp(x, y, z, κ) = δ(x− y),{

ζ(x, κ, z)2

µ(x, z)
− p 1

µ(x, z)
p

}
Gs(x, y, z, κ) = δ(x− y).

3. Results

3.1. Single NIM layer

In [9] the simplest layered system, i.e., two half spaces filled with NIM and vacuum
was considered and the expressions for Green’s function were found. In our investigation we
considered the single NIM layer in a vacuum,

ε(x, z) =

{
ε(z), x ∈ (a, b)

1, x /∈ (a, b)
, µ(x, z) =

{
µ(z), x ∈ (a, b)

1, x /∈ (a, b)

with point perturbation located in a vacuum (y < a). For Gs, Gp with frequencies z = ±ω̂ we
find explicit expressions for case ω̂ > κ (radiative regime) and expressions in asymptotic form
for case ω̂ < κ (evanescent regime) the same way [9]. We denote

ρ(ω̂) =

√∣∣∣ω2 (1− Ω2/ (ω2 − ω2
0))

2 − κ2

∣∣∣.
In the reflection case (x, y < a < b), the receiver located in x and the point perturbation

located in y are on the one side of the layer (see Fig. 1), and for ω̂ > κ,

Gp(x, y,±ω̂) = ±ρ(ω̂)

2iω̂2
exp[±iρ(ω̂)|x− y|],

Gs(x, y,±ω̂) = ± 1

2iρ(ω̂)
exp[±iρ(ω̂)|x− y|],

where the term responsible for reflection is absent, i.e., there is no reflection at the frequencies
±ω̂ for which ε(±ω̂) = µ(±ω̂) = −1.

FIG. 1. Reflection case (x > y)
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For ω̂ < κ,

Gp(x, y, z)
z→±ω̂∼

ρ(ω̂)

2ω̂2
exp [−ρ(ω̂)|x− y|] +

Ω2

4ω̂2κ2

ρ(ω̂)3 (1− 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(a− x+ a− y)] ,

Gs(x, y, z)
z→±ω̂∼

− 1

2ρ(ω̂)
exp [−ρ(ω̂)|x− y|] +

Ω2

4κ2

ρ(ω̂) (1− 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(a− x+ a− y)] ,

where the reflection term is still present, but we encounter dampening behavior, typical for the
evanescent situation.

In the refraction case (y < a < x < b), the receiver is in the NIM layer (see Fig. 2),
and for ω̂ > κ,

Gp(x, y,±ω̂) = ±ρ(ω̂)

2iω̂2
exp [±iρ(ω̂)(a− x+ a− y)] ,

Gs(x, y,±ω̂) = ± 1

2iρ(ω̂)
exp [±iρ(ω̂)(a− x+ a− y)] ,

for ω̂ < κ,

Gp(x, y, z)
z→±ω̂∼

Ω2

4ω̂2κ2

ρ(ω̂)3 (1 + 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(x− y)]− 2ρ(ω̂)3

ω̂2
exp [−ρ(ω̂)(a− x+ a− y)] ,

Gs(x, y, z)
z→±ω̂∼

− Ω2

4κ2

ρ(ω̂) (1 + 4ρ(ω̂)2)

(z − ω̂) (z + ω̂)
exp [−ρ(ω̂)(y − x)]− 2ρ(ω̂) exp [−ρ(ω̂)(a− x+ a− y)] .

FIG. 2. Refraction case

In the transmission case (y < a < b < x), the receiver and point field source are located
on different sides the NIM (see Fig. 3), for ω̂ > κ,

Gp(x, y,±ω̂) = ±ρ(ω̂)

2iω̂2
exp [±iρ(ω̂) (x− y − 2(b− a))] ,

Gs(x, y,±ω̂) = ± 1

2iρ(ω̂)
exp [±iρ(ω̂) (x− y − 2(b− a))] ,
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for ω̂ < κ,

Gp(x, y, z)
z→±ω̂∼ −2ρ(ω̂)3

ω̂2
exp [−ρ(ω̂) (x− y − 2(b− a))] ,

Gs(x, y, z)
z→±ω̂∼ 2ρ(ω̂) exp [−ρ(ω̂) (x− y − 2(b− a))] .

FIG. 3. Transmission case

In retrieving E(x, t), the pole contributions in Green’s function give rise to terms that
oscillate in time according to exp[±iω̂t], so no dampening occurs in a time dependent fashion,
a property observed earlier in [2] for the single layer case.

3.2. Multilayered system

Also, we find Green’s function for the multilayered system. The point perturbation is
located in layer number 0. There are n layers in the positive direction of the x-axis and m
layers in the negative, m+ n+ 1 layers in total (see Fig. 4).

FIG. 4. Multilayered system

Let ε(x, z) = εk(z) and µ(x, z) = µk(z) if x ∈ (xk, xk+1), where k = −m, . . . , n,
x−m = −∞, xn+1 = +∞. We consider below only the p-polarized part Green’s function,
omitting subscript p,

G(x, y, z) =
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=



D−me
−iζ−mx, x ∈ (−∞, x−(m−1));

B−(m−1)e
−iζ−(m−1)x + C−(m−1)e

−iζ−(m−1)x +D−(m−1)e
−iζ−(m−1)x, x ∈ (x−(m−1), x−(m−2));

A−(m−2)e
−iζ−(m−2)x +B−(m−2)e

−iζ−(m−2)x + C−(m−2)e
−iζ−(m−2)x+

+D−(m−2)e
−iζ−(m−2)x, x ∈ (x−(m−2), x−(m−3));

. . . . . .

A−1e
−iζ−1x +B−1e

−iζ−1x + C−1e
−iζ−1x +D−1e

−iζ−1x, x ∈ (x−1, x0);

A0e
−iζ0x +B0e

−iζ0x + C0e
−iζ0x +D0e

−iζ0x + E−e
−iζ0x, x ∈ (x0, y);

A0e
−iζ0x +B0e

−iζ0x + C0e
−iζ0x +D0e

−iζ0x + E+e
iζ0x, x ∈ (y, x1);

A1e
−iζ1x +B1e

−iζ1x + C1e
−iζ1x +D1e

−iζ1x, x ∈ (x1, x2);

. . . . . .

An−2e
−iζn−2x +Bn−2e

−iζn−2x + Cn−2e
−iζn−2x +Dn−2e

−iζn−2x, x ∈ (xn−2, xn−1);

An−1e
−iζn−1x +Bn−1e

−iζn−1x + Cn−1e
−iζn−1x, x ∈ (xn−1, xn);

Ane
−iζnx, x ∈ (xn, +∞).

Here coefficients A• are for waves that come from left outside of current layer, coeffi-
cients B• are for waves reflected from the nearest left interface, coefficients C• are for waves
reflected from the nearest right interface and coefficients D• are for waves that come from right
outside of current layer. Coefficients E± are for waves that come direct from point perturbation
located in y. We denote

ζ2
i (κ, z) = z2εi(z)µi(z)− κ2,

K0 =
ζ0

2iz2ε0

, λ±i,j =
εiζj ± εjζi

εiζj

and introduce the Fresnel reflection coefficients

ri,j = −εiζj − εjζi
εiζj + εjζi

or ri,j = −
λ−i,j
λ+
i,j

.

As is easy to see rj,i = −ri,j . After some calculations, we obtain E± = K0e
∓iζ0y that

means E±e
±iζ0x = K0e

iζ0|x−y| and Green’s function is the same for x ∈ (x0, x1). Denoting

ak = 2e−iζkxk , bk = λ+
k,k−1e

−iζk−1xk , ck = 2eiζkxk , dk = λ−k,k−1e
−iζk−1xk ,

ek = 2eiζkxk+1 , fk = λ+
k,k+1e

iζk+1xk+1 , gk = 2e−iζkxk+1 , hk = λ−k,k+1e
iζk+1xk+1

we obtain for k = 1, . . . , (n− 1),

Ak = αkAn, Bk =
dk
ck
γkAn, Ck =

hk
gk
αk+1An, Dk−1 = αkAn,

for k = −(m− 1), . . . , 0,

Ak = αkAn + βk, Bk =
dk
ck

(γkAn + δk) , Ck =
hk
gk

(αk+1An + δk+1) , Dk−1 = αkAn + δk,

but C0 =
h0

g0

α1An and A−(m−1) = 0, where αk, βk, γk, δk satisfy the following recurrence

relations
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αk = α̃kαk+1 −
(
a d

b c

)
k

γk+1 and αn−1 = α̃n−1,

where

α̃k =
fk
ek

(
1−

(
a d e h

b c f g

)
k

)
,

γk =
ak
bk

(
hk
gk
αk+1 + γk+1

)
and γn−1 =

(
a h

b g

)
n−1

,

βk = α̃kβk+1 −
(
a d

b c

)
k

δk+1 and β0 = K0

(
e−iζ0y −

(
a d

b c

)
0

eiζ0y
)
,

δk =
ak
bk

(
hk
gk
βk+1 + δk+1

)
and δ0 = K0

a0

b0

eiζ0y.

Here we use the notation

(
a d

b c

)
k

=
akdk
bkck

. Hence coefficients A•, B•, C•, and D• depend on

An. In our investigation we obtain

An = −
β−(m−1)

α−(m−1)

.

Solving these recurrence relations and finding the explicit expressions for Green’s func-
tion is the actual problem.
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