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ABSTRACT In this study, we have investigated the transport properties of low bucked (LB) and high buck-
led (HB) silicene based two probe devices such as I–V characteristics, conductance, transmission spectrum
and projected device density of states. Firstly, we have opened a bandgap in both LB and HB zigzag silicene
nanoribbon (ZSiNR) by hydrogen passivation and simulated for their transport properties. Further, we have
doped the LB and HB ZSiNR structures by gallium (Ga) and arsenide (As) atoms in order to determine their
changes in the transport properties. The results show that 4 atom width silicene nanoribbon shows a maximum
band gap of 2.76 and 2.72 Å for LB-ZSiNR and HB-ZSiNR, respectively. The 2 atom doped ZSiNR shows good
transport characteristics in the voltage range of 0.5 to 1.5 V in comparison with 4 and 6 atom doped models.
The obtained results were validated by calculating the transmission spectrum and projected device density
of states. It is believed that the modelled devices will find number of futuristic applications in the electronic
industry.
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1. Introduction

The silicene, a honeycomb (hexagonal) structured 2D material exfoliated from silicon monolayer atoms, is excep-
tionally expedient over graphene due to its sp3 hybridization. Silicene does not exist in nature and tends to generate larger
silicone crystals and silicone compounds [1]. The effective synthesis of this element on metal substrates [2–4] has spurred
interest in both theoretical [5, 6] and experimental investigations [7, 8]. The buckled structure of 2D silicene result either
from the weak π double bonds due to the parted Si atoms or through the pseudo-Jahn–Teller distortions (PJT) [9]. Due to
the zero band gap semimetal character with linearly crossing bands at the Fermi level (EF), the charge carriers move like
massless fermions at around 106 m/s at the Dirac point. This could be fixed by directing various modulation techniques for
recognition of tunable band gaps. A number of such formulations include modeling silicene into nanoribbon (NR) bands
of atomic layer width and chemical functionalization [10–13]. In addition, the implementation of strain, the application
of an external electrical field [14], vacancy creation [15], surface adsorption, substitution, nano-mesh creation (creating
nanoholes on the silicene sheet), etc. could also yield band gap efficiently [16]. There have been some reports proposed
by Yao, et al. [17] showing the distinct properties of large spin–orbit coupling (SOC) effect as a result of buckling and the
Quantum Spin Hall effect (QSHE) [18], and a valley-polarized metallic phase by Ezawa [19]. Due to such articulations in
the silicene material, it finds several device implementations as field effect transistor (FET), tunnel field effect transistor
(TFET), spintronics, valleytronics, bandgap engineering, gas sensors etc [16].
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The atomic structure of silicene could be perceived into three phases based on the buckling done. The Planar
structure (PL) (pristine version), as per the binding energy computations of silicene, has a greater energy than its Low-
buckled (LB) and High-buckled (HB) complements. There exist fictitious phonon frequencies in the PL structure for the
majority of the Brillouin zone [20] that renders it unstable. The fictitious phonon frequencies are moreover evident in
silicene HB structures with significant buckling heights of 2 Å. As a result, HB structures are not consistent to actual local
minima over the Born–Oppenheimer surface [21]. Silicene’s LB structures, on the other hand, exhibit phonon dispersion
curves with positive coefficients over the whole Brillouin zone, making them dynamically stable [21].

Though the lack of a band gap restricts the material for both electronic and device applications, but optimistically
functionalization, strain, or the application of an external electrical field, nano-mesh creation, defect creation, etc. can be
implemented to yield a band gap. Another way of solving band gap problem is by slicing silicene into silicene nanoribbons
(SiNRs). SiNRs are of two forms viz., Armchair Silicene Nanoribbons (ASiNRs) and Zigzag Silicene Nanoribbons
(ZSiNRs) [3]. In the past, several elements like Al, Ga, In, Th, P, As, Sb and Bi have been investigated for various
electronic (band structure, density of states (DOS)) and transport properties (transmission spectra and I–V characteristics)
of silicene NRs [20]. Likewise, dopants containing Gallium and Arsenic have been implemented for the semiconductor
simulation [22, 23].

Gallium belongs to group-III with valency three and arsenic belongs to group-V with valency five in the periodic
table. Thus, Gallium atoms are often replaced for doping in p-type semiconductors with majority of the charge carriers
as holes and contrast to this arsenic atoms are replaced to dope in n-type semiconductors. Ga and As are mostly used
for optoelectronic applications because of their optical properties [24, 25]. Further, the lattice constants of Ga and As are
identical [3]. Gallium arsenide is formed by coupling Group III and V elements for implementation as photo detectors,
LEDs etc. [26].

The ZSiNRs have been used for various applications such as giant magnetoresistance [27], high hydrogen storage
capacity [28], lithium storage [29], spin-filtering [30, 31], magnetic random access memory and digital logic [32], spin
polarization [33], etc. In this study, for the first time, we have studied the transport characteristics of GaAs co-doped
hydrogen passivated low-buckled (LB) and high-buckled (HB) ZSiNR at various GaAs doping levels. The device is
distinctly doped with 2, 4 and 6 GaAs atoms and their transport characteristics are investigated. The studies revealed that
doped LB and HB ZSiNR devices have distinct I-V and conductance curves, transmission spectra and device density of
states.

2. Models and methods

The current study has been carried out utilizing the density functional theory (DFT) and non-equilibrium Green’s
Function (NEGF) operations [2], based on the software Atomistic Tool Kit (ATK) software version P-2019.03 and its
graphical user interface Virtual Nanolab (VNL) [34]. We project a two-probe device with three zones, the left electrode,
the middle scattering region, and the right electrode in order to compute the transport properties. The device is represented
in Fig. 1. Electrodes are assimilated into the ZSiNR structure to eliminate the current quantization effects induced by
contact regions. The Silicon–Silicon bond length is set at 2.28 Å. The buckling height for the low buckled and the high
buckled structures are taken as 0.44 and 0.54 Å, respectively.

Electron density expansion is treated with double zeta polarised basis set that interprets the electron wave function.
Also density mesh cut-off is set at 75 Hartee (150 Ry). With a 15 Å vacuum separation along the zigzag silicene nanorib-
bons (ZSiNR)’s width, the interlayer interactions are circumvented. The Local Density Approximation (LDA) is used
to account for the exchange-correlation interactions, which is a basic approximation, whereas Generalized Gradient Ap-
proximation (GGA) is an advanced version of LDA and the LDA approximation has been used for the band structure
calculations in various structures [2, 38, 39]. The atomic locations and asymmetric lattice constants are relaxed up to
a maximum force of 0.01 eV. For sampling during the structure optimization, the Brillouin zone has been sampled at
1× 1× 21 k-points and for the computation of band structure, device density of states and electron transport calculations,
a 1 × 1 × 125 Monkhorst-Pack K-points grid is selected along the ZSiNR growth direction (z-direction). The “limited-
memory Broyden–Fletcher–Goldfarb–Shanno” (LBFGS) algorithm has been employed for structure optimization [35].
The electrode temperature of the models has been set to 300K for operation. The current across the electrodes is analyzed
by voltage bias of 0 to 2 V. Table 1 below depicts the simulation parameters implemented in the modulation of the two
probe device.

3. Results and discussions

In order to investigate silicene for device applications, it is important to open the bandgap in the material. In this
study, we have H-passivated the ZSiNR and varied its width to investigate the change in band gap in the material as shown
in Fig. 2. From the curves, it is clear that for both LB and HB ZSiNR the increase in the width of the nanoribbon results
in the decrease of the energy gap which is in agreement with the literature [16, 36] and the 4 atom width LB–H–ZSiNR
and HB–H–ZSiNR shows a maximum band gap of 2.76 and 2.72 Å, respectively.

Silicene is a two-dimensional material composed of a single layer of silicon atoms arranged in a honeycomb lattice,
similar to graphene. Its atomic structure could be perceived into three phases based on the buckling done. The Planar
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(a)

(b)

(c)

FIG. 1. H-passivated zigzag silicene nanoribbon (ZSiNR) two probe modeled device: (a) – top-view;
(b) – side-view; (c) – GaAs co-doped

TABLE 1. The simulation parameters implemented in the modeled two probe devices

Parameter Value

Calculator Linear Combination of Atomic Orbitals (LCAO)

Formalism DFT

Pseudopotential FHI (Martins–Troullier Type)

Exchange-correlation functional LDA

Density mesh cut-off Energy 75 Hartee

k-point sampling 1, 1, 125

Basis set Double-ζ polarization (DZP)

Electrode Temperature 300 K

Device Algorithm Formalism Non-equilibrium Green’s Function (NEGF)

Poisson Solver FFT2D

structure (PL) (pristine version), as per the binding energy computations of silicene, has a greater energy than its Low-
buckled (LB) and High-buckled (HB) complements. In planar silicene there is no bandgap while the high buckled silicene
with buckling height of 2 Å is unstable [16]. The rise in buckling height suggests that silicene’s atomic orbitals have a
higher concentration of the more stable sp3 hybridization than sp2 hybridization. We have inspected two stable buckling
heights of 0.44 and 0.54 Å in the middle range of the low buckled silicene, as illustrated in Fig. 2. Consequently, we have
labeled them as Low buckle (LB) for 0.44 Å and High buckled (HB) for 0.54 Å, respectively.

In the low buckled (i.e., 0.44 Å) silicene nanoribbon, the silicon atoms are arranged in a planar configuration with
minimal vertical displacement (buckling) from the plane of the nanoribbon. This arrangement leads to a relatively large
inter-atomic spacing and weaker silicon-silicon bonds. The weak bonding results in a smaller bandgap since the energy
required to promote electrons from the valence band to the conduction band is lower. As the width of the low buckled
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FIG. 2. Variation of bandgap of H-passivated low-buckled (LB) and high-buckled (HB) ZSiNRs with
the change in width of the silicene nanoribbon

nanoribbon decreases, the distance between silicon atoms decreases, resulting in strengthening of bonds, and consequently
increasing the bandgap. In other words, as the width increases the band gap decreases.

On the other hand, in the high buckled (0.54 Å) silicene nanoribbon, the silicon atoms exhibit a more pronounced
vertical displacement or buckling from the nanoribbon plane. This buckling causes the atoms to be closer together,
leading to stronger silicon-silicon bonds. The stronger bonding results in a larger bandgap since more energy is required
to promote electrons across the wider bandgap (wider than the low LB counterpart). As the width of the high buckled
nanoribbon decreases, the interatomic spacing remains relatively constant due to the buckling pattern, which keeps the
bandgap more stable or possibly even increasing slightly. It’s important to note that the exact behavior of the bandgap with
respect to decreasing width may also be influenced by the nanoribbon’s specific edge configuration, strain effects, and
other environmental factors and the quantum confinement effects can play a role in modifying the electronic properties of
narrow nanoribbons [16]. Therefore, detailed theoretical calculations or simulations may be necessary to precisely predict
the bandgap changes in low and high buckled silicene nanoribbons as their width varies.

The transport characteristics and the impact of various doping levels on the current and conductance of the ZSiNR
two-probe systems have been explored. The remaining forces on each atom were reduced to less than 0.05 eV/A by
relaxing each of the structures completely. We have obtained the I–V curves, conductance curves, transmission spectra and
projected device density of states (PDDoS) of the LB–ZSiNR and HB–ZSiNR modeled devices. These curves (Figs. 4–6)
depict the transport mechanism of the models in the similar manner as does the IV curves [40–43].

The variation in I–V curves of low-buckled and high-buckled ZSiNR modeled devices with different doping levels
are shown in Fig. 3(a) and Fig. 3(b) respectively.

From Fig. 3(a) and Fig. 3(b), it is clear that the 2 atoms doped GaAs LB and HB ZSiNR modeled device conducts
more as compared to 4 atoms doped GaAs LB and HB ZSiNR devices and the change is significant in the bias range of
0.5 to 1.5 V. However, in LB and HB pristine ZSiNR devices the increase in current is significant in 1.5 to 2 V voltage
range which is in agreement with the result reported in the literature [30]. The conductance curves of the modeled devices
are depicted in Fig. 4(a) and Fig. 4(b). The conductance of the 2 atoms doped GaAs LB–ZSiNR and HB–ZSiNR modeled
devices is higher than the corresponding 4 atoms doped structures particularly in the bias window of 0.5 to 1.5 V which
is in agreement with the above observed I–V characteristics.

We further inspected the transmission spectra of the modeled structures to better comprehend the I–V curves at 0.2 V.
Fig. 5 and Fig. 6 show the transmission spectra of LB and HB ZSiNR for different doping concentrations. The probability
of the occupancy of the states is represented by black, red and green lines for pristine, 2 atoms doped, 4 atoms doped
ZSiNRs, respectively. It can be observed from Fig. 5 and Fig. 6 that the transmission peaks with reference to the pristine
model are larger than the corresponding peaks of doped models at the applied voltage of 0.2 V. Thus supporting the
statement for reduced current in the doped models as compared to the pristine silicene devices. Furthermore, from Fig. 5
and Fig. 6, it is clear that the 2 atoms doped model shows better transmission peaks as compared to the highly doped
models. In addition, the transmission is good in the bias range of 0.5 to 1.5 V that is also in agreement with the obtained
I–V and conductance curves (refer Fig. 3 and Fig. 4).
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(a) (b)

FIG. 3. I–V curves of H-passivated (a) low-buckled (LB) ZSiNR (b) high-buckled (HB) ZSiNR two
probe devices

(a) (b)

FIG. 4. Conductance curves of H-passivated (a) LB–ZSiNR (b) HB–ZSiNR two probe devices

The PDDoS numerically depicts the density distribution of states. The PDDoS specifies the number of states the
quantum carriers are permitted to occupy at a specific energy level.

The ATK software implements the spectral density matrix tool for its computation:

ρ (E) = ρL (E) + ρR (E) . (1)

Here, L and R stand for the corresponding contributions of the left and right electrodes.
The relation for local density of states (LDoS) is given by

D (E, r) =
∑
ij

ρij (E) ∅i(r)∅j(r), (2)

where the basis set orbitals ∅i(r) are real functions in ATK obtained by using the solid harmonics.
Integrating the LDoS over the whole space, PDDoS can be computed as follows;

D (E) =

∫
drD (E, r) =

∑
ij

ρij (E)Sij , (3)
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FIG. 5. Transmission spectra of H-passivated LB–ZSiNR for different doping concentrations

FIG. 6. Transmission spectra of H-passivated HB–ZSiNR for different doping concentrations

where Sij =

∫
∅i (r) ∅j (r) dr is the overlap matrix.

The PDDoS of LB and HB H-passivated ZSiNR at different doping levels is shown in Fig. 7. From Fig. 7, it is clear
that very small peaks occur below the Fermi level in the pristine and doped ZSiNRs which means that a fewer number of
available energy states are presented in the valence band. Furthermore, peaks are also observed above the Fermi level in
the conduction band of the both the pristine and the doped ZSiNR models. Thus, the results depict that conductivity is
possible for the proposed devices as the occupancy level is sufficient at both the valence and the conduction bands [37].
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. PDDoS at different doping levels of LB and HB (a) pristine LB, (b) pristine HB, (c) 2 atom
doped LB, (d) 2 atom doped HB, (e) 4 atom doped LB, and (f) 4 atom doped HBH-passivated ZSiNR
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4. Conclusions

In this study, we have modelled and simulated both pristine and doped low buckled (LB) and high buckled (LB)
ZSiNR two probe devices using DFT in combination with NEGF formalism and calculated their I–V characteristics,
conductance, transmission spectrum and project device density of states (PDDoS). The results show that the level of
buckling in the silicene structures changes the characteristics of the devices which are further dependent on the magnitude
of the applied voltage. The doping by gallium and arsenide atoms shows a profound effect on the I–V characteristics
and conductance of modelled two probe devices, particularly, in the middle applied voltage range and it is sensitive to
the level of doping. The low level doping shows higher magnitude of current than the high level doping. Furthermore,
the transmission spectrum and PDDoS completely agree with the I–V and conductance curves. The results are important
from both basic and applied points of view.
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[3] Aufray B., Kara A., Vizzini S., Oughaddou H., Léandri C., Ealet B., Lay G.L. Graphene-like silicon nanoribbons on Ag (110): A possible formation

of silicene. Applied Physics Letters, 2010, 96 (18), 183102.
[4] Padova P.D., Quaresima C., Ottaviani C., Sheverdyaeva P.M., Moras P., Carbone C., Topwal D., et al. Evidence of graphene-like electronic

signature in silicene nanoribbons. Applied Physics Letters, 2010, 96 (26), 261905.
[5] Lalmi B., Oughaddou H., Enriquez H., Kara A., Vizzini S., Ealet B., Aufray B. Epitaxial growth of a silicene sheet. Applied Physics Letters, 2010,

97 (22), 223109.
[6] Fagan S.B., Baierle R.J., Mota R., da Silva A.J.R., Fazzio A. Ab initio calculations for a hypothetical material: Silicon nanotubes. Physical Review

B, 2000, 61 (15), 9994.
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