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ABSTRACT In this paper, one-dimensional lower order modified Burgers’ equation (MBE) in dusty plasmas
having non-thermal ions and trapped electrons is investigated numerically by finite difference explicit method.
The numerical results obtained by the finite difference explicit method for various values of the nonlinear and
dissipative coefficients have been compared with the analytical solutions. The obtained numerical results are
found to have good agreement with the analytical solutions. It is found that the nonlinear and dissipative
coefficients have very important effect on the dust acoustic waves in the system. The absolute error between
the analytical and the numerical solutions of the MBE is demonstrated. The stability condition is derived in
terms of the equation parameters and the discretization using the von Neumann stability analysis. It has been
observed that the waves become flatten and steeper when the dissipative coefficient decreases. It can be
concluded that the finite difference explicit method is suitable and efficient method for solving the modified
Burgers’ equation.
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1. Introduction

In the last few decades, many researchers studied the electrostatic and electromagnetic waves propagation in dusty
plasmas in various environments such as in the upper part of the Earth atmosphere, planetary rings, comet tails, interstellar
space, the solar atmosphere and low temperature plasmas in laboratory [1–3]. Many authors [4, 5] investigated the effect
of higher order nonlinearity for dusty plasma considering the negative ions and hot isothermal as well as non-isothermal
electrons. Asgari et al. [6] derived the nonlinear Burgers’ equation with a non-thermal ion in dusty plasma environment.
Many authors [7–9] also investigated the nonlinear behaviors of electrostatic waves in a dusty plasma with trapped par-
ticles as well as in unmagnetized and magnetized plasmas. Dev et al. [10] have investigated the wave propagation in a
non-magnetized and warm dusty plasma containing trapped electrons as well as non-thermal positive and negative ions
under the influence of lower order nonlinearity. In this paper, we deal with the nonlinear modified Burgers’ equation in
dusty plasmas having negative and positive non-thermal ions with trapped electrons. The finite difference method was
first developed by Thomas in 1920 to solve nonlinear hydrodynamic equations [11]. Finite difference methods are the
first techniques for numerical solving of nonlinear partial differential equations [12]. The most commonly used finite
difference methods for the solution of partial differential equations are as follows: Explicit method, Implicit method and
Crank Nicolson method. Many authors applied finite difference explicit method to obtain numerical solutions of nonlinear
partial differential equations. The modified Burgers’ equation is a nonlinear expansion of the Burgers’ equation. There
are several methods proposed for solving the modified Burgers’ equation that can be briefly presented as follows.

Bratsos et al. [13] applied a finite difference scheme for calculating the numerical solution of the modified Burgers’
equation. A collocation method based on quantic splines was proposed by Ramadan and El-Danaf [14]. Irk [15] also
proposed the sextic B-spline collocation method for numerical solution of the modified Burgers’ equation. Aswin and
Awasthi [16] have solved the modified Burgers’ equation using iterative differential quadrature algorithms. Roshan and
Bharma [17] solved the modified Burgers’ equation by the Petrov–Galerkin method. Grienwank and El-Danaf [18] have
employed a non-polynomial spline based method to obtain numerical solutions of the modified Burgers’ equation. Duan et
al. [19] proposed Lattice Boltzmann method to obtain numerical solution of modified Burgers’ equation. Bashan et al. [20]
used quintic B-spline Differential Quadrature method to solve modified Burgers’ equation. Ucar et al. [21] proposed the
finite difference method for numerical solution of the modified Burgers’ equation. Karakoc et al. [22] have proposed the
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quartic B-spline subdomain finite element method (SFEM) for finding the numerical solution of the Burgers’ equation
and modified Burgers’ equation. In the paper, we have used the finite difference explicit method to obtain the numerical
solution of the modified Burgers’ equation in dusty plasmas having non-thermal ions and trapped electrons. The finite
difference approximation to partial derivatives can be obtained from Taylor series expansion using either the backward,
forward or central difference approximations. The paper is organized in the following manner. In section 2, we discuss
the basic equations governing the proposed dusty plasma system, modified Burgers’ equation with trapped electrons and
reductive perturbation technique. In section 3, the stability analysis of the finite difference explicit method is presented.
We include the solutions and discussion of numerical results in section 4. Conclusion is given in section 5.

2. Basic equations and Modified Burgers’ Equation

The basic equations, governing the dynamical system, of the dust particles in a one-dimensional dust acoustic wave
for the dusty plasma is as follows [10]:

∂nd
∂t

+
∂

∂x
(ndvd) = 0, (1)

∂vd
∂t

+ vd
∂vd
∂x

+
1

mdnd

∂pd
∂x

= − qd
md

∂ψ

∂x
+ µ

∂2vd
∂x2

, (2)

∂pd
∂t

+ vd
∂pd
∂x

+ γpd
∂vd
∂x

= 0, (3)

∂2ψ

∂x2
= 4πe (ne + nn − np + zdnd) , (4)

where nd is the number density of the negatively charged dust particles in the plasma, vd is the dust fluid velocity, ψ is the
electrostatic potential, zd is the number of electrons residing on the dust surface at equilibrium, pd is the pressure of the
dust fluid, e is the electron charge andmd is the mass of the dust particle and γ = 3 is the adiabatic index. The non-thermal
number densities of positive ions np and negative ions nn can be expressed by the using the following relations [23]:

np = np0
(
1 + αφ+ αφ2

)
exp (−pφ) , (5)

nn = nn0

{
1 + ασpφ+ α (σp)

2
}
exp (znσpφ) (6)

with α =
4γ1

1 + 3γ1
, where γ1 represents the population of the non-thermal ions, and σp =

Tp
Tn

. Also, zp(zn) is the positive

(negative) ion’s charge state, Te is the electron temperature and Tp(Tn) is the positive ion (negative ion) temperatures.
The electron density in the presence of trapped electron can be expressed by using the following relations [7, 24] :

ne = ne0

{
1 + (βφ)− b (βφ)

3/2
+

1

2
(βφ)

2 − . . .
}
, (7)

where β =
Tp
Te

, b =
4 (1− γ2)

3
√
π

and the parameter γ2 is as follows γ2 =
Tef
Tet

, with Tef and Tet being the temperatures of

free electrons and trapped electrons in plasma, respectively.
The parameter γ2 determines the nature of the distribution function, giving a plateau if γ2 = 0 and a dip if γ2 < 0

and a hump shape if γ2 > 0. However, γ2 = 1 corresponds to the Maxwellian distribution of the electrons. In the present
plasma system, the range of γ2 will be considered as 0 < γ2 < 1 for non-isothermal (trapped) electrons.

Now, Nd dust number density is normalized to its equilibrium value nd0, Vd dust-fluid velocity is normalized to

Csd =

(
ZdkBTp
md

)1/2

, φ is the DA wave’s potential normalized to
kBTp
e

, where kB is the Boltzmann constant, the time

variable T is normalized to ω−1pd =

(
md

4πnd0z2de
2

)1/2

, the space variable X is normalized to λ−1Dd =

(
4πnd0z

2
de

2

kBTp

)1/2

,

and pressure pd is normalized to pd = ndokBTd.
The normalized forms of the basic equations (1 – 4) are as follows

∂Nd
∂T

+
∂

∂X
(NdVd) = 0, (8)

Nd
∂Vd
∂T

+NdVd
∂Vd
∂X

+ σd
∂Pd
∂X

= Nd
∂φ

∂X
+ η

∂2Vd
∂X2

, (9)

∂Pd
∂T

+ Vd
∂Pd
∂X

+ 3Pd
∂Vd
∂X

= 0, (10)

∂2φ

∂X2
= p1φ− p2φ3/2 + p3φ

2 − p4φ5/2 + (Nd − 1) (11)

with the overall charge neutrality condition

ne0 = np0 − Zdnd0 − nn0 (12)
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and

µp =
np0
Zdnd0

, σd =
Td
ZdTp

, µn =
nn0
Zdnd0

,
ne0
Zdnd0

= µp − µn − 1, η =
µ

ωpdλ2D
,

p1 = {(µp − µn − 1)β + µn (zn + ασ)− µn (α− zp)} ,
p2 = b (µp − µn − 1)β3/2,

p3 =

{
(µp − µn − 1)

β

2
+ µn

(
(zn)

2

2
+ ασzn + α (σ)

2

)
− µp

(
(zp)

2

2
− αzp + α

)}
and

p4 = (µp − µn − 1) bβ5/2.

The modified Burgers’ equation for the propagation of small and finite amplitude dust-acoustic shock waves (DASWs)
is derived. Here the independent variables ξ and τ are the new stretched variables given by ξ = ε1/2 (x− V0t) and τ = ε t,
where V0 is the phase speed (normalized to Csd) and ε is a small parameter (0 < ε < 1) which measures the weakness of
the dispersion. The dependent variables Nd, Vd, Pd and φ can be expanded in the power series as follows [10]:

Nd = 1 + εN
(1)
d + ε3/2N

(2)
d + . . . , (13)

Vd = εV
(1)
d + ε3/2V

(2)
d + . . . , (14)

Pd = 1 + εP
(1)
d + ε3/2P

(2)
d + . . . , (15)

φ = εφ(1) + ε3/2φ(2) + ε2φ(3) + . . . . (16)
Substituting the stretched coordinates and the expression for Nd, Vd, Pd and φ into the normalized basic equations (8 –
11) and equating the coefficients of lower order in ε, the required lower order modified Burgers’ equation is obtained

∂φ(1)

∂τ
+A

(
φ(1)

)1/2 ∂φ(1)
∂ξ

= B
∂2φ(1)

∂ξ2
, (17)

where the nonlinear coefficient A and dissipative coefficient B are given by the following expressions

A =
3p2

(
V 2
0 − 3σd

)
4p1V0

, B =
η

2
. (18)

Equation (17) represents the well-known lower order modified Burgers’ equation describing the nonlinear propagation of
dust-acoustic shock waves in electronegative dusty plasma with non-thermal ions and trapped electrons.

The stationary shock wave solution of the modified Burgers’ equation (17) is obtained by transforming independent
variables ξ and τ to ξ = ζ − U0τ

′ and τ = τ ′ where U0 is the speed of the shock waves.
Now, the analytical solution of the modified Burgers’ equation is given by the formula

φ(1) =

{
φm1

{
1− tanh

(
ξ

δ1

)}}2

, (19)

where φm1 =
3M

4A
and δ1 =

4B

M
are the amplitude and the width of the shock waves, respectively, and M is the Mach

number.

3. Stability analysis of the explicit finite difference method

In this section, the stability of the finite difference explicit method is investigated by using von Neumann stability
analysis. The von Neumann stability theory in which the growth factor of a Fourier mode is defined as ui,j = ξjeIkhi =

ξjeIθi where I =
√
−1, ξj is the amplitude at time level k is the wave number and h = ∆x.

To investigate the stability of the numerical scheme, the non-linear term u1/2u of the modified Burgers’ equation has
been linearized by putting u1/2 = L, where L is constant.

From (29):

ui,j+1 = ui,j +
kAL

2h

[
ui−1,j − ui+1,j

]
+
kB

h2

[
ui+1,j − 2ui,j + ui−1,j

]
,

ui,j+1 =

(
1− 2kB

h2

)
ui,j +

(
kAL

2h
+
kB

h2

)
ui−1,j +

(
kB

h2
− kAL

2h

)
ui+1,j .

Substitute u1/2 = L in the above equation, we get

ξjeIθiξ = ξjeIθi
[(

1− 2kB

h2

)
+

(
kAL

2h
+
kB

h2

)
e−Iθ +

(
kB

h2
− kAL

2h

)
eIθ
]
,

ξ =

(
1− 2kB

h2

)
+

(
kAL

2h
+
kB

h2

)
e−Iθ +

(
kB

h2
− kAM

2h

)
eIθ,
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ξ =

(
1− 2kB

h2

)
+
kAL

2h

(
e−Iθ − eIθ

)
+
kB

h2

(
eIθ + e−Iθ

)
,

ξ =

(
1− 2kB

h2

)
+
kAL

2h

(
− 2I sin θ

)
+
kB

h2
2 cos θ,

ξ =

(
1− 2kB

h2

)
− kAL

h
sin θ +

2kB

h2
cos θ.

The stability condition for the numerical scheme is as follows

|ξ| ≤ 1,

|ξ| =
∣∣∣∣(1− 2kB

h2

)
− kAL

h
sin θ +

2kB

h2
cos θ

∣∣∣∣ ≤ 1.

So the stability condition is
2kB

h2
≤ 1 or k ≤ h2

2B
. And thus restricts the allowable temporal step size. Since not all

choices of spatial and temporal steps lead to convergent, the explicit scheme (29) is called conditionally stable.

4. Numerical results and discussion

It has been shown in Section 2 that the modified Burgers’ equation has an analytical solution in the form (19). In this
paper, the modified Burgers’ equation (17) in dusty plasmas with non-thermal ions and trapped electrons is solved by the
explicit finite difference method and the numerical results are compared with the analytical solutions.

For simplicity, we consider φ(1) (ζ, τ) = u(x, t) ∼= u(i∆x, j∆t) ∼= ui,j .
Equation (17) can be expressed as

∂u

∂t
+Au1/2

∂u

∂x
= B

∂2u

∂x2
. (20)

For convenience, we put M =
1

2
, U0 =

1

2
, φm1 =

3

8A
and δ1 =

4B

M
= 8B in (19).

The analytical solution of the modified Burgers’ equation is given by the following expression

u(x, t) =

{
3

8A

{
1− tanh

1

8B

(
x− t

2

)}}2

. (21)

The boundary and the initial conditions are taken from the exact solution. In this paper, the numerical solutions of (20)
will be sought for the following initial and boundary conditions. In the interval 0 ≤ x ≤ 1, t ≥ 0, and with the initial
condition

u(x, 0) =

{
3

8A

{
1− tanh

x

8B

}}2

(22)

and the boundary conditions

u(0, t) =

{
3

8A

{
1 + tanh

t

16B

}}2

, (23)

u(1, t) =

{
3

8A

{
1− tanh

1

8B

(
1− t

2

)}}2

. (24)

We discretize the modified Burgers’ equation by replacing
∂u

∂t
by the forward difference and

∂u

∂x
and

∂2u

∂x2
by the

central difference approximation, i.e. as follows
∂u

∂t
≈ ui,j+1 − ui,j

k
, (25)

∂2u

∂x2
≈ ui−1,j − 2ui,j + ui+1,j

h2
, (26)

∂u

∂x
≈ ui+1,j − ui−1,j

2h
. (27)

Thus, (20) becomes as follows
ui,j+1 − ui,j

k
+Aui,j

1/2

[
ui+1,j − ui−1,j

2h

]
= B

[
ui+1,j − ui,j + ui−1,j

h2

]
, (28)

which can be simplified

ui,j+1 = ui,j +
kA

2h
ui,j

1/2
[
ui−1,j − ui+1,j

]
+
kB

h2

[
ui+1,j − 2ui,j + ui−1,j

]
. (29)
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By the von Neumann stability condition, we consider the space steps h = 0.01, the time steps k = 0.005, 0.001 and
0.0005 and B = 0.01, 0.05 and 0.1. The nonlinear coefficient A is a function of p1, p2, σd and V0. During the solution
process, we consider A = 1, 1.5 and 2. Numerical solutions are obtained for different values of B and A. The obtained
figures of the numerical results are compared with the figures obtained from the analytical solutions which are displayed
in Figs. 1–3.

The accuracy of the present method is measured using the absolute error which is defined as
∣∣∣uAnalytical
i − uNumerical

i

∣∣∣.

FIG. 1. Graph of analytical and numerical solutions with absolute error at A = 1, B = 0.01, h = 0.01,
k = 0.005

FIG. 2. Graph of analytical and numerical solutions with absolute error at A = 1.5, B = 0.05,
h = 0.01, k = 0.001
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FIG. 3. Graph of analytical and numerical solutions with absolute error at A = 2, B = 0.1, h = 0.01,
k = 0.0005

The analytical solutions and the computed numerical results together with their errors are plotted in Figs. 1 to 3 for
various values of the nonlinear coefficient and the dissipative coefficient. But the graphs of the errors have been drawn at
time t = 5. It can be seen that the maximal error occurs at the left hand boundary when the greater value of the dissipative
coefficient B = 0.1 is considered and the maximal error is found around the location where the shock wave has the
highest amplitude with the smaller value of the dissipative coefficient B = 0.01. It can be concluded that as the value of
x increases, the errors gradually decreases and it is also seen that as the value of the dissipation coefficient increase, the
error will increase.

FIG. 4. The numerical solutions with A = 1, B = 0.01, h = 0.01, k = 0.005 at t = 0.5, 1, 1.5, 2
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FIG. 5. The numerical solutions with A = 1.5, B = 0.05, h = 0.01, k = 0.001 at t = 1, 2, 3, 4

FIG. 6. The numerical solutions with A = 2, B = 0.1, h = 0.01, k = 0.0005 at t = 1, 2, 3, 4

The computed numerical results for various values of the nonlinear coefficient and the dissipative coefficient at
different times are plotted in Figs. 4 to 6. From the figures, it has been observed that as the time increases, the curve of
the numerical solution decays.

5. Conclusion

In this paper, the finite difference explicit method has been successfully used for obtaining the numerical solution of
the modified Burgers’ equation in dusty plasmas having non-thermal ions with trapped electrons. It is obtained using finite
difference explicit method. Graphs have been plotted to show a comparison between the analytical and the numerical
solutions for various values of the dissipative coefficient. The obtained numerical results show good accuracy when
comparing it with the analytical results for various values of the dissipative coefficient. The absolute error has been
computed and presented in graphical form. The effects of the nonlinear coefficient and the dissipative coefficient on the
shock strength and steepness are investigated. It is found that the shock wave steepness depends more on the dissipative
coefficient than on the nonlinear coefficient. In this study, it has been seen that when the dissipative coefficient decreases,
the shock waves become flatten and the propagation front becomes steeper. In conclusion, it has been observed that the
dissipative coefficient in dusty plasmas having non-thermal ions and trapped electrons plays an important role to dissipate
the acoustic shock wave while propagating through the system.
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