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ABSTRACT Recently, chaos theory and its applications have garnered the attention of many scholars. In this

paper, a novel 4D dynamical system that can generate a four-wing hyperchaotic attractor and a double-wing

chaotic attractor is presented. The dynamical behavior of this system is investigated using several numerical

tools, including bifurcation diagrams, the spectrum of Lyapunov exponents, and phase plots. It is shown

that the proposed system has multiple positive Lyapunov exponents for a wide range of parameters, which

establishes its hyperchaotic behavior. Additionally, the multistability of this system is analyzed carefully through

the coexistence of periodic, chaotic, and hyperchaotic attractors. The hyperchaotic patterns of this system

render it suitable for encrypting multimedia data. An efficient, fast, and secure audio cryptographic algorithm is

developed based on the hyperchaotic sequences generated from this system. Experimental tests are carried

out to verify the performance and security of the proposed encryption method.
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1. Introduction

Chaos theory, first discovered by physicist Henri Poincaré as early as in the 19-th century and later established

by meteorologist Edward Lorenz, has gained significant attention over the past thirty years [1, 2]. It has been used to

construct and generate dissipative and conservative chaotic systems, such as the antimonotonic hyperjerk system presented

by Zambrano-Serrano et al. in 2021 [3], the imbalanced Hindmarsh-Rose neuron model by Zhang et al. [4], and a

hyperchaotic coexistence attractor proposed by Yan et al. [5]. Bao et al. developed a no-argument memristive hyperjerk

system with coexisting chaotic bubbles in 2022 [6]. These contributions have greatly enhanced chaos theory in systems

design approaches and practical applications. However, some systems still exhibit restrictions in natural qualities and

dynamic complexity. Chaotic systems have various applications due to their complex patterns. Chaotic systems are

practically employed in several fields, including mathematical modeling [7], physics [8], chemistry [9], nanoscience

[10–13], lasers [14], neural networks [15], signal processing [16], and secure communication [17].

Recent research highlights the differences between low- and high-dimensional chaotic systems. Low-dimensional

systems, with no positive Lyapunov exponents, produce simple dynamics, potentially impairing information security.

However, high-dimensional systems, with four dimensions or more, show two or more positive Lyapunov exponents,

improving complexity, randomness, and resilience in secure applications [18]. Research has been influenced by the emer-

gence of hyperchaotic autonomous systems with at least four-dimensional phase space, dissipative features, and multiple

positive Lyapunov exponents. Hyperchaotic systems are beneficial in various fields, including random number gener-

ation, secure communication, synchronization, audio, video, and image encryption [19–22]. Hyperchaotic encryption

offers benefits in stealth, dynamic flexibility, and computing efficiency, as well as processing speed for both stationary

data storage and real-time applications. It generates powerful, security-oriented ciphertexts resistant to decoding attempts.

Using chaos theory with audio encryption leads to new ideas for safe communication, making it fast and secure for trans-

mitting sensitive audio [23].

© Haneche N., Hamaizia T., 2025
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In the context of nanoscience, hyperchaotic systems, with their complex dynamics characterized by multiple positive

Lyapunov exponents and high complexity, offer promising applications in nanoscience for secure communication and data

protection in nano-networks. Its hyperchaoticity can be harnessed to generate robust encryption keys for safeguarding

sensitive information transmitted between nanodevices, such as in biomedical nanosensors or connected nanodevices.

The system’s inherent sensitivity to initial conditions and parameter variations ensures resilience against eavesdropping,

making it ideal for low-power, high-security nanoscale environments where traditional cryptographic methods may be

computationally prohibitive. This integration enhances both the confidentiality and integrity of data in next-generation

nanotechnology applications.

The rest of this paper is organized as follows: In Section 2, the construction and dynamical analysis of the novel

4D hyperchaotic system are presented. In Section 3, the application of the proposed hyperchaotic system in secure

audio encryption and decryption is performed. In Section 4, experimental tests and statistical metrics are carried out to

demonstrate the performance and security of the developed chaos-based audio cryptosystem.

2. Generation and dynamical analysis of a new 4D hyperchaotic system

In 2008, Qi et al. introduced a new 3D four-wing chaotic system described as [24]:


















ẋ = −ax+ ay + eyz,

ẏ = −xz + cx+ dy,

ż = xy − bz,

(1)

where a, b, d, e ∈ R
+ and c ∈ R are the system constant parameters. Inspired by the original Qi chaotic system, with the

aim of obtaining richer dynamics and high complexity, we present a novel 4D hyperchaotic system that is constructed by

adding a state feedback controller, w, as follows:






























ẋ = −ax+ ew + yz,

ẏ = cy + xz,

ż = bz + fw − xy,

ẇ = dw − gz,

(2)

where a, b, d, e, f , g ∈ R
+ and c ∈ R are the system constant parameters. The system (2) with ten terms has three

quadratic nonlinearities and seven control parameters.

2.1. Symmetry

System (2) is symmetric with respect to the y-axis, i.e., it is invariant under the following coordinate transformations:

(x, y, z, w) → (−x, y,−z,−w). (3)

2.2. Dissipation

The vector field of the state space of system (2) is represented as

V =

















ẋ

ẏ

ż

ẇ
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
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





=
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













−ax+ ew + yz

cy + xz

bz + fw − xy

dw − gz

















. (4)

Thus, the divergence of system (2) can be obtained as

∇V =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
+

∂ẇ

∂w
= −a+ b+ c+ d. (5)

To ensure the chaoticness of system (2), the general condition of dissipativity should be verified, i.e., ∇V < 0 or

a > b+ c+ d. As a result, the volume contraction is expressed as

dV(t)

dt
= −V(t), (6)

where V0 = V(0) is the initial volume element. By integrating both sides of equation (6), we can obtain

V(t) = V0e
−t. (7)

The negative divergence ensures exponential convergence as t → ∞, meaning that the trajectory rates shrink to zero,

resulting in a loss of volume in phase space over time, which leads to the existence of a strange attractor.
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2.3. Equilibria and stability

The equilibria of system (2) can be obtained by solving the following system of equations:






























−ax+ ew + yz = 0,

cy + xz = 0,

bz + fw − xy = 0,

dw − gz = 0.

(8)

We obtain the trivial equilibrium O = (0, 0, 0, 0) and x = ±

√

−c

(

b+
fg

d

)

,

z =
c
(

eg ±
√

e2g2 + 4ad(bd+ fg)
)

2
√

−cd(bd+ fg)
, y = −

xz

c
, w =

g

d
z. These components exist only under the following specific

parameter conditions

− c

(

b+
fg

d

)

≥ 0 (to ensure real x),

e2g2 + 4ad(bd+ fg) ≥ 0 (to ensure real z).

(9)

Let a = 50, b = 10, c = −16, d = 0.2, e = 10, f = 16, and g = 0.5, the four other non-trivial equilibria, respectively

denoted as

E1 = (x1, y1, z1, w1), E2 = (x2, y2, z2, w2), E3 = (x3, y3, z3, w3), E4 = (x4, y4, z4, w4), (10)

can be calculated as
E1 = (28.28,−64.04,−36.23,−90.58),

E2 = (−28.28,−64.04, 36.23, 90.58),

E3 = (28.28, 39.06, 22.09, 55.23),

E4 = (−28.28, 39.06,−22.09,−55.23).

(11)

In order to investigate the stability of all the equilibria, we consider the Jacobian matrices with different equilibria and

calculate their eigenvalues. The linearization of system (2) around an equilibrium point E = (x, y, z, w) provides the

following Jacobian matrix

JE =

















−a z y e

z c x 0

−y −x b f

0 0 −g d

















. (12)

The results of the calculation are shown in Table 2. Due to eigenvalues with positive real parts, all equilibrium points are

unstable, in which O is a saddle point and E1, E2, E3, and E4 are all saddle-foci nodes.

TABLE 1. Eigenvalues for all equilibria of system (2)

λ O E1 E2 E3 E4

λ1 −50 −58.21 −58.21 −49.88 −49.88

λ2 −16 2.15 + 7.89i 2.15 + 7.89i 4.20 + 6.34i 4.20 + 6.34i

λ3 1.10 2.15− 7.89i 2.15− 7.89i 4.20− 6.34i 4.20− 6.34i

λ4 9.10 −4.33 −4.33 −6.92 −6.92

2.4. Dynamical analysis of the novel 4D system

This study examines the basic dynamics of the novel 4D system (2) via the analysis of the Lyapunov exponents

spectrum, bifurcation diagrams, Kaplan-Yorke fractal dimension, and Poincaré sections. The Lyapunov exponents Li (i =
1, 2, 3, 4) will be calculated using the Wolf algorithm [25], which involves solving the system with the ode45 ODE solver

and using Gram-Schmidt orthonormalization. The numerical simulations are conducted with the MATLAB software. The

fourth-order Runge-Kutta integration method was used to solve the differential equations. All simulations are performed
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using the initial condition (x0, y0, z0, w0) = (1, 1, 1, 1), except as mentioned differently. The results are described as

follows.

Let the control parameter c vary in the range [−22,−1] with a step size of ∆c = 0.01. Figure 1(a) depicts the

spectrum of Lyapunov exponents for the 4D system (2) with respect to the parameter c. Whereas, Fig. (1)(b) displays

the bifurcation diagram of state z with respect to parameter c. One can see that when z ∈ [−22,−18.27), the system (2)

exhibits regular dynamics, in which periodic orbits appear. The Lyapunov exponents, where there is no positive Lyapunov

exponent, validate this result. However, when c ∈ [−18.27,−3.59], L1 > 0, L2 > 0, L3 = 0, and L4 < 0, which means
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FIG. 1. Dynamical analysis of system (2) with a = 50, b = 10, d = 0.2, e = 10, f = 16, and g = 0.5:

(a) Bifurcation diagram with respect to c; (b) Lyapunov exponents spectrum with respect to c.

that the system (2) exhibits hyperchaotic behavior, excepting the appearance of certain periodic windows near c = −7.88,

c = −5.14, c = −4.51, and c = −3.59. In these zones, we have L1 = 0, L2 = 0, L3 < 0, and L4 < 0, which indicates

that system (2) exhibits regular dynamics, and the chaotic motions have been lost. Finally, as c ∈ (−3.59,−1], system (2)

exhibits chaotic behavior, in which L1 > 0, L2 = 0, L3 < 0, and L4 < 0. According to the bifurcation diagram shown

in Fig. 1(a), it is obvious that, starting with the periodic area, an increase leads the state z to undergo a transition into

hyperchaos and then into certain periodic areas and finally to chaos. To further investigate the dynamics of the novel 4D

system, several phase portraits of system (2) with c = −16 in 2D and 3D projections are shown in Fig. 2. A four-wing

hyperchaotic attractor is observed for this set of parameters. Additionally, for c = −3.59, phase portraits of system (2)

are shown in Fig. 3. In this case, a periodic circle is observed, indicating regular dynamics. Thus, system (2) has rich

dynamic behaviors.

To further estimate the complexity of the new 4D system, the Kaplan-Yorke dimension, which is based on the dy-

namics of the Lyapunov exponents, is computed in this study.

Definition 1. The Kaplan-Yorke dimension is defined as [26]

DKY = j +

∑j

i=1
Li

|Lj+1|
, (13)

where j is the largest integer in which

j
∑

i=1

Li > 0 and

j+1
∑

i=1

Li < 0.

The calculations of Lyapunov exponents and Kaplan-Yorke dimensions were conducted at 0.1s intervals for an overall

time of 1000s. The results of numerical simulations are shown in Table 2.

TABLE 2. Parameter estimation results

c L1 L2 L3 L4 DKY Dynamical state

−22 0 −0.976 −8.746 −51.996 1 Periodic

−18.27 2.534 0.277 −0.329 −60.538 3.041 Hyperchaotic

−16 2.567 0.543 −0.055 −58.867 3.052 Hyperchaotic

−3.59 0 0 −0.892 −42.505 1 Periodic

−1 0.241 0 −0.741 −40.176 2.325 Chaotic
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FIG. 2. Phase portrait of system (2) with a = 50, b = 10, c = −16, d = 0.2, e = 10, f = 16,

and g = 0.5: (a) in (x, y, z)-space; (b) in (x, y)-plane; (c) in (x, z)-plane; (d) in (y, z)-plane; (e) in

(x,w)-plane.

The Poincaré section technique, known for its practicality, provides a further tool for differentiating a chaotic behavior

from a regular one. A Poincaré section can be utilized to transform a higher-dimensional continuous system into a discrete

map of reduced dimension. To construct the Poincaré section, we use a suitable Poincaré section Ω given by

Σ1 =
{

[x, y, z, w]T ∈ R
4 | x = −5

}

Σ2 =
{

[x, y, z, w]T ∈ R
4 | y = 0

}

Σ3 =
{

[x, y, z, w]T ∈ R
4 | z = 0

}

Σ4 =
{

[x, y, z, w]T ∈ R
4 | w = 0

}

(14)

Poincaré sections of the new system (2) are depicted in Fig. 4 for better analysis of the hyperchaotic behavior.

2.5. Multistability and coexisting attractors

Multistability is a complicated phenomenon frequently observed in chaotic systems, which features the coexistence of

multiple periodic, chaotic, and hyperchaotic attractors under the same system parameters but different initial conditions.

This study demonstrates that the new 4D system (2) displays multistability with coexisting attractors for different initial

conditions.

Case 1. Coexistence of two periodic attractors.
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FIG. 3. Phase portrait of system (2) with a = 50, b = 10, c = −3.59, d = 0.2, e = 10, f = 16, and

g = 0.5: (a) in (x, y)-plane; (b) in (x, z)-plane; (c) in (y, z)-plane; (d) in (x,w)-plane.
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FIG. 4. Poincaré sections of system (2): (a) projection on (y, z)-plane when Poincaré section is x =
−5; (b) projection on (x, z)-plane when Poincaré section is y = 0; (c) projection on (x, y)-plane when

Poincaré section is z = 0; (d) projection on (y, z)-plane when Poincaré section is w = 0.
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Fix the parameters as a = 50, b = 10, c = −22, d = 0.2, e = 10, f = 16, and g = 0.5. The 4D system (2) exhibits

a coexistence of two periodic attractors. For initial conditions (x0, y0, z0, w0) = (1, 1, 1, 1), the Lyapunov exponents are

estimated as L1 = 0, L2 = −0.976, L3 = −8.746, and L4 = −51.996, with the Kaplan-Yorke fractal dimension DKY =
1. The corresponding periodic attractor is plotted in Fig. 5(a). For initial conditions (x0, y0, z0, w0) = (−1, 1, 1,−1), the
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FIG. 5. Two coexisting periodic attractors of system (2) with parameters a = 50, b = 10, c = −22,

d = 0.2, e = 10, f = 16, and g = 0.5.

Lyapunov exponents are estimated as L1 = 0, L2 = −0.976, L3 = −7.968, and L4 = −51.996, with the Kaplan-Yorke

fractal dimension DKY = 1. The corresponding periodic attractor is plotted in Fig. 5(b). In Fig. 5(c), the 4D system (2)

illustrates the coexistence of two periodic attractors.

Case 2. Coexistence of two hyperchaotic attractors.

Fix the parameters as a = 50, b = 10, c = −14, d = 0.2, e = 10, f = 16, and g = 0.5. The novel 4D

system (2) exhibits a coexistence of two four-wing hyperchaotic attractors that are symmetrical with respect to y-axis.

For initial conditions (x0, y0, z0, w0) = (1, 1, 1, 1), the Lyapunov exponents are estimated as L1 = 2.417, L2 = 0.573,

L3 = −0.021, and L4 = −55.163, with the Kaplan-Yorke fractal dimension DKY = 3.054. The corresponding four-

wing hyperchaotic attractor is plotted in Fig. 6(a). For initial conditions (x0, y0, z0, w0) = (−1, 1, 1,−1), the Lyapunov
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FIG. 6. Two coexisting four-wing hyperchaotic attractors of system (2) with parameters a = 50, b =
10, c = −14, d = 0.2, e = 10, f = 16, and g = 0.5.

exponents are estimated as L1 = 2.398, L2 = 0.539, L3 = −0.013, and L4 = −55.073, with the Kaplan-Yorke fractal

dimension DKY = 3.053. The corresponding four-wing hyperchaotic attractor is plotted in Fig. 6(b). In Fig. 6(c), the

4D system (2) illustrates the coexistence of two four-wing hyperchaotic attractors.

Case 3. Coexistence of two chaotic attractors.

Fix the parameters as a = 50, b = 10, c = −6, d = 0.2, e = 10, f = 16, and g = 0.5. The novel 4D system

(2) exhibits a coexistence of two double-wing chaotic attractors that are symmetrical with respect to y-axis. For initial

conditions (x0, y0, z0, w0) = (1, 1, 1, 1), the Lyapunov exponents are estimated as L1 = 0.774, L2 = 0, L3 = −0.063,

and L4 = −45.884, with the Kaplan-Yorke fractal dimension DKY = 3.015. The corresponding double-wing chaotic

attractor is plotted in Fig. 7(a). For initial conditions (x0, y0, z0, w0) = (−1, 1, 1,−1), the Lyapunov exponents are

estimated as L1 = 0.845, L2 = 0, L3 = −0.071, and L4 = −45.918, with the Kaplan-Yorke fractal dimension

DKY = 3.017. The corresponding double-wing chaotic attractor is plotted in Fig. 7(b). In Fig. 7(c), the 4D system (2)

illustrates the coexistence of two double-wing chaotic attractors.

3. Implementation of chaos-based audio cryptosystem

Chaos encryption is a common field of study due to its nonlinearity, real-time efficiency, security, resistance to dis-

turbance, and shortness of key length. Hyperchaotic encryption provides enhanced security due to its rich dynamical

properties and higher randomness. It exhibits a broad spectrum and frequency of disturbances, which makes it robust
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FIG. 7. Two coexisting double-wing chaotic attractors of system (2) with parameters a = 50, b = 10,

c = −6, d = 0.2, e = 10, f = 16, and g = 0.5.

against noise attacks. Hyperchaotic systems display rich dynamical behaviors and show high complexity, thereby render-

ing the encryption technique more straightforward and realistic. Customer data leaking has become known as a serious

security issue due to weaknesses in the network’s transmission processes. Consequently, addressing this issue requires

the use of information encryption technological advances.

In this section, a secure audio encryption algorithm that uses a hyperchaotic key sequence is proposed, in which

the new hyperchaotic system (2) is used in the simulations. This algorithm uses the 4D hyperchaotic system and XOR

operation ⊕ to secure audio signals with two layers of encryption, and then it has a synchronized decryption process to

get back the original audio. Below is a detailed review.

3.1. Encryption process

The encryption has two consecutive phases: chaotic scrambling and dynamic masking, both using state variables

generated by the hyperchaotic system. Figure 8 shows the framework of the proposed audio cryptosystem. The original

audio signal is initially masked by employing a key stream produced through the XOR operation of a random sequence

derived from the novel 4D hyperchaotic system, as outlined in Algorithm 1 (see Appendix A.1). Subsequently, the masked

signal is further encrypted utilising key streams generated as depicted in Fig. 8(a), applying Algorithm 2 (see Appendix

A.2). The scrambled audio signal is then sent via a public channel to the receiver.

FIG. 8. Flowchart of the proposed audio cryptosystem: (a) Encryption process; (b) Decryption process.

3.2. Decryption process

The decryption process follows the same flowchart and procedures as the encryption process for recovering the

original audio signal as stated in Algorithm 3 (see Appendix A.3). The proposed cryptographic approach is symmetric,

using the same key for both the encryption and decryption of the audio signal. Figure 8(b) illustrates the audio decryption

flowchart process.

4. Experiments and security analysis

Simulation results were conducted using MATLAB software to analyze the performance and security resistance of the

system that was constructed. Tests included waveform analyses, percentage residual deviation (PRD), signal-to-noise ratio
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(SNR), and correlation coefficient measurements [27]. Audio inputs were recorded at 8, 000 Hz with an 8-bit quantization

level. Figures 9(a), 9(c), and 9(e) show the waveforms of the original, encrypted, and decrypted audio signals, respectively.

Additionally, their corresponding histogram distributions are shown in Figs. 9(b), 9(d), and 9(f), respectively. The
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FIG. 9. Simulation results of audio encryption: (a) Original audio signal; (b) Histogram of (a); (c) En-

crypted audio signal; (d) Histogram of (c); (e) Decrypted audio signal; (f) Histogram of (e).

encrypted waveform exhibits less resemblance to the original, but the decrypted output accurately captures the structure

of the original signal. The findings indicate that the proposed method efficiently withstands statistical cryptanalysis,

providing reliable security for audio communication networks. The technique transforms structured data into noise-

like outputs, displaying functional reliability and enhanced security for needed audio transmissions. In the histogram

distributions of three signals, the encrypted data exhibits consistent unpredictability in stark contrast to the Gaussian-like

patterns of the original and decrypted signals, potentially introducing weaknesses. This statistical disparity underscores

the encryption scheme’s capacity to counter frequency-based attacks.

Frequency domain analysis is also necessary to verify the accuracy of the encryption, despite the obvious disparity of

the original and encrypted audios in the time domain. For better quantitative analysis, Figs. 10(a), 10(b), and 10(c) illus-

trate the frequency spectra of the original, encrypted, and decrypted audio signals, respectively. As can be observed, the

frequency spectra of the decrypted and original audio signals are indistinguishable. The spectrum of the encrypted audio

data has a homogenous distribution and is entirely distinct from both the original and decrypted audio. The encryption

and decryption processes are carried out without loss of information, and the encryption process is considered successful.

The study demonstrates that the new proposed hyperchaotic system is suitable for encryption applications.
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FIG. 10. Frequency spectra of audio signals: (a) Original audio spectrum, (b) Encrypted audio spec-

trum, (c) Decrypted audio spectrum

A statistical analysis of both the encryption and decryption procedures was carried out using four different techniques:

percentage residual deviation (PRD), signal noise ratio (SNR), entropy, and correlation. The findings are shown in Table

3. These findings indicate that the encryption and decryption processes are fairly efficient. The PRD is an estimation tool

utilized to quantify the divergence between encrypted and original audio signals. Low PRD values imply good accuracy

and low dispersion, while high PRD values imply large disparities. The signal noise ratio (SNR) is a quantitative metric

that measures the intensity of the original audio stream. The correlation coefficient indicates the level of quality of the

encrypted audio signals. High PRD values suggest large deviation, and large negative SNR values suggest more noise

power relative to signal power. Near-zero correlation values suggest less resemblance between encrypted and original

signals.

TABLE 3. The measurements of statistical metrics between the original and encrypted audio signals

File name Size Duration (Sec.) PRD SNR (dB) Entropy Correlation

Audio-1 896 KB 3.98 1.4285× 105 −64.3176 7.9754 0.0013

5. Conclusion

The study presented a novel four-wing hyperchaotic system developed from the 3D chaotic Qi system. The sys-

tem’s behavior is studied using various numerical tools, including phase plots, bifurcation diagrams, Lyapunov exponent

spectra, and Poincaré sections. It is shown that this system can exhibit complex behavior, including periodic, chaotic,

and hyperchaotic patterns across various parameters. It also displays known dynamical characteristics, such as multista-

bility and coexistence of attractors under identical parameter values but different initial conditions. An efficient audio

encryption algorithm has been developed, demonstrating its performance, accuracy, and security against various attacks.

Future studies can include the 4D hyperchaotic system with quantum-resistant cryptography for the enhancement

of secure nanosensors. Utilizing it in neuromorphic nanochips could offer energy-efficient, real-time audio encryption

inside edge computing. The combination of chaotic dynamics with nanophotonics can improve ultrafast encryption for

healthcare or military data. Employing chaotic and hyperchaotic vibrations of nanobeams in signal transmission can also

enhance security [28]. Meanwhile, the complex dynamical behavior of the lipidic nanoparticles, such as liposomes, can be

used in developing various secure communication schemes, providing high accuracy and satisfactory performance [29].

Optimization of machine learning may further improve adaptive security in dynamic nanoelectronics.
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Appendix

A.1

Algorithm 1 Key generation using the novel hyperchaotic system (2)

1: Generate hyperchaotic sequences X = [x1, x2, . . . , xn], Y = [y1, y2, . . . , yn], Z = [z1, z2, . . . , zn] , and W =
[w1, w2, . . . , wn] by solving Eq. (2) of system

2: Quantize sequences:

Xk = mod(round(X × 1020), 216),

Yk = mod(round(Y × 1020), 216),

Zk = mod(round(Z × 1020), 216),

Wk = mod(round(W × 1020), 216)

3: Convert Xk, Yk, Zk,Wk to binary

4: Generate keys via XOR:
Key1 = Xk ⊕ Yk,

Key2 = Zk ⊕Wk

5: repeat

6: Iterate and append new key bits

7: until Key length matches plaintext

A.2

Algorithm 2 Audio encryption using the 4D hyperchaotic system (2)

1: Read audio file A, convert to binary

2: First encryption: En1 = A⊕ Key1

3: Second encryption: En = En1⊕ Key2

4: repeat

5: Process subsequent segments

6: until Entire file is encrypted

7: Output cipher audio file

A.3

Algorithm 3 Audio decryption using the 4D hyperchaotic system (2)

1: Read cipher audio file En

2: First decryption: En1 = En⊕ Key2

3: Second decryption: A = En1⊕ Key1

4: Reconstruct original audio signal
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