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ABSTRACT This paper is devoted to study a optimal movable point control problem for a pseudoparabolic equa-
tion with nonlinear control function in a two-point nonlinear boundary condition. The equation is studied with
Samarskii–Ionkin type boundary conditions on spatial variable x. Spectral problem is studied and eigenvalues,
eigenfunctions and optimality conditions are found. Loaded nonlinear functional equations are obtained with
respect to control function. We prove the existence and uniqueness of the control function by the method
of compressing mapping. The state function is determined. Convergence of the Fourier series for the state
function is proved.
KEYWORDS Nonlinear loaded functional equation, pseudoparabolic equation, two-point boundary condition,
Samarskii-Ionkin type conditions, eigenvalues, eigenfunctions, Fourier series, existence and uniqueness theo-
rems
FOR CITATION Yuldashev T.K., Kadirkulov B.J., Ramazanova A.T., Shermamatov Zh.Zh. Nonlinear optimal
control problem in a two-point boundary regime for a pseudoparabolic equation with Samarskii–Ionkin type
conditions. Nanosystems: Phys. Chem. Math., 2025, 16 (5), 563–576.

1. Formulation of the problem statement

Differential equations of mathematical physics have direct applications in the theory of nanosystems (see, for exam-
ple [1–13] and [14]). Partial differential and integro-differential equations of parabolic and pseudoparabolic types with
initial and boundary conditions were investigated widely by large number of scientists and have different applications in
sciences and technology (see, for example [15–28]). The spectral problems for finding eigenvalues and eigenfunctions
play an important role in solving mixed and boundary problems for differential equations of mathematical physics [29–37].

Optimal control theory is one of the most relevant branches of mathematical science. Many applied problems are
reduced to finding the optimal control function and the corresponding state function. A large number of analytical and
numerical methods for solving optimal control problems have been developed and are effectively used in solving various
problems of optimization process in science and technology (see, for example, [38–50]). In the works [51–54], the time-
optimal control problems for partial differential equations are studied.

It is well known that differential equations of parabolic type are associated with heat and diffusion processes. Neutron
diffusion plays a significant role in the operation of nuclear reactors. The diffusion equation makes it possible to calculate
the neutron density inside the core of a nuclear reactor, the neutron flux from the moderator surface, and the reflection and
transmission of neutrons by biological protection structures. We note that the processes describing by parabolic equations
can be studied more exactly by pseudoparabolic equations. Moreover, studying some problems for parabolic equations
is more difficult than studying this problem for pseudoparabolic equations. When investigating the parabolic equation
ut − uxx = f(t, x) on [0, T ] × [0, l] with final time condition u(T, x) = φ(x) and the Dirichlet boundary conditions
u(t, 0) = u(t, l) = 0, we obtain the function exp{λnT}, which goes to infinity as λn → ∞, where λn > 0 is eigenvalues
of the spectral problem ϑ′′(x) + λϑ(x) = 0, ϑ(0) = ϑ(l) = 0. Consequently, the present paper is devoted to study an
optimal control problem for a pseudoparabolic equation with nonlinear control function in a two-point boundary condition.
Control of the function in two-point boundary condition is important in metallurgy, partially, in aluminum production. The
equation is studied with Samarskii–Ionkin type boundary value conditions on spatial variable x. Samarskii–Ionkin type
boundary value conditions are nonlocal. It is used in the study of processes related to the gas lift oil production.

© Yuldashev T.K., Kadirkulov B.J., Ramazanova A.T., Shermamatov Zh.Zh., 2025



564 T. K. Yuldashev, B. J. Kadirkulov, A. T. Ramazanova, Zh. Zh. Shermamatov

The eigenvalues and eigenfunctions problem is studied. So, in the domain Ω ≡ (0, T ) × (0, 1), we consider the
equation (

∂

∂ t
+

∂5

∂ t ∂ x4
+

∂4

∂ x4

)
U(t, x) = f(t, x) (1)

with boundary value conditions

α(t)U(0, x) + ωβ(t)U(T, x) = δ
(
x− η(t)

)
φ(t, x, p(t)), (2)

U(t, 1) = 0, Uxx(t, 0) = 0, (3)

Ux(t, 0) = Ux(t, 1), Uxxx(t, 0) = Uxxx(t, 1), 0 ≤ t ≤ T, (4)
where φ(t, x, p(t)) is nonlinear function depending from the control function p(t), f(t, x) is given function, α(t) ̸=
0, β(t) ̸= 0 are given real functions, ω is real nonzero parameter.

The function η(t) ∈ C[0, T ] describes the change in the position of a moving point source in the range from zero to
1. It is defined as the solution to the following Cauchy problem

η′(t) = ω(t, η(t)), η(0) = η0 = const,

where ω(t, η) ∈ C0,1(Ω).
We consider the control function p(t) ∈

{
p : | p(t) | ≤ M∗, t ∈ [0, T ], 0 < M∗ = const

}
and the following

functional of quality

J [p] =

1∫
0

[U(T, y)− ξ(y)]
2
dy + γ1

T∫
0

p2(t)dt+ γ2

T∫
0

η2(t)dt, (5)

where 0 < γκ = const, κ = 1, 2 and ξ(x) is a given continuous function.
Problem. We find a pair of functions

{
U(t, x); p(t) ∈

{
p : | p(t) | ≤ M∗}}, first of which satisfies the differential

equation (1), the two-point boundary condition (2), the Samarskii-Ionkin type boundary conditions (3), (4), belongs to the
class of functions

U ∈ C1,3
t,x (Ω), Utxxxx ∈ C(Ω), Uxxxx ∈ C(Ω), (6)

and the second of which deliver a minimum to the functional (5).

2. Some auxiliary materials about Riesz bases

Let
{
ϑn(x)

}
and

{
σn(x)

}
be two complete systems of functions from L2(a, b). Let us denote by

(
ϑ, σ

)
0

the scalar
product of functions ϑ(x) and σ(x) in L2(a, b):

(
ϑ, σ

)
0
=
(
ϑ, σ

)
L2(a,b)

=

b∫
a

ϑ(x)σ(x)dx.

We use some known facts from the book [55].
1. Let the systems

{
ϑn(x)

}
and

{
σn(x)

}
form a biorthonormal system in some interval [a, b]:

(
ϑn, σk

)
0
=

b∫
a

ϑnσkdx = δnk =

 0, n ̸= k,

1, n = k.

Then the system
{
σn(x)

}
is called biorthogonally adjoint to the system

{
ϑn(x)

}
in the interval [a, b].

2. Let no element of the system
{
ϑn(x)

}
belongs to the closure of the linear span of the other elements of this system.

Then the system
{
ϑn(x)

}
is called minimal in L2(a, b).

The minimality of the system ensures the existence of a biorthogonally conjugate system.
3. The biorthogonal expansion of a function f ∈ L2(a, b) in a system

{
ϑn(x)

}
is a series

f(x) ∼
∞∑

n=1

cnϑn(x),

where cn = (f, σn)0.
4. Let for any function f ∈ L2(a, b) there hold

∞∑
n=1

∣∣ (f, σn)0 ∣∣2 <∞,

where
{
σn
}

is biorthogonally conjugate system to
{
ϑn(x)

}
. Then a complete and minimal system of functions

{
ϑn(x)

}
is called Besselian.
5. A complete and minimal system of functions

{
ϑn(x)

}
is called a Hilbert system, if for any sequence

{
cn
}

with
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∞∑
k=1

c2n <∞ there is one and only one function f ∈ L2(a, b), for which
{
cn
}
=
(
f, σn

)
0

are coefficients of its biorthog-

onal expansion in
{
ϑn(x)

}
.

6. A complete and minimal system is called a Riesz basis, if it is both Bessel and Hilbert basis.
Theorem 1 ( [56]). The following statements are equivalent:

1). The sequence of functions
{
σj(x)

}∞
1

forms a basis, equivalent to the orthonormal one, in the space R;
2). The sequence of functions

{
σj(x)

}∞
1

will be an orthonormal basis of the space R with the appropriate replacement
of the scalar product (f, g) by some new one (f, g)1, topologically equivalent to the original one;
3). The sequence of functions

{
σj(x)

}∞
1

is complete in R and there exist positive constants a1, a2, such that for any
natural n and any complex numbers γ1, γ2, ..., γn there holds

a2

n∑
j=1

|γj |2 ≤
n∑

j=1

|γjσj |2 ≤ a1

n∑
j=1

|γj |2;

4). The sequence of functions
{
σj(x)

}∞
1

is complete in R and its Gram matrix (σj(x), σk(x))
∞
1 generates a bounded

invertible operator in space ℓ2;
5). The sequence of functions

{
σj(x)

}∞
1

is complete in R, corresponds to complete biorthogonal sequence of functions{
χj(x)

}∞
1

and for any f(x) ∈ R it is true that
n∑

j=1

∣∣(f, σj)∣∣2 <∞,

n∑
j=1

∣∣(f, χj

)∣∣2 <∞.

Lemma 1( [57]). Let be f(x) ∈ L2(0, 1) and ak =

1∫
0

f(x)e−λkxdx, bk =

1∫
0

f(x)eλk(x−1)dx, where λ is an

arbitrary complex number λ = α+ iβ with a positive real part α > 0. Then the series
∞∑
k=1

∣∣ ak ∣∣2, ∞∑
k=1

∣∣ bk ∣∣2 converges.

3. Eigenvalues and eigenfunctions

First, we consider the following homogeneous differential equation

∂U(t, x)

∂ t
+
∂5U(t, x)

∂ t ∂ x4
+
∂4U(t, x)

∂ x4
= 0. (7)

We will look for a non-trivial particular solution of the equation in the form U(t, x) = u(t) · ϑ(x). Substituting this
product of functions, depending on different variables, into equation (7), we obtain

− u′(t)

u′(t) + u(t)
=
ϑ(IV )(x)

ϑ(x)
.

Hence, equating second fraction into λ, we obtain

ϑ(IV )(x)− λϑ(x) = 0, λ ≥ 0. (8)

Using conditions (3) and (4), from the product of two functions, we obtain conditions for the eigenvalues λ and eigen-
functions ϑ(x):

ϑ(1) = 0, ϑ′′(0) = 0, ϑ′(0) = ϑ′(1), ϑ′′′(0) = ϑ′′′(1). (9)
Solving the spectral problem (8), (9), we derive the eigenvalues

λn = (2πn)4, n = 0, 1, 2, ... (10)

Eigenfunctions, corresponding to the eigenvalues (10), have the forms

ϑ0(x) = 2(1− x), ϑ1n(x) = −2 sin 2πnx, ϑ2n(x) =
e2πnx − e2πn(1−x)

e2πn − 1
− cos 2πnx. (11)

The spectral problem (8), (9) is not self-adjoint and it is easy to see that the following problem is adjoint to it

σ(IV )(x)− λσ(x) = 0, 0 < x < 1, (12)

σ(0) = σ(1), σ′(1) = 0, σ′′(0) = σ′′(1), σ′′′(0) = 0. (13)
We also consider adjoint to it problem (12), (13). Solving this problem, it is not difficult to see that the eigenfunctions,

corresponding to eigenvalues (10), have the form

σ0(x) = 1, σ1n(x) =
e2πnx + e2πn(1−x)

e2πn − 1
− sin 2πnx, σ2n(x) = −2 cos 2πnx. (14)
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It should be noted that (11) and (14) are non-orthogonal system of functions. For example, for system (11), we have

(
ϑ0(x), ϑ1,n(x)

)
0
= −4

1∫
0

(1− x) sin 2πnxdx = − 2

πn
̸= 0.

Let us study the issues of the basis of systems (11) and (14) in L2(0, 1).
Lemma 2. Systems of functions (11) and (14) are biorthogonal systems in L2(0, 1):

(
ϑ0, σ0

)
0
= 1,

(
ϑik, σjn

)
0
=

 1, k = n, i = j

0, k ̸= n, i ̸= j
, i, j = 1, 2, n, k = 1, 2, ...

Proof. We present the proof of Lemma 2 for the functions ϑ1n(x) and σ1n(x). We calculate the integral

(
ϑ1k, σ1n

)
0
= − 2

e2πn − 1

1∫
0

(e2πnx + e2πn(1−x)) sin 2πkxdx+ 2

1∫
0

sin 2πnx sin 2πkxdx = Ikn + Jkn,

where

Ikn = − 2

e2πn − 1

1∫
0

(
e2πnx + e2πn(1−x)

)
sin 2πkxdx = 0, k, n ∈ N,

Jkn = 2

1∫
0

sin 2πkx · sin 2πnxdx =

 1, k = n

0, k ̸= n
, k, n ∈ N.

Consequently, (ϑ1n, σ1n)0 = 1 for k = n and (ϑ1n, σ1n)0 = 0 for k ̸= n. The Lemma 2 is proved. □

Lemma 3. The systems of functions (11) and (14) are minimal in L2(0, 1).
The proof of Lemma 3 follows from the existence of a biorthonormal system which was established in Lemma 2.
Theorem 2. The system of functions (11) and (14) is complete in the space L2(0, 1).

Proof. First, we prove the completeness of (11). Assume the opposite, let the system of functions (11) be incomplete in
L2(0, 1). Then there exists a function ψ(x) from L2(0, 1), that is orthogonal to all functions of system (11). We will
expand the function ψ(x) into the Fourier series

ψ(x) = a0 +

∞∑
n=1

(an cos 2πnx+ bn sin 2πnx),

which converges in L2(0, 1). Since ψ(x) is orthogonal to the system
{
− 2 sin 2πnx

}∞
n=1

, the last expansion will take the
form

ψ(x) = a0 +

∞∑
n=1

an cos 2πnx. (15)

By assumption, ψ(x) is orthogonal to all functions of the form ϑ0(x), ϑ2k(x). Next, multiplying the series (15)
successively by these functions and integrating over the interval [0, 1], we have

0 = 2

1∫
0

ψ(x)(1− x)dx = 2a0

1∫
0

(1− x)dx+ 2

∞∑
n=1

an

1∫
0

(1− x) cos 2πnxdx = a0,

0 =

∞∑
n=1

an

1∫
0

(
e2πkx − e2πk(1−x)

e2πk − 1
− cos 2πkx

)
cos 2πnxdx = −1

2
ak, k = 1, 2, 3, ...

Hence, it follows that ak = 0, k = 0, 1, 2, ... Therefore, from (15), we obtain that ψ(x) = 0 on [0, 1] which contradicts
the condition ψ(x) ̸= 0. Thus, system (11) is complete in the space L2(0, 1).

Now, we will prove the completeness of system (14). Let there ψ(x) be a function from L2(0, 1), different from zero,
orthogonal to all functions of system (14). Since the function ψ(x) is orthogonal to system {−2 cos 2πnx}∞n=0, it can be
represented in L2(0, 1) as a sine series

ψ(x) =

∞∑
n=1

bn sin 2πnx. (16)
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Next, multiplying the last series by σ1k(x) and integrating over the interval [0, 1], taking into account the orthogonal-
ity of the functions ψ(x) and σ1k(x), we obtain

0 =

∞∑
n=0

bn

1∫
0

(
e2πkx + e2πk(1−x)

e2πk − 1
− sin 2πkx

)
sin 2πnxdx = −1

2
bk, k = 1, 2, ... ,

i.,e. bk = 0, n = 1, 2, ... Then from (16), it follows that ψ(x) = 0 on [0, 1]. Consequently, the system (14) is complete in
L2(0, 1). Theorem 2 is proved. □

Theorem 3. The system of functions (13) and (14) forms the Riesz basis in L2(0, 1).

Proof. To prove the Riesz basis property of systems (11) and (14), according to Theorem 1, it is sufficient to establish the
completeness of these systems and the convergence for any ψ(x) ∈ L2(0, 1) of the following series:

(ψ(x), 2(1− x))
2
0 +

∞∑
n=1

(ψ(x),−2 sin 2πnx)
2
0 +

+

∞∑
n=1

(
ψ(x),

1

e2πn − 1

(
e2πnx − e2πn(1−x)

)
− cos 2πnx

)2

0

, (17)

(ψ(x), 1)
2
0 +

∞∑
n=1

(ψ(x),−2 cos 2πnx)
2
0 +

+

∞∑
n=1

(
1

e2πn − 1
(e2πnx + e2πn(1−x))− sin 2πnx, ψ(x)

)2

0

. (18)

The completeness of systems (11) and (14) follows from Lemma 2 and therefore we show the convergence of series
(17) and (18). Let us consider the series (11) and use the notation

I1 = 4
(
ψ(x), (1− x)

)2
0
, I2 = 4

∞∑
n=1

(
ψ(x), sin 2πnx

)2
0
,

I3 =

∞∑
n=1

(
ψ(x),

e2πnx − e2πn(1−x)

e2πn − 1
− cos 2πnx

)2

0

.

Applying the Cauchy-Shwartz inequality, for I1 we obtain

I1 = 4

 1∫
0

(1− x)ψ(x)dx

2

≤ 4

1∫
0

(1− x)2dx

1∫
0

ψ2(x)dx =
4

3
∥ψ(x) ∥2L2(0,1)

<∞.

Further, we have

I2 = 4

∞∑
n=1

(
ψ(x), sin 2πnx

)2
0
= 2

∞∑
n=1

(
ψ(x),

√
2 sin 2πnx

)2
= 2

∞∑
n=1

c2n,

where cn =
(
ψ(x),

√
2 sin 2πnx

)
are the Fourier coefficients of a functionψ(x) in an orthonormal system

{√
2 sin 2πnx

}
.

Hence, applying Bessel’s inequality, we obtain that

I2 = 2

∞∑
n=1

c2n ≤ 2 ∥ψ(x) ∥2L2(0,1)
<∞.

Next, we consider I3. Since

A =

((
ψ(x),

e2πnx − e2πn(1−x)

e2πn − 1

)
−
(
ψ(x), cos 2πnx

))2

0

,

applying the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
, we obtain

A ≤ 2

((
ψ(x),

e2πnx

e2πn − 1

)
−
(
ψ(x),

e2πn(1−x)

e2πn − 1

))2

0

+ 2
(
ψ(x), cos 2πnx

)2
0
.

Applying the previous inequality again, we get that

A ≤ 4

(
ψ(x),

e2πnx

e2πn − 1

)2

0

+ 4

(
ψ(x),

e2πn(1−x)

e2πn − 1

)2

0

+ 2 (ψ(x), cos 2πnx)
2
0 .
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Hence, we obtain

I3 ≤ 4

∞∑
n=1

(
ψ(x),

e2πnx

e2πn − 1

)2

0

+ 4

∞∑
n=1

(
ψ(x),

e2πn(1−x)

e2πn − 1

)2

0

+ 2

∞∑
n=1

(
ψ(x), cos 2πnx

)2
0
= J1 + J2 + J3.

For J3, we have

J3 = 2

∞∑
n=1

(
ψ(x), cos 2πnx

)2
=

∞∑
n=1

a2n,

where an =
(
ψ(x),

√
2 cos 2πnx

)
are the Fourier coefficients for function ψ(x) in orthonormal system

{√
2 cos 2πnx

}
.

Then, applying Bessel’s inequality, we obtain that

J3 =

∞∑
n=1

a2n ≤ ∥ψ(x) ∥2L2(0,1)
<∞.

Since (
ψ(x),

e2πnx

e2πn − 1

)2

0

≤ 4

 1∫
0

ψ(x)e2πn(x−1)dx

2

,

for J1, we derive

J1 ≤ 16

∞∑
n=1

 1∫
0

ψ(x)e2πn(x−1)dx

2

= 16

∞∑
n=1

b2n, bn =

1∫
0

ψ(x)e2πn(1−x)dx.

Hence, taking into account Lemma 1, we obtain that J1 is finite. Similarly, we obtain that J2 is also finite. Thus,
the series I1 and I2 converge. Therefore, the series (17) also converges. The convergence of the series (18) is proved by
similar way. Theorem 3 is proved. □

4. Construction of solution of the boundary value problem

Taking into account the formulas (11) and (14) we look for a solution to the problem (1)-(4) in the form of the
following Fourier series:

U(t, x) = u0(t)ϑ0(x) +

∞∑
n=1

(
u1,n(t)ϑ1,n(x) + u2,n(t)ϑ2,n(x)

)
, (19)

where

u0(t) =

1∫
0

U(t, y)σ0(y)dy, u1,n(t) =

1∫
0

U(t, y)σ1,n(y)dy, (20)

u2,n(t) =

1∫
0

U(t, y)σ2,n(y)dy. (21)

Let the function U(t, x) be a solution to the mixed problem (1)-(4). Then, substituting representation (19) into equation
(1) and taking (11) and (14) into account, we obtain

u′0(t)ϑ0(x) +

∞∑
n=1

(
u′1,n(t)ϑ1,n(x) + u′2,n(t)ϑ2,n(x)

)
+

+

∞∑
n=1

λn
[
u′1,n(t)ϑ1,n(x) + u′2,n(t)ϑ2,n(x)

]
+

∞∑
n=1

λn [u1,n(t)ϑ1,n(x) + u2,n(t)ϑ2,n(x)] +

= f0(t)ϑ0(x) +

∞∑
n=1

(
f1,n(t)ϑ2,n(x) + f2,n(t)ϑ2,n(x)

)
,

where

f0(t) =

1∫
0

f(t, y)σ0(y)dy, (22)

fκ,n(t) =

1∫
0

f(t, y)σκ,n(y)dy. (23)

Hence, by virtue of (20)-(23), we obtain
u′0(t) = f0(t), (24)
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u′κ,n(t) + µnuκ,n(t) =
fκ,n(t)

1 + λn
, κ = 1, 2, (25)

where µn =
λn

1 + λn
, λn = (2nπ)4. Taking into account the formulas (11) and (14), we consider the function φ(x) as

in the case of (19):

φ(t, x, p) = φ0(t, p)ϑ0(x) +

∞∑
n=1

(
φ1,n(t, p)ϑ1,n(x) + φ2,n(t, p)ϑ2,n(x)

)
. (26)

The differential equation (24) is simple. The differential equation (25) is the countable system of differential equations.
Taking (26) into account, from the two-point condition (2), we obtain

α(t)u0(0) + ωβ(t)u0(T ) =

1∫
0

[
α(t)U0(0, y) + ωβ(t)U0(T, y)

]
σ0(y)dy =

=

1∫
0

φ0(t, y, p(t))σ0(y)dy = φ0(t, p(t)), (27)

α(t)uκ,n(0) + ωβ(t)uκ,n(T ) =

1∫
0

[
α(t)Uκ(0, y) + ωβ(t)Uκ(T, y)

]
σκ,n(y)dy =

=

1∫
0

φκ(t, y, p(t))σκ,n(y)dy = φκ,n(t, p(t)), κ = 1, 2. (28)

First, we solve equation (24):

u0(t) = u0(0) +

t∫
0

f0(s)ds. (29)

Substituting the presentation (29) into two-point boundary condition (27), we obtain

u0(0) =
φ0(t, p(t))

α(t) + ωβ(t)
− ω

β(t)

α(t) + ωβ(t)

T∫
0

f0(s)ds. (30)

Substituting the presentation (30) into (29), we have

u0(t) = a0(t)φ0(t, p(t)) +

T∫
0

K0(t, s)f0(s)ds, (31)

where a0(t) = (α(t) + ωβ(t))−1, K0(t, s) =

 1− ω a0(t)β(t), 0 ≤ s ≤ t,

−ω a0(t)β(t), s ≤ t ≤ T.

We consider such values of the parameter ω, for which α(t)+ωβ(t) ̸= 0. These values of the parameter ω are called
the first regular values of the parameter ω. For the first regular values of the parameter ω, the presentation (31) is the
solution of the problem (24), (27).

Now we solve the countable system (25) of ordinary differential equations with two-point boundary value condition
(28). In this purpose, we rewrite the equation (20) as

u′κ,n(t) = −µnuκ,n(t) +
fκ,n(t)

1 + λn
, κ = 1, 2. (32)

Solving equation (32), we obtain

uκ,n(t) = uκ,n(0) exp
{
− µnt

}
+

1

1 + λn

t∫
0

exp
{
− µn(t− s)

}
fκ,n(s)ds, κ = 1, 2. (33)

Substituting the presentation (33) into two-point boundary condition (30), we get

uκ,n(0) =
φκ,n(t, p(t))

α(t) + ωβ(t) exp
{
− µnT

}−
− ω

1 + λn

β(t)

α(t) + ωβ(t) exp
{
− µnT

} T∫
0

exp
{
− µn(T − s)

}
fκ,n(s)ds, κ = 1, 2.
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Hence, taking into account (33), we derive that

uκ,n(t) = φκ,n(t, p(t))
exp

{
µn(T − t

}
a2,n(t)

+
1

1 + λn

T∫
0

Kn(t, s)fκ,n(s)ds, κ = 1, 2, (34)

where Kn(t, s) =


exp

{
− µn(t− s)

}
− ωβ(t)

a2,n(t)
exp

{
− µn(t− s)

}
, 0 ≤ s ≤ t,

− ωβ(t)

a2,n(t)
exp

{
− µn(t− s)

}
, t ≤ s ≤ T,

a2,n(t) = ωβ(t) + α(t) exp
{
µnT

}
, µn =

λn
1 + λn

, λn =
(
2nπ

)4
, n = 1, 2, ...

We consider such values of the parameter ω, for which a2,n(t) = ωβ(t) + α(t) exp
{
µnT

}
̸= 0. These values of the

parameter ω are called the second regular values of the parameter ω. For the second regular values of the parameter ω,
presentation (34) is the representation of solution of the problem (32), (30).

The sets of the first and the second regular values of the parameter ω is denoted by Λ1 and Λ2, respectively. We
consider the intersection Λ1 ∩ Λ2 of these values of the parameter ω. So, for regular values of the parameter ω from this
intersection Λ1 ∩ Λ2, we have to consider the Fourier series

U(t, x) = ϑ0(η(t)) a0(t)φ0(t, p(t)) + ϑ0(x)

T∫
0

K0(t, s) f0(s)ds+

+

∞∑
n=1

2∑
κ=1

[
ϑκ,n(η(t))φκ,n(t, p(t))a1,n(t) + ϑκ,n(x)

1

1 + λn

T∫
0

Kn(t, s) fκ,n(s)ds

]
. (35)

Smoothness condition S. Let the functions φ(t, x, p(t)) and f(t, x) be satisfying the conditions

φκ(t, x, p) ∈ C0,5
t,x (Ω̄), φκ(t, 1, p) =

∂2

∂x2
φκ(t, 0, p) =

∂4

∂x4
φκ(t, 1, p) = 0,

∂

∂x
φκ(t, 0, p) =

∂

∂x
φκ(t, 1, p),

∂3

∂x3
φκ(t, 0, p) =

∂3

∂x3
φκ(t, 1, p),

f(t, x) ∈ C0,1
t,x (Ω̄×R), f(t, 0) = 0.

Then, we integrate by parts (27), (28) five times and (22), (23) one time with respect to variable x, respectively, and obtain

φ1,n(t, p) = −
(

1

2π

)5 φ
(V )
1,n (t, p)

n5
,

φ
(V )
1,n (t, p) =

1∫
0

∂5φ(t, z, p)

∂(z)5

(
e2πnz − e2πn(1−z)

e2πn − 1
+ cos 2πnz

)
dz, z = η(t),

φ2,n(t, p) =

(
1

2π

)5 φ
(V )
2,n (t, p)

n5
, φ

(V )
2,n (t, p) = 2

1∫
0

∂5 φ(t, z, p)

∂(z)5
sin 2πnz dz, z = η(t),

f1,n(t) = − 1

2π

f
(I)
1,n(t)

n
, f

(I)
1,n(t) =

1∫
0

∂f(t, y)

∂y

(
e2πny − e2πn(1−y)

e2πn − 1
+ cos 2πny

)
dy,

f2,n(t) =
1

2π

f
(I)
2,n(t)

n
, f

(I)
2,n(t) = 2

1∫
0

∂f(t, y)

∂y
sin 2πny dy.

In addition, we have∥∥∥ φ⃗(V )
κ (t, p)

∥∥∥
ℓ2

≤ C1

∥∥∥∥ ∂5φk(t, z, p)

∂ z5

∥∥∥∥
L2[0,1]

,
∥∥∥ f⃗ (I)κ (t)

∥∥∥
ℓ2

≤ C2

∥∥∥∥ ∂fκ(t, x)∂ x

∥∥∥∥
L2(0,1)

.
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5. Unique solvability of the problem (1)–(4)

Theorem 4. If there exists a solution of Problem (1)-(4), then it is unique for regular values of the parameter ω from
the intersection Λ1 ∩ Λ2.

Proof. We consider the regular values of the parameter ω from the intersection Λ1 ∩ Λ2. Suppose that there exist two
different solutions U1(t, x) and U2(t, x) to the problem (1)-(4). Then the difference U(t, x) = U1(t, x) − U2(t, x) is
a solution of equation (1), satisfying the conditions (2)-(4) with functions φ(t, x, p) ≡ 0, f(t, x) ≡ 0. Then, it follows

from formulas (20)-(23) and (35) that uκ,n(t) =

1∫
0

U(t, y)σκ,n(y)dy ≡ 0, κ = 1, 2. From this, due to the completeness

of system (14) in the space L2(0, 1), it follows that U(t, x) = 0 is valid almost everywhere on [0, 1] for any t ∈ [0, T ].
Since U ∈ C(Ω̄), it follows that U(x, t) ≡ 0 in Ω̄. Theorem 4 is proved. □

Theorem 5. Let the smoothness conditions S be satisfied. Then, for the regular values of the parameter ω from the
intersection Λ1 ∩ Λ2 and fixed values of control function p(t), the function (35) belongs to the class of functions (6).

Proof. We consider the series (35) and

∂4

∂t∂x3
Uκ(t, x) =

∞∑
n=1

[
ϑ′′′κ,n(z)

(
a1,n(t)

)′
φκ,n(t, p(t)) + ϑ′′′κ,n(z) a1,n(t)

d

dt
φκ,n(t, p(t))+

+
ϑ′′′κ,n(x)

1 + λn

T∫
0

K ′
n(t, s)fκ,n(s)ds

]
, (36)

∂5

∂t∂x4
Uκ(t, x) =

∞∑
n=1

λn

[
ϑκ,n(z)

(
a1,n(t)

)′
φκ,n(t, p(t)) + ϑκ,n(z) a1,n(t)

d

dt
φκ,n(t, p(t))+

+
ϑκ,n(x)

1 + λn

T∫
0

K ′
n(t, s)fκ,n(s)ds

]
, (37)

∂4

∂x4
Uκ(t, x) =

∞∑
n=1

λn

[
ϑκ,n(z) a1,n(t)φκ,n(t, p(t)) +

ϑκ,n(x)

1 + λn

T∫
0

K ′
n(t, s)fκ,n(s)ds

]
, (38)

where κ = 1, 2, z = η(t).
The proofs of convergence of the series (36)-(38) are similar. So, we will prove of convergence for the series (37).

Applying the smoothness conditions to (37), we have:∣∣∣∣∂5Uκ(t, x)

∂t∂x4

∣∣∣∣ ≤ χ0 max
0≤t≤T

[
χ1

1

(2π)5

(∥∥∥∥ ∂5φ(t, x, p(t))∂ x5

∥∥∥∥
L2(0,1)

+

∥∥∥∥ d

dt

∂5φ(t, x, p(t))

∂ x5

∥∥∥∥
L2(0,1)

)
+

+
1

2π

∥∥∥∥ ∂f(t, x)∂x

∥∥∥∥
L2(0,1)

]
<∞, (39)

where χ0 = max

∥∥ a1,n(t) ∥∥; ∥∥ (a1,n(t))′ ∥∥; max
t∈[0,T ]

T∫
0

|K ′
n(t, s) | ds

, χ1 =

√√√√ ∞∑
n=1

1

n10
,

χ2 =

√√√√ ∞∑
n=1

1

n2
=

√
π2

6
.

From estimate (39), it implies the convergence of the series (37). The convergence of the remaining series is proved
similarly. Theorem 5 is proved. □

6. Optimal control function

Let p∗(t) is optimal control function: ∆ J
[
p∗(t)

]
= J [p∗(t) + ∆ p∗(t) ]− J

[
p∗(t)

]
≥ 0, where p∗(t) +∆ p∗(t) ∈

C[0, T ]. We consider the following function

Q0(t, η(t))ϑ0(η(t))
[
a0(t)φ0 (t, p

∗
0(t)) + b0(t)

]
= γ1

[
p∗0(t)

]2
+ γ2

[
η(t)

]2
, (40)

Qκ(t, η(t))

[ ∞∑
n=1

a1,n(t)ϑκ,n(η(t))φκ,n(t, p
∗
κ(t)) +

∞∑
n=1

bκ,n(t)

1 + λn
ϑκ,n(η(t))

]
=

= γ1
[
p∗κ(t)

]2
+ γ2

[
η(t)

]2
, (41)
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where

a0(t) =
1

α(t) + ωβ(t)
, a1,n(t) =

exp
{
µn(T − t

}
a2,n(t)

,

b0(t) =

T∫
0

K0(t, s) f0(s)ds, bκ,n(t) =

T∫
0

Kn(t, s)fκ,n(s)ds, κ = 1, 2.

The functions Qj(t, x) are defined by solving the following mixed problem

Qjt(t, x) +Qjtxxxx(t, x)−Qjxxxx(t, x) = 0, j = 0, 1, 2, (t, x) ∈ Ω, (42)

Qj(T, x) = −2 [Uj(T, x)− ξj(x)] , Qj(t, 1) = 0, Qjxx(t, 0) = 0, (43)
Qjx(t, 0) = Qjx(t, 1), Qjxxx(t, 0) = Qjxxx(t, 1), 0 ≤ t ≤ T, (44)

which is conjugated to problem (1)-(4). We note that

ξ(x) = ξ0ϑ0(x) +

∞∑
n=1

[
ξ1,nϑ1,n(x) + ξ2,nϑ2,n(x)

]
, ξ0 =

1∫
0

ξ0(y)σ0(y)dy,

ξκ,n =

1∫
0

ξκ(y)σκ,n(y)dy, | ξ0 |+
∞∑

n=1

| ξ1,n |+
∞∑

n=1

| ξ2,n | <∞.

We will find the partial derivatives with respect to the control function in (40) and (41) and come to the following
necessary conditions for optimality

Q0(t, η(t))ϑ0(η(t))a0(t)
∂

∂p∗0(t)
φ0 (t, p

∗
0(t)) = 2γ1p

∗
0(t), (45)

Qκ(t, η(t))

∞∑
n=1

a1,n(t)ϑκ,n(η(t))
∂

∂p∗κ(t)
φκ,n(t, p

∗
κ(t)) = 2γ1p

∗
κ(t), (46)

where
∂

∂p(t)
φ0 (t, p(t)) means that

∂

∂ξ
φ0(t, ξ)

∣∣∣
ξ=p(t)

.

Calculating partial derivatives in (45) and (46) again with respect to control function, we obtain another necessary
conditions for optimality

Q0(t, η(t))ϑ0(η(t))a0(t)
∂2

∂ [p∗0(t)]
2φ0 (t, p

∗
0(t)) < 2γ1, (47)

Qκ(t, η(t))

∞∑
n=1

a1,n(t)ϑκ,n(η(t))
∂2

∂ [p∗κ(t)]
2φκ,n (t, p

∗
κ(t)) < 2γ1. (48)

We solve the adjoint problem (42)-(44) by the same way as we used for solving the problem (1)-(4). According to
the second condition of (43), the nonzero solution of the equation (42) are found from the system of differential equations

q′0(t) = 0, (49)

q′κ,n(t) = µnqκ,n(t), (50)

where qk,n(t) =

1∫
0

Qk(t, y)σk,n(y)dy.

The solution of equation (49) is the arbitrary constant

q0(t) = C0, C0 = const. (51)

The solution of equation (50) is

qκ,n(t) = Cκ exp {µnt} , Cκ = const, κ = 1, 2. (52)

To find C0 and Cκ in (49) and (50), we rewrite (43) in the following form

qj,n(T ) = −2

1∫
0

[
Uj(T, y)− ξj(y)

]
σj,n(y)dy, j = 0, 1, 2. (53)

Taking (31), (34), from condition (53), we obtain

C0 = −2

1∫
0

φ0(T, z, p0(T ))

a0(T )
σ0(z)dz − 2

1∫
0

[b0(T, y)− ξ0(y)]σ0(y)dy, z = η(t), (54)
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Cκ = −2 exp
{
− µnT

} 1∫
0

φκ(T, z, pκ(T ))

a2,n(T )
σκ,n(z)dz+

+2 exp
{
− µnT

} 1∫
0

[ξκ(y) + bκ(T, y)]σκ,n(y)dy, κ = 1, 2, z = η(t), (55)

where a2,n(t) = ωβ(t) + α(t) exp
{
µnT

}
.

Substituting (54) and (55) into (51) and (52), we, respectively, obtain

q0(t) = −2

1∫
0

[
φ0(T, y, p0(T ))

a0(T )
+ b0(T, y)− ξ0(y)

]
σ0(y)dy, (56)

qκ,n(t) = −2 exp
{
− µn(T − t)

} 1∫
0

[
φκ(T, y, pκ(T ))

a2,n(T )
+ bκ(T, y)− ξκ(y)

]
σκ,n(y)dy. (57)

From (56) and (57), we obtain the series

Q0(t, y) = −2ϑ0(y)

1∫
0

[
φ0(T, y, p0(T ))

a0(T )
+ b0(T, y)− ξ0(y)

]
σ0(y)dy, (58)

Qκ(t, y) = −2

∞∑
n=1

ϑκ,n(y) exp
{
− µn(T − t)

}
×

×
1∫

0

[
φκ(T, y, pκ(T ))

a2,n(T )
+ bκ(T, y)− ξκ(y)

]
σκ,n(y)dy. (59)

Substituting presentations (58) and (59) into (45) and (46), respectively, we have

p0(t) = J0(t; p0(t)) ≡ −ϑ
2
0(η(t))

γ1

[
φ0(T, p0(T ))

a0(T )
+ b0(T )− ξ0

]
a0(t)

∂

∂p0
φ0

(
t, p0(t)

)
, (60)

pκ(t) = Jκ(t; pκ(t)) ≡ − 1

γ1

∞∑
n=1

ϑκ,n(η(t)) exp
{
− µn(T − t)

}
×

×
[
φκ,n(T, pκ(T ))

a2,n(T )
+ bκ,n(T )− ξκ,n

] ∞∑
n=1

a1,n(t)ϑκ,n(η(t))
∂

∂pκ
φκ,n

(
t, pκ(t)

)
. (61)

For determination of control functions p0(t) and pκ(t) (κ = 1, 2), we have two functional equations (60) and (61).
Theorem 6. Let the following conditions be fulfilled:

1). ∥φ0 (t, p0(t)) ∥C[0,T ] ≤M01, 0 < M01 = const;

2).
∥∥∥∥ ∂φ0 (t, p0(t))

∂p0(t)

∥∥∥∥
C[0,T ]

≤M02, 0 < M02 = const;

3). |φ0 (t, p0(t))− φ0 (t, p̄0(t)) | ≤ L01 | p0(t)− p̄0(t) | , 0 < L01 = const;

4).
∣∣∣∣ ∂

∂p0(t)
φ0 (t, p0(t))−

∂

∂p̄0(t)
φ0 (t, p̄0(t))

∣∣∣∣ ≤ L02 | p0(t)− p̄0(t) | , 0 < L02 = const;

5). ρ0 = max

{
L02

γ1a0
M01; ρ01

L01

γ1a0
M02

}
< 1, where ρ01 =

1

γ1a0
(L01M02 + L02M01).

Then, for the first regular values of the parameter ω, from the set Λ1, the functional equation (60) has a unique control
function p0(t) (solution) on the segment [0, T ]. This solution can be found by the iteration process:

p00(t) = −ϑ
2
0(η(t))

γ1
a0(t)(b0(T )− ξ0),

pm+1
0 (t) = J0

(
t; pm0 (t)

)
.

(62)

Proof. By virtue of conditions of the theorem 6, from (62), we have∥∥ p00(t) ∥∥C[0,T ]
≤ 4(1− η(t))2

γ1
a0 (b0(T ) + | ξ0 |) ≤

4

γ1
a0 (b0(T ) + | ξ0 |) <∞, (63)

where a0 = max
0≤t≤T

| a0(t) |;∥∥ pm+1
0 (t)− pm0 (t)

∥∥ ≤ L01

γ1a0
M02

∥∥ pm0 (T )− pm−1
0 (T )

∥∥+ L02

γ1a0
M01

∥∥ pm0 (t)− pm−1
0 (t)

∥∥ . (64)
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For t = T from (64), we have∥∥ pm+1
0 (T )− pm0 (T )

∥∥
C[0,T ]

≤ L01

γ1a0
M02

∥∥ pm0 (T )− pm−1
0 (T )

∥∥
C[0,T ]

+

+
L02

γ1a0
M01

∥∥ pm0 (T )− pm−1
0 (T )

∥∥
C[0,T ]

≤ ρ01
∥∥ pm0 (T )− pm−1

0 (T )
∥∥
C[0,T ]

, (65)

where ρ01 =
1

γ1a0

(
L01M02 + L02M01

)
.

From the estimates (64) and (65), we obtain that there holds the estimate∥∥ pm+1
0 (t)− pm0 (t)

∥∥
C[0,T ]

+
∥∥ pm+1

0 (T )− pm0 (T )
∥∥
C[0,T ]

≤

≤ ρ0

[∥∥ pm+1
0 (t)− pm0 (t)

∥∥
C[0,T ]

+
∥∥ pm+1

0 (T )− pm0 (T )
∥∥
C[0,T ]

]
, (66)

where ρ0 = max

{
L02

γ1a0
M01; ρ01

L01

γ1a0
M02

}
. From the estimates (63) and (66), it implies that the operator on the

right-hand side of equation (60) is compressing mapping and the functional equation has unique solution on the interval
[0, T ]. □

Theorem 7. Let the smoothness conditions S and the following conditions be fulfilled:
1).
∥∥ φ⃗κ

(
t, pκ(t)

) ∥∥
ℓ2

≤Mκ1, 0 < Mκ1 = const, κ = 1, 2;

2).
∥∥∥∥ ∂

∂pκ
φ⃗κ

(
t, pκ(t)

) ∥∥∥∥
ℓ2

≤Mκ2, 0 < Mκ2 = const;

3).
∣∣φκ

(
t, pκ(t)

)
− φκ

(
t, p̄κ(t)

) ∣∣ ≤ Lκ1 | pκ(t)− p̄κ(t) | , 0 < Lκ1 = const;

4).
∣∣∣∣ ∂

∂pκ(t)
φκ

(
t, pκ(t)

)
− ∂

∂p̄κ(t)
φκ

(
t, p̄κ(t)

) ∣∣∣∣ ≤ Lκ2 | pκ(t)− p̄κ(t) | , 0 < Lκ2 = const;

5). ρκ = max

{
Lκ2

γ1aκ
Mκ1; ρκ1

Lκ1

γ1aκ
Mκ2

}
< 1, where ρκ1 =

1

γ1aκ

(
Lκ1Mκ2 + Lκ2Mκ1

)
.

Then, for the second regular values of the parameter ω from the set Λ2, functional equation (61) has a unique solution
on the segment [0, T ]. This solution can be found by the iteration process:

p0κ(t) = − 1

γ1

∞∑
n=1

ϑκ,n(η(t)) exp
{
− µn(T − t)

}(
bκ,n(T )− ξκ,n

)
,

pm+1
k (t) = Jκ

(
t; pmκ (t)

)
.

Proof of the theorem 7 is similar to the proof of the Theorem 6.
We substitute the found values of the control functions pj(t), j = 0, 1, 2 into the functions (35). Then we uniquely

determine the state function U(t, x). The proof of this statement is similar to the proofs of the Theorems 4 and 5.

7. Conclusion

In the domain Ω =
{
t ∈ (0, T ), x ∈ (0, 1)

}
, we consider a pseudoparabolic type differential equation with nonlinear

boundary conditions in regard to time variable. Samarskii–Ionkin type boundary value conditions in regard to spatial
variable x are used in solving the nonlocal optimal movable point control problem.

The scalar and countable system of nonlinear functional integral equations are obtained. The properties of eigen-
functions and unique solvability of scalar and countable system of nonlinear functional integral equations with respect
to state function is proved for fixed values of the control function. The optimality conditions are found. The equations
with product of nonlinear functions are obtained for control function. The Picar iteration process is built. The uniform
convergence of the Fourier series is proved. The results of this work make it possible to determine the solutions of huge
set of problems.

Moreover, the results obtained in this work will allow us in the future to investigate direct and inverse optimal con-
trol problems for other kind of partial differential equations of mathematical physics with different quality functionals.
Parabolic type differential equations, such as the heat equations or the diffusion equations, have different applications.
In [14], the problem of fast forward evolution of the processes described in terms of the heat equation is considered. The
matter is considered on an adiabatically expanding time-dependent box. Attention is paid to acceleration of heat transfer
processes. As the physical realization, the heat transport in harmonic crystals is considered. In [11], Sibatov R. T., Sve-
tukhin V. V. are studied the subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions. The authors
of the work [58] are proposed a numerical method for estimating the effective thermal conductivity coefficient of hydrate-
bearing rock samples using synchrotron-based microtomography data. In the work [59], is studied the development of
magnetorotation instability in the accreting envelope of a protostar in the non-isothermal case. The paper [60] is devoted
to the development of a multiscale approach to calculating gas flows near solid surfaces taking into account microscopic
effects. The work [61] discusses approaches to conducting comprehensive optimization of devices that protect against
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ultrawideband interference, known as modal filters. These devices can take the form of strip N-conductor structures with
a various number of conducting layers, as well as cables. Optimization is one of the important stages of their design.
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