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ABSTRACT We analyze the spectral characteristics of lattice Schrödinger operators, denoted as Hγλµ(K),
K ∈ (−π, π]3, which represent a system of two identical bosons existing on Z3 lattice. The model includes on-
site and nearest-neighbor interactions, parameterized by γ, λ, µ ∈ R. Our study of Hγλµ(0) reveals an invariant
subspace on which its restricted form, Hea

λµ(0), is solely dependent on λ and µ. To elucidate the mechanisms of
eigenvalue birth and annihilation for Hea

λµ(0), we define a critical operator. A detailed criterion is subsequently
developed within the plane spanned by λ and µ. This involves: (i) the derivation of smooth critical curves that
mark the onset of criticality for the operator, and (ii) the proof of exact conditions for the existence of precisely
α eigenvalues below and β eigenvalues above the essential spectrum, where α, β ∈ {0, 1, 2} and α+ β ≤ 2.
KEYWORDS Two-particle system, lattice Schrödinger operator, essential spectrum, bound states, Fredholm
determinant.
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1. Introduction

Lattice models are fundamental to mathematical physics, particularly few-body Hamiltonians [1], which simplify
Bose-Hubbard models to finite particle interactions. Decades of research underscore their importance [2–16].

These discrete Hamiltonians also provide effective approximations for their continuous counterparts [17]. A prime
illustration is the Efimov effect [18], rigorously proven for continuous three-particle systems [19–22], and demonstrably
presented in lattice three-particle systems as well [2, 4, 9, 23]. The bound state energies of one- and two-particle systems,
situated in two adjacent 3D layers linked by a window, were numerically reported in [24].

Beyond theoretical significance, discrete Schrödinger operators model few-particle systems in periodic structures,
exemplified by ultracold atoms in optical crystals [25, 26]. Recent years have seen a surge in studying ultracold few-
atom systems in optical lattices, driven by precise control over parameters like temperature and interaction potentials
[25, 27–29]. This control facilitates experimental observation of phenomena like stable repulsively bound pairs [26, 30],
which challenges the typical formation of stable objects through attractive forces.

Lattice Hamiltonians also find application in fusion physics. For example, [14] showed that a one-particle one-
dimensional lattice Hamiltonian could enhance nuclear fusion probability in specific lattice structures.

A key challenge in lattice few-particle problems, unlike their continuous analogues, is the general inability to separate
center-of-mass motion. However, for a lattice Hamiltonian H on Tn·d, the von Neumann direct integral decomposition
provides a solution:

H ≃
⊕∫

K∈Td

H(K) dK,

where Td is the d-dimensional torus. This decomposition effectively transforms the problem into analyzing the fiber
Hamiltonians H(K), which act on T(n−1)d and critically depend on the quasi-momentum K ∈ Td [2, 3, 31].

In the present work, we focus on the spectral properties of Hγλµ(K) for K ∈ T3, acting on L2,e(T3) as

Hγλµ(K) := H0(K) + Vγλµ.

The unperturbed operatorH0(K) defined by multiplication with the dispersion function EK defined in (3). The interaction
potential Vγλµ is independent of the quasi-momentum K ∈ T3. Notably, the coupling constants γ, λ, and µ denote the
on-site, first-neighbor, and second-nearest-neighbor interactions within the lattice system, respectively.

The operators H0(K) and Vγλµ (with γ, λ, µ ∈ R) are both bounded and self-adjoint. Because Vγλµ has finite
rank, Weyl’s theorem establishes that σess(Hγλµ(K)) coincides with σ(H0(K)). This spectrum spans the interval
[Emin(K), Emax(K)], defined by (5).
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The Hilbert space L2,e(T3) is decomposed into the direct sum of invariant subspaces for the operator Hγλµ(0):

L2,e(T3) = L2,e,a12(T3)⊕
[
L2,e,a12(T3)

]⊥
. (1)

Here, L2,e,a12(T3) comprises functions in L2,e(T3) that are antisymmetric in their first two variables, and
[
L2,e,a12(T3)

]⊥
is its orthogonal complement.

The decomposition (1) leads to the following spectral representation for Hγλµ(0):

σ(Hγλµ(0)) = σ(Hγλµ(0)|L2,e,a12 (T3)) ∪ σ(Hγλµ(0)|[L2,e,a12 (T3)]⊥), (2)

where A
∣∣
K denotes the restriction of A onto its reducing subspace K. Consequently, the spectrum of the Hamiltonian

Hγλµ(0) can be studied separately for its restrictions to L2,e,a12(T3), and
[
L2,e,a12(T3)

]⊥
.

Importantly, the restriction V ea
λµ of Vγλµ to L2,e,a12(T3) is independent of γ and has a rank of at most two. Conse-

quently, the restriction Hea
λµ(0) of Hγλµ(0) to L2,e,a12(T3) is also independent of γ, and it possesses no more than two

isolated eigenvalues.
To investigate the exact number of discrete eigenvalues ofHea

λµ(0), we reduce the task of identifying these eigenvalues
to determining the zeros of its Fredholm determinant ∆λµ(z) by constructing a rank-two Lippmann-Schwinger operator
Bea
λµ(0).

Near the upper and lower threshold of σess(Hγλµ(0)), we have found the asymptotic expansions of ∆λµ(z). The
leading terms in these expansions are defined as the algebraic forms P+(λ, µ) and P−(λ, µ), respectively. As demon-
strated by Lemma 5, the polynomial P±(λ, µ) has a null set consisting of two separated smooth unbounded connected
curves τ±0 , τ

±
1 . As a result, the (λ, µ)-plane is split by these curves into three connected regions, denoted C±

0 , C±
1 , and

C±
2 .

Our first main result, Theorem 2 shows that the number of eigenvalues of Hea
λµ(0) lying in (24,+∞) (resp. (−∞, 0))

remains constant within each connected component C+
α (resp. C−

α ), α = 0, 1, 2. Theorem 3 subsequently provides the
exact value of this constant. Moreover, Corollary 1 provides a criterion, expressed in terms of the perturbation parameters
λ, µ ∈ R, for the operator Hea

λµ(0) to possess exactly α eigenvalues below or above [0, 24], where α ∈ {0, 1, 2}. Notably,
we have also derived a an imprecise lower boundary for the eigenvalue count of Hγλµ(K),K ∈ T3 (detailed in Theorem
5), depending only on λ and µ.

In order to better explain the necessary and sufficient conditions on parameters λ and µ for eigenvalue birth and
annihilation, near the upper and lower thresholds of σess(Hγλµ(0)), we introduce the concept of a critical operator (for
more details see Definition 1). To conclude, we provide a clear characterization of this criticality in terms of interaction
parameters (Theorem 1).

First, in [32], the authors studied discrete Schrödinger operators involving a particle under the influence of an external
field on a three-dimensional lattice. The interaction energies of the system were non-negative and denoted by γ, λ, and
the eigenvalue characteristics, including their count and whereabouts were determined as functions of these parameters.

Subsequent works [11,12,33] extended these results to two-boson systems with on-site and nearest-neighbor interac-
tions for d = 1, 2, where the interactions are described by real parameters γ and λ.

For a system of two identical bosons on a d-dimensional lattice Zd (d = 1, 2) with on-site (γ), nearest-neighbor
(λ), and next-nearest-neighbor (µ) interactions, the discrete spectrum of the associated two-particle Schrödinger operator
Hγλµ(k), k ∈ Td has been studied and determined the number and position of isolated eigenvalues for all values of the
interaction parameters in [34–36].

Here’s how this paper is structured. Section 2 introduces the fiber Schrödinger operators for particle pairs at a fixed
quasi-momentum. Section 3 outlines the auxiliary information crucial for stating our primary findings. Our main results,
along with the definition of critical operators, are presented in Section 4. Finally, Section 5 contains the proofs.

2. Two-boson system Hamiltonian on the Z3 lattice

2.1. Quasimomentum-fixed Schrödinger operator for particle pairs

For γ, λ, µ ∈ R and K ∈ T3, the Schrödinger operator Hγλµ(K) describes interacting particle pairs. This operator
is bounded and self-adjoint in L2,e(T3) ( [3], [11], [35]), defined as:

Hγλµ(K) := H0(K) + Vγλµ.

The unperturbed operator, H0(K), acts as a multiplication operator, defined by the quasi-momentum-dependent pair
dispersion relation:

(H0(K)f)(p) = EK(p)f(p),

where the dispersion function EK(·) is given by:

EK(p) = 4

3∑
i=1

(
1− cos Ki

2 cos pi
)
, p = (p1, p2, p3) ∈ T3. (3)
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The perturbation operator Vγλµ is given by:

(Vγλµf) (p) =
γ

8π3

∫
T3

f(q)dq +
λ

4π3

3∑
i=1

cos pi

∫
T3

cos qif(q)dq (4)

+
µ

4π3

3∑
i=1

cos 2pi

∫
T3

cos 2qif(q)dq.

The rank of Vγλµ varies with γ, λ, µ ∈ R but is always at most seven. By Weyl’s theorem [37], σess(Hγλµ(K)) is
unaffected by these parameters. It coincides with σ(H0(K)), K ∈ T3, forming the closed interval [Emin(K), Emax(K)],
where:

Emin(K) := min
p∈T3

EK(p) = 4

3∑
i=1

(
1− cos Ki

2

)
≥ Emin(0) = 0,

Emax(K) :=max
p∈T3

EK(p) = 4

3∑
i=1

(
1 + cos Ki

2

)
≤ Emax(0) = 24.

(5)

3. Auxiliary statements

3.1. Invariant subspaces of the fiber Schrödinger operators Hγλµ(0)

We define L2,e,a12(T3) as the set of functions within L2,e(T3) that are antisymmetric with respect to their first two
coordinates, specifically,

L2,e,a12(T3) = {f ∈ L2,e(T3) : f(p1, p2, p3) = −f(p2, p1, p3)}.

Let
(
L2,e,a12(T3)

)⊥
be its orthogonal complement within L2,e(T3). Notably, L2,e,a12(T3) and its orthogonal complement(

L2,e,a12(T3)
)⊥

are both closed subspaces of L2,e(T3). Then the Direct Sum Theorem yields the decomposition (1).
Since E0(p) = 2ϵ(p) exhibits symmetry in its first two coordinates, andH0(0) corresponds to multiplication by E0(p),

the subspace L2,e,a12(T3), as well as
(
L2,e,a12(T3)

)⊥
is invariant for self-adjoint operatorH0(0). Taking into account the

identity

2 cosA cosB + 2 cosC cosD = (cosA+ cosC)(cosB + cosD)

+ (cosA− cosC)(cosB − cosD), for any A,B,C,D ∈ R,

from (4) one derives that

(Vγλµf) (p) =
γ

8π3

∫
T3

f(q) dq +
λ

8π3
(cos p1 + cos p2)

∫
T3

(cos q1 + cos q2)f(q) dq

+
λ

8π3
(cos p1 − cos p2)

∫
T3

(cos q1 − cos q2)f(q) dq

+
µ

8π3
(cos 2p1 + cos 2p2)

∫
T3

(cos 2q1 + cos 2q2)f(q) dq

+
µ

8π3
(cos 2p1 − cos 2p2)

∫
T3

(cos 2q1 − cos 2q2)f(q) dq

+
λ

4π3
cos p3

∫
T3

cos q3f(q) dq +
µ

4π3
cos 2p3

∫
T3

cos 2q3f(q) dq,

(6)

which implies that L2,e,a12(T3), and
(
L2,e,a12(T3)

)⊥
are invariant for Vγλµ and, hence, for Hγλµ(0). Thus, (1) implies

the spectral decomposition (2).
Let us denote by V ea

λµ andHea
λµ(0) the corresponding restrictions of the operators Vγλµ andHγλµ(0) onto the subspace

L2,e,a12(T3). Then (6) implies that(
V ea
λµf

)
(p) =

λ

8π3
(cos p1 − cos p2)

∫
T3

(cos q1 − cos q2)f(q) dq

+
µ

8π3
(cos 2p1 − cos 2p2)

∫
T3

(cos 2q1 − cos 2q2)f(q) dq

and
Hea
λµ(0) = H0(0) + V ea

λµ.
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3.2. The Lippmann–Schwinger operator

Let {α1, α2} be a system of orthonormal vectors in L2,e,a12(T3), with

α1(p) =
cos p1−cos p2√

8π3
, α2(p) =

cos 2p1−cos 2p2√
8π3

, (7)

By using the orthonormal system (7) one obtains

V ea
λµf = λ(f, α1)α1 + µ(f, α2)α2, (8)

where (·, ·) denotes the inner product inL2,e,a12(T3). For any z ∈ C\[0, 24], we define the Lippmann-Schwinger operator
(or its transpose, see, e.g., [38]) as:

Bea
λµ(0, z) = −V ea

λµR0(0, z),

where R0(0, z) := [H0(0)− zI]−1 is the resolvent of the operator H0(0).

Lemma 1. Given λ, µ ∈ R, z ∈ C \ [0, 24] is an eigenvalue of Hea
λµ(0) with multiplicity m if and only if Bea

λµ(0, z) has
an eigenvalue of 1 with multiplicity m.

Proof. Let λ, µ ∈ R. For z ∈ R \ [0, 24], the operator R0(0, z) = [H0(0) − zI]−1 is well-defined within the space
L2,e,a12(T3). Therefore, the equation

Hea
λµ(0)φ = zφ, φ ∈ L2,e,a12(T3)

is equivalent to (H0(0)− zI)φ = −V ea
λµφ, and further to

φ = −V ea
λµR0(0, z)φ, φ ∈ L2,e,a12(T3).

This equivalence proves the above relationship between the eigenvalues. □

Remark 1. Lemma 1 reduces the spectral analysis of the non-compact operator Hea
λµ(0) to that of the compact operator

Bea
λµ(0, z). Since V ea

λµ has a rank of at most two, Bea
λµ(0, z) also has a rank of at most two. Consequently, the self-adjoint

operator Hea
λµ(0) possesses at most two (real) eigenvalues in R \ [0, 24].

Equation (8) establishes the equivalence between the Lippmann-Schwinger equation,

Bea
λµ(0, z)φ = φ, φ ∈ L2,e,a12(T3), (9)

and the following algebraic linear system: [1 + λa11(z)]x1 + µa12(z)x2 = 0,

λa21(z)x1 + [1 + µa22(z)]x2 = 0,

where

aij(z) := (αi, R0(0, z)αj) =

∫
T3

αi(p)αj(p)

E0(p)− z
dp, i, j ∈ {1, 2}.

Let z ∈ R \ [0, 24] and

∆λµ(z) := det[I −Bea
λµ(0, z)] =

∣∣∣∣∣∣1 + λa11(z) µa12(z)

λa12(z) 1 + µa22(z)

∣∣∣∣∣∣ .
The following lemma outlines the established relation between the operator Hea

λµ(0) and the function ∆λµ(·).

Lemma 2. Given λ, µ ∈ R, a real number z ∈ R \ [0, 24] is an eigenvalue of Hea
λµ(0) with the multiplicity m precisely

when it is a zero of ∆λµ(·) of the multiplicity m. Additionally, ∆λµ(·) has at most two zeros within the interval R\ [0, 24].

Proof. Assume that z ∈ R\ [0, 24] is an eigenvalue ofHea
λµ(0) with multiplicitym ≥ 1, i.e. 1 is an eigenvalue of compact

operator Bea
λµ(0, z) with the same multiplicity.

First, an eigenvalue z ∈ R\[0, 24] ofHea
λµ(0) corresponds to 1 being an eigenvalue of the Birman-Schwinger operator

Bea
λµ(0, z), which implies ∆λµ(z) = 0 (see [37, Chapter XIII.14]).

Since Bea
λµ(0, z) is compact operator of rank at most two, for any its isolated eigenvalue, its algebraic multiplicity

equals its geometric multiplicity (see [39, Chapter IV, Sections 3.1-3.5]). Furthermore, the multiplicity of a zero z of
the Fredholm determinant det(I − Bea

λµ(0, z)) corresponds precisely to the algebraic multiplicity of the number 1 as an
eigenvalue of the compact operator Bea

λµ(0, z), provided Bea
λµ(0, z) depends analytically on z (for more details, see [39,

Chapter IV, Section 5.3]). Combining these results, one directly establishes that the multiplicity of z as an eigenvalue of
Hea
λµ(0) is identical to its multiplicity as a zero of ∆λµ(z).

Finally, the fact that ∆λµ(·) has at most two zeros in R\ [0, 24] follows directly fromBea
λµ(0, z) being of rank at most

two. □

The forthcoming lemma details the global properties and asymptotic expansions of aij(z).
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Lemma 3. The functions aij(z), i, j ∈ {1, 2} are real-valued and exhibit the following behavior:

(i) The functions aii(z), i = 1, 2 are strictly increasing and positive on (−∞, 0], and strictly increasing and negative
on [24,+∞).

(ii) The equality

lim
z→±∞

aij(z) = 0

holds for all i, j = 1, 2.
(iii) The limits aij(0) = lim

z↗0
aij(z) and aij(24) = lim

z↘24
aij(z) both exist and satisfy the relations

aij(24) = (−1)i+j+1aij(0),

a11(0) > 0, a22(0) > 0, a11(0)a22(0) > a212(0).

(iii) The functions aij(z) admit the following asymptotics:

aij(z) =aij(0) +O(−z), z ↗ 0,

aij(z) =(−1)i+j+1 [aij(0) +O(z − 24)] , z ↘ 24.

Proof. The equality

a11(0)a22(0)− a212(0) =
1

2

∫
T3×T3

[α1(p)α2(q)−α1(q)α2(p)]
2

E0(p)E0(q)
dpdq

(where α1, α2 are as in (7)), along with the monotonicity of the Lebesgue integral, directly implies a11(0)a22(0) −
a212(0) > 0. For the remaining statements of this lemma, a demonstration similar to Proposition 1 in [35] can be employed.

□

Lemma 4. For any λ, µ ∈ R the function ∆λµ(z) is holomorphic in z ∈ R \ [0, 24]. Furthermore, this function is real
analytic for z ∈ R \ [0, 24] and possesses the following asymptotics:

(i) lim
z→±∞

∆λµ(z) = 1,

(ii) lim
z↗0

∆λµ(z) = P−(λ, µ),

(iii) lim
z↘24

∆λµ(z) = P+(λ, µ),

where

P±(λ, µ) = a [(λ∓ λ0)(µ∓ µ0)− b] , (10)

and

a = a11(0)a22(0)− a212(0), b =

[
a12(0)

a11(0)a22(0)− a212(0)

]2
,

λ0 =
a22(0)

a11(0)a22(0)− a212(0)
, µ0 =

a11(0)

a11(0)a22(0)− a212(0)

are positive real numbers.

Proof. In view of Lemma 3, the proof is obtained by a simple inspection. □

Lemma 5. In R2, the set of points satisfying P±(λ, µ) = 0 precisely forms the graph of the function

µ±(λ) =
b

λ∓ λ0
± µ0.

This graph consists of two isolated smooth unbounded simple connected curves:

τ±0 = {(λ, µ) ∈ R2 : µ =
b

λ∓ λ0
± µ0, ±λ < λ0},

τ±1 = {(λ, µ) ∈ R2 : µ =
b

λ∓ λ0
± µ0, ±λ < λ0}.

and separates the (λ, µ)-parameter plane into three unbounded, contiguous, and connected components:
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C±
0 ={(λ, µ) ∈ R2 : ±µ < b

±λ− λ0
+ µ0, ±λ < λ0},

C±
1 ={(λ, µ) ∈ R2 : ±µ > b

±λ− λ0
+ µ0, ±λ < λ0} ∪ {(±λ0, µ) ∈ R2},

{(λ, µ) ∈ R2 : ±µ < b

±λ− λ0
+ µ0, ±λ > λ0}, (11)

C±
2 ={(λ, µ) ∈ R2 : ±µ > b

±λ− λ0
+ µ0, ±λ > λ0}

The proof of Lemma 5 resembles that of Lemma 1 in [40].

4. Main results

4.1. Critical operators

To elucidate the mechanisms of eigenvalue birth and annihilation, we introduce the concept of a critical operator.

Definition 1. A parameter point (λ0, µ0) is lower-critical for Hea
λµ(0) if the number of discrete eigenvalues below the

essential spectrum is non-constant in every neighborhood of (λ0, µ0). Upper-critical points are defined analogously for
eigenvalues above the essential spectrum.

The following theorem characterizes criticality of the operator Hea
λµ(0) through its interaction parameters.

Theorem 1. A parameter point (λ0, µ0) ∈ R2 is:
(i) Lower-critical for Hea

λµ(0) iff P−(λ0, µ0) = 0

(ii) Upper-critical for Hea
λµ(0) iff P+(λ0, µ0) = 0

The following theorem, establishes that the number of isolated eigenvalues of the operator Hea
λµ(0) lying above (resp.

below) its essential spectrum is constant within each connected component C−
α (resp. C+

α ), α = 0, 1, 2.

Theorem 2. Let C− resp. C+ be one of the open connected components C−
α resp. C+

α ,α = 0, 1, 2, of the (λ, µ)-plane
defined in (11). Then for any (λ, µ) ∈ C− resp. (λ, µ) ∈ C+ the number of eigenvalues of Hea

λµ(0), lying below resp.
above the essential spectrum remains constant (counting multiplicities).

Proof. Theorem 2 can be proved analogously to [36, Theorem 3.2]. □

We will now determine the exact number of eigenvalues of the operator Hea
λµ(0) lying below and above the essential

spectrum within the connected components C−
ζ and C+

ζ , ζ = 0, 1, 2.

Theorem 3. Let λ, µ ∈ R and ζ = 0, 1, 2. If (λ, µ) ∈ C−
ζ (resp. (λ, µ) ∈ C+

ζ ) then the operator Hea
λµ(0) has exactly ζ

eigenvalues lying below (resp. above ) its essential spectrum.

The next theorem demonstrates the exact number of eigenvalues of the operator Hea
λµ(0) that lie below and above the

essential spectrum within different unbounded smooth curves τ−ζ and τ+ζ , ζ = 0, 1, respectively.

Theorem 4. Let λ, µ ∈ R and ζ = 0, 1. If (λ, µ) ∈ τ−ζ (resp. (λ, µ) ∈ τ+ζ ) then the operator Hea
λµ(0) has ζ eigenvalues,

which lie below (resp. above) the essential spectrum.

Let us define the partitions {P−
ζ }2ζ=0 and {P+

ζ }
2
ζ=0 of the plane R2:

P±
ζ := C±

ζ ∪ τ±ζ , ζ = 0, 1 and P±
2 := C±

2 .

Now, we present a criterion, based on the perturbation parameters λ, µ ∈ R, detailing when the operator Hea
λµ(0) has

exactly α eigenvalues in (−∞, 0) or (24,+∞), α ∈ {0, 1, 2}.

Corollary 1. Let λ, µ ∈ R and ζ ∈ {0, 1, 2}. The operator Hea
λµ(0) has exactly ζ eigenvalues in (−∞, 0) if and only if

(λ, µ) ∈ P−
ζ . Similarly, it has exactly ζ eigenvalues in (24,+∞) if and only if (λ, µ) ∈ P+

ζ .

Let us define

Gαβ = P−
α ∩ P+

β , α, β = 0, 1, 2. (12)

Corollary 2. Let λ, µ ∈ R and the number α, β = 0, 1, 2 satisfies α + β ≤ 2. Then, Hea
λµ(0) has α eigenvalues below

and β eigenvalues above its essential spectrum if and only if (λ, µ) ∈ Gαβ .

Proof. Corollary 2 can be proved by combining Corollary 1 and (12). □
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The following theorem offers a lower estimate for the number of eigenvalues of the operator Hγλµ(K),K ∈ T3,
dependent only on λ, µ.

Theorem 5. Let γ, λ, µ ∈ R and α, β ∈ {0, 1, 2}. If (λ, µ) ∈ Gαβ , then for each K ∈ T3, the operator Hγλµ(K) has at
least α eigenvalues below and at least β eigenvalues above its essential spectrum.

Proof of Theorem 5. Theorem 5 can be proved as Theorem 3 in [40]. □

5. Proof of the main results

Proof of Theorem 1. Due to symmetry, we only prove the statement for the upper threshold.
Assume that P+(λ, µ) = 0. Then Lemma 5 shows that (λ, µ) ∈ τ+α for some α ∈ {0, 1}, and any neighborhood of a

point (λ, µ) ∈ τ+α contains points from both C+
α and C+

α+1. Moreover, Lemma 4 states that:

lim
z→+∞

∆λµ(z) = 1 and lim
z↘24

∆λµ(z) = P+(λ, µ).

Since P+(λ, µ) exhibits different signs within C+
α and C+

α+1 for each α = 0, 1, this implies that ∆λµ(·) has a different
number of zeros on (24,+∞) in these regions. Consequently, by Lemma 2, the number of eigenvalues of Hea

λµ(0) lying
in (24,+∞) is not constant in any neighborhood of (λ, µ). This indicates that Hea

λµ(0) is critical at the upper threshold.
We now assume that Hea

λµ(0) is critical at the upper threshold for some (λ, µ) ∈ R2, and proceed to prove that
P+(λ, µ) = 0. Assume for contradiction, that P+(λ, µ) ̸= 0. Then, Lemma 5 implies (λ, µ) ∈ C+

α for some α ∈
{0, 1, 2}. Since C+

α is an open set, there exists a neighborhood Uδ(λ, µ) ⊆ C+
α . Within this neighborhood Uδ(λ, µ),

Theorem 2 ensures a constant number of eigenvalues of Hea
λµ(0) lying above the essential spectrum and therefore Hea

λµ(0)
is not critical at its upper threshold, leading to a contradiction.

□

Note that Hea
λµ(0) has at most two discrete eigenvalues. Let us denote these eigenvalues, arranged in increasing order,

by z1(Hea
λµ(0)) and z2(Hea

λµ(0)).

Lemma 6. (i) For each fixed µ ∈ R, the maps

λ 7→ z1(H
ea
λµ(0)) and λ 7→ z2(H

ea
λµ(0))

are non-decreasing on R.
(ii) Analogously, for each fixed λ ∈ R, the maps

µ 7→ z1(H
ea
λµ(0)) and µ 7→ z2(H

ea
λµ(0))

are non-decreasing on R.

Proof. (i) Let µ ∈ R be fixed and λ1 < λ2 be an arbitrary real numbers. Then, the representation (8) and the inequality
λ1 < λ2 imply that

(Hea
λ1µ(0)ψ,ψ)− (Hea

λ2µ(0)ψ,ψ) = (λ1 − λ2)(ψ, α1)
2 ≤ 0, i.e.

(Hea
λ1µ(0)ψ,ψ) ≤ (Hea

λ2µ(0)ψ,ψ), ∀ψ ∈ L2,e,a12(T2).

For each n = 1, 2, the last inequality leads that

zn(H
ea
λ1µ(0)) := sup

ϕ1,...,ϕn−1∈L2,e,a12 (T2)

inf
ψ∈[ϕ1,...,ϕn−1]⊥, ∥ψ∥=1

(Hea
λ1µ(0)ψ,ψ)

≤ sup
ϕ1,...,ϕn−1∈L2,e,a12 (T2)

inf
ψ∈[ϕ1,...,ϕn−1]⊥, ∥ψ∥=1

(Hea
λ2µ(0)ψ,ψ) = zn(H

ea
λ2µ(0)).

(ii) For every fixed λ ∈ R, the case of µ ∈ R 7→ zn(H
ea
λµ(0)), n = 1, 2 can be proved similarly. □

Proof of Theorem 3. We’ll prove the ”plus” case, as the ”minus” case follows a similar logic and its proof is omitted for
brevity.

Let us start the proof with the case α = 1 and assume that (λ, µ) ∈ C+
1 . From (10) and (11), we deduce that

P+(λ, µ) = a [(λ− λ0)(µ− µ0)− k] < 0.

Then, Lemma 4 demonstrates that

lim
z→+∞

∆λµ(z) = 1 and lim
z↘24

∆λµ(z) = P+(λ, µ) < 0.

Since ∆λµ(·) changes sign on (24,+∞), it has at least one there. If there were more zeros, the endpoint sign changes
would require at least three, contradicting Lemma 2. Thus, ∆λµ(·) has exactly one zero in (24,+∞), which Lemma 2
then implies to a unique eigenvalue of Hea

λµ(0) in the same interval.
Case α = 0. Assuming (λ, µ) ∈ C+

0 , we have from (11) that

µ <
k

λ− λ0
− µ0 and λ < λ0, (13)
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which implies P+(λ, µ) > 0. Lemma 4 then allows us to obtain

lim
z→+∞

∆λµ(z) = 1 and lim
z↘24

∆λµ(z) = P+(λ, µ) > 0. (14)

Relation (14) and Lemma 2 imply that ∆λµ(z) possesses either zero or two zeros above the essential spectrum.
Assume, for contradiction, that there are two such zeros, z1(Hea

λµ(0)) and z2(Hea
λµ(0)), satisfying

24 < z1(H
ea
λµ(0)) ≤ z2(H

ea
λµ(0)). (15)

In other hand, (11) states that
(λ0, µ) ∈ C+

1 ∀µ ∈ R.
Further, the inequality λ < λ0 in (13), the relation (15), and Lemma 6 yield

z2(H
ea
λ0µ(0)) ≥ z2(H

ea
λµ(0)) > 24,

indicating that Hea
λ0µ(0) has at least two eigenvalues located in (24,+∞), contradicting the previous result. Thus, for all

(λ, µ) ∈ C+
0 , Hea

λµ(0) lacks eigenvalues in (24,+∞).
Take any (λ, µ) ∈ C+

2 . Then, (10) and (11) provide the inequalities

P (λ, µ) = a [(λ− λ0)(µ− µ0)− k] > 0, (16)
µ > µ0, λ > λ0.

Using Lemma 4 and (16), we find that

lim
z→+∞

∆λµ(z) = 1 and lim
z↘24

∆λµ(z) = P+(λ, µ) > 0. (17)

Note that (λ0, µ) ∈ C+
1 and so Hea

λ0µ(0) has exactly one eigenvalue z1(Hea
λ0µ(0)) > 24. Then the relation λ > λ0 in

(16) and Lemma 6 give that
z1(H

ea
λµ(0)) ≥ z1(H

ea
λ0µ(0)) > 24,

which yields that Hea
λµ(0) has at least one eigenvalue in (24,+∞). Then, Lemma 2 implies that ∆λµ(·) has at least one

zero in (24,+∞). On the other hand, (17) indicates that ∆λµ has the same sign at the endpoints of (24,+∞); therefore,
it must possess an even number of zeros (counting multiplicities). Thus, Hea

λµ(0) has exactly two (simple) eigenvalues
located in (24,+∞). □

Proof of Theorem 4. The function (λ, µ) → n+(H
ea
λµ(0)) (resp. (λ, µ) → n−(H

ea
λµ(0))) is continuous on each P+

ζ

(respectively, on each P−
ζ ), for ζ = 0, 1, 2, where, n+(Hea

λµ(0)) (respectively, n−(Hea
λµ(0))) denotes the number of

isolated eigenvalues of Hea
λµ(0) located in (24,+∞) (resp. (−∞, 0)). This proves the assertion. □

Proof of Corollary 1. Let (λ, µ) ∈ P+
α . Then Theorem 3 implies that Hea

λµ(0) has exactly α eigenvalues in (24,+∞).
For the converse, assume Hea

λµ(0) has precisely α eigenvalues in (24,+∞). We proceed by contradiction to establish
that (λ, µ) ∈ P+

α . Suppose (λ, µ) /∈ P+
α . Since {P+

0 ,P
+
1 ,P

+
2 } forms a partition of R2, there exists β ̸= α such that

(λ, µ) ∈ P+
β . Theorem 3 then implies that Hea

λµ(0) has exactly β ̸= α eigenvalues above its essential spectrum, directly
contradicting our initial assumption. □

6. Conclusion

This paper meticulously analyzed the spectral characteristics of the lattice Schrödinger operators, Hγλµ(K), which
model two identical bosons on Z3 with on-site and nearest-neighbor interactions. Our study of Hγλµ(0) revealed an
invariant subspace where its restricted form, Hea

λµ(0), depends only on λ and µ. To elucidate eigenvalue birth and annihi-
lation for Hea

λµ(0), we defined a critical operator and developed a detailed criterion in the λ− µ plane. This involved: (i)
deriving smooth critical curves that delineate the onset of criticality; and (ii) proving exact conditions for the existence of
precisely α eigenvalues below and β eigenvalues above the essential spectrum, with α, β ∈ {0, 1, 2} and α+ β ≤ 2.
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