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ABSTRACT We analyze the spectral characteristics of lattice Schrédinger operators, denoted as H.,»,(K),
K € (—n, 7], which represent a system of two identical bosons existing on Z? lattice. The model includes on-
site and nearest-neighbor interactions, parameterized by v, A, u € R. Our study of H,,,,(0) reveals an invariant
subspace on which its restricted form, H$j,(0), is solely dependent on A and 1. To elucidate the mechanisms of
eigenvalue birth and annihilation for H33,(0), we define a critical operator. A detailed criterion is subsequently
developed within the plane spanned by A and p. This involves: (i) the derivation of smooth critical curves that
mark the onset of criticality for the operator, and (ii) the proof of exact conditions for the existence of precisely
« eigenvalues below and g eigenvalues above the essential spectrum, where o, 8 € {0,1,2} and o+ 5 < 2.
KEYWORDS Two-particle system, lattice Schrédinger operator, essential spectrum, bound states, Fredholm
determinant.
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1. Introduction

Lattice models are fundamental to mathematical physics, particularly few-body Hamiltonians [1], which simplify
Bose-Hubbard models to finite particle interactions. Decades of research underscore their importance [2—16].

These discrete Hamiltonians also provide effective approximations for their continuous counterparts [17]. A prime
illustration is the Efimov effect [18], rigorously proven for continuous three-particle systems [19-22], and demonstrably
presented in lattice three-particle systems as well [2,4,9,23]. The bound state energies of one- and two-particle systems,
situated in two adjacent 3D layers linked by a window, were numerically reported in [24].

Beyond theoretical significance, discrete Schrodinger operators model few-particle systems in periodic structures,
exemplified by ultracold atoms in optical crystals [25,26]. Recent years have seen a surge in studying ultracold few-
atom systems in optical lattices, driven by precise control over parameters like temperature and interaction potentials
[25,27-29]. This control facilitates experimental observation of phenomena like stable repulsively bound pairs [26, 30],
which challenges the typical formation of stable objects through attractive forces.

Lattice Hamiltonians also find application in fusion physics. For example, [14] showed that a one-particle one-
dimensional lattice Hamiltonian could enhance nuclear fusion probability in specific lattice structures.

A key challenge in lattice few-particle problems, unlike their continuous analogues, is the general inability to separate
center-of-mass motion. However, for a lattice Hamiltonian H on T"'d, the von Neumann direct integral decomposition
provides a solution:

®
H ~ / H(K)dK,
KeTd
where T? is the d-dimensional torus. This decomposition effectively transforms the problem into analyzing the fiber
Hamiltonians H (K ), which act on T(=14 and critically depend on the quasi-momentum K € T [2,3,31].
In the present work, we focus on the spectral properties of H.,(K) for K € T3, acting on L*°(T?) as

Hyu(K) == Ho(K) 4 Vyap-

The unperturbed operator Hy(K') defined by multiplication with the dispersion function £k defined in (3). The interaction
potential V., is independent of the quasi-momentum K € T3. Notably, the coupling constants ~y, A, and y denote the
on-site, first-neighbor, and second-nearest-neighbor interactions within the lattice system, respectively.

The operators H(K') and V., (with 4, A\, x € R) are both bounded and self-adjoint. Because V,, has finite
rank, Weyl’s theorem establishes that oss(Hx,(K)) coincides with o(Hy(K')). This spectrum spans the interval
[Emin (K), Emax (K)], defined by (5).
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The Hilbert space L?°(T?) is decomposed into the direct sum of invariant subspaces for the operator Hx.(0):

LQ,C(T:‘S) — LQ,C,alg (TS) &) I:LQ,C,alg (T3)]J- ) (1)
Here, L***2(T?) comprises functions in L**(T?) that are antisymmetric in their first two variables, and [L*%®2(T?)] +
is its orthogonal complement.
The decomposition (1) leads to the following spectral representation for Ho,(0):

U(H,Y)\M(())) = O'(H,y)\ﬂ (0) |L2,e‘a12 (T3)> U U(H'y/\,u (0) ‘ [L2-e:212 (T3)]J' ), (2)
where A ‘ « denotes the restriction of A onto its reducing subspace K. Consequently, the spectrum of the Hamiltonian

H.5,,(0) can be studied separately for its restrictions to L*%*2(T%), and [L*%*2(T?)] t

Importantly, the restriction Vi of V,, to L?®12(T3) is independent of y and has a rank of at most two. Conse-
quently, the restriction H37,(0) of H,,(0) to L*®%12(T3) is also independent of -y, and it possesses no more than two
isolated eigenvalues.

To investigate the exact number of discrete eigenvalues of H f{; (0), we reduce the task of identifying these eigenvalues
to determining the zeros of its Fredholm determinant A, (z) by constructing a rank-two Lippmann-Schwinger operator
B5.(0).

Near the upper and lower threshold of o¢ss(H+x,(0)), we have found the asymptotic expansions of Ay, (z). The
leading terms in these expansions are defined as the algebraic forms P (X, 1) and P~ (), i), respectively. As demon-
strated by Lemma 5, the polynomial Pi(/\, 1) has a null set consisting of two separated smooth unbounded connected
cirves Tgﬂ Tli. As a result, the (A, u)-plane is split by these curves into three connected regions, denoted CSE, Cf, and
Cy.

Our first main result, Theorem 2 shows that the number of eigenvalues of Y}, (0) lying in (24, +00) (resp. (—o0,0))
remains constant within each connected component C.f (resp. C;), a = 0,1,2. Theorem 3 subsequently provides the
exact value of this constant. Moreover, Corollary 1 provides a criterion, expressed in terms of the perturbation parameters
A, i € R, for the operator H7,(0) to possess exactly o eigenvalues below or above [0, 24], where o € {0, 1,2}. Notably,
we have also derived a an imprecise lower boundary for the eigenvalue count of H., (K), K € T? (detailed in Theorem
5), depending only on A and .

In order to better explain the necessary and sufficient conditions on parameters A and p for eigenvalue birth and
annihilation, near the upper and lower thresholds of o.s(H~x,(0)), we introduce the concept of a critical operator (for
more details see Definition 1). To conclude, we provide a clear characterization of this criticality in terms of interaction
parameters (Theorem 1).

First, in [32], the authors studied discrete Schrodinger operators involving a particle under the influence of an external
field on a three-dimensional lattice. The interaction energies of the system were non-negative and denoted by -, A, and
the eigenvalue characteristics, including their count and whereabouts were determined as functions of these parameters.

Subsequent works [11,12,33] extended these results to two-boson systems with on-site and nearest-neighbor interac-
tions for d = 1, 2, where the interactions are described by real parameters y and \.

For a system of two identical bosons on a d-dimensional lattice Z% (d = 1,2) with on-site (), nearest-neighbor
(), and next-nearest-neighbor (u) interactions, the discrete spectrum of the associated two-particle Schrodinger operator
H.,5,(k), k € T has been studied and determined the number and position of isolated eigenvalues for all values of the
interaction parameters in [34-36].

Here’s how this paper is structured. Section 2 introduces the fiber Schrddinger operators for particle pairs at a fixed
quasi-momentum. Section 3 outlines the auxiliary information crucial for stating our primary findings. Our main results,
along with the definition of critical operators, are presented in Section 4. Finally, Section 5 contains the proofs.

2. Two-boson system Hamiltonian on the Z? lattice

2.1. Quasimomentum-fixed Schrodinger operator for particle pairs

For v, A\, u € Rand K € T3, the Schrodinger operator H.»,(K) describes interacting particle pairs. This operator
is bounded and self-adjoint in L*¢(T?) ( [3], [11], [35]), defined as:

H’YNL(K) = Ho(K) + Viru-

The unperturbed operator, Ho(K), acts as a multiplication operator, defined by the quasi-momentum-dependent pair
dispersion relation:

(Ho(K)f)(p) = Ex(p)f(p),

where the dispersion function £k (-) is given by:

3
Ex(p) :42(1—(303% cosp;), p=(p1,p2ps) € T 3
i=1
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The perturbation operator V5, is given by:

Y 3
(Vi) (0) =555 / Fla)da + 325 3 conp [ cosaistada )

T3

H Z cos 2p; / cos 2¢; f(q)dq.
i=1 A
The rank of V5, varies with v, A, ;1 € R but is always at most seven. By Weyl’s theorem [37], Gegs(Hyr,(K)) is

unaffected by these parameters. It coincides with o(Hy(K)), K € T?, forming the closed interval [Epin (K), Emax (K],
where:

3
gmin(K) _Hel}]l‘% gK( ) = 42 (1 (o)} D) ) > gmin(O) = O’
P i=1
3 (5)
gmaX(K) _géa‘,ﬂ%( 6[(( ) 4; (1 + COS f) S gmax(o) = 24:

3. Auxiliary statements
3.1. Invariant subspaces of the fiber Schrodinger operators H.,,,,(0)

We define L?©%12(T?) as the set of functions within L?:¢(T?) that are antisymmetric with respect to their first two
coordinates, specifically,

L2922 (T3 = {f € L**(T%) : f(p1,p2.p3) = —f(p2.p1,p3)}-

Let (L*%*12(T?)) “beits orthogonal complement within %¢(T?). Notably, L**#12(T?) and its orthogonal complement

(L>*212(T?)) * are both closed subspaces of L?“(T?). Then the Direct Sum Theorem yields the decomposition (1).
Since &) (p) = 2¢(p) exhibits symmetry in its first two coordinates, and H,(0) corresponds to multiplication by (p),

the subspace L***>(T?), as well as (L**12(T?)) * is invariant for self-adjoint operator Hy(0). Taking into account the
identity

2cos Acos B +2cosC cos D = (cos A+ cos C)(cos B + cos D)
+ (cos A — cos C)(cos B — cos D), forany A, B,C,D € R,

from (4) one derives that

Voruf) () = ¢35 / fla)dg+ o (Cosm + cos p2) /TB(COS q1 +cosqz2) f(q) dg
8 o (cosp1 — cospa) /ﬂ‘3 (cosqy — cosgqz) f(q)dg
+ ;?(COS 2p1 + cos 2p2) /T3 (cos2qg1 + cos2q2) f(q) dg (6)
+ ;?(COS 2p1 — cos 2p2) /TS (cos2q1 — cos2q2) f(q) dg

A
+ 5 cosps / cos g3 f(q) dg + 5 COS2p3 / cos 2¢3 f(q) dg,
47 T3 T3

which implies that L***2(T?), and (L**2 (’}1‘3))l are invariant for V.5, and, hence, for H,,(0). Thus, (1) implies
the spectral decomposition (2).

Let us denote by V7 and HYj, (0) the corresponding restrictions of the operators V., and H., 5, (0) onto the subspace
L*®*12(T3), Then (6) implies that

(ijf) (p) = 8—;(cosp1 - cospg)/ (cosqr — cosqa) f(q)dg

T3

+ L?)(cos 2p1 — cos 2p2) / (cos2q1 — cos2q2) f(q) dg
8 T3
and
H;,(0) = Ho(0) + Vi
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3.2. The Lippmann-Schwinger operator

Let {1, o} be a system of orthonormal vectors in L2 (T3), with

i(p) = SHBIZEDE | (p) = Csdp_Cosps ()
By using the orthonormal system (7) one obtains
Vipf = A an)aa + p(f, az)as, @®)

where (-, -) denotes the inner product in L?**2(T?). For any z € C\ [0, 24], we define the Lippmann-Schwinger operator
(or its transpose, see, e.g., [38]) as:

Bii(ov Z) = _szRO(O’ 2)7
where Ry (0, z) := [H(0) — 2I]~! is the resolvent of the operator H(0).

Lemma 1. Given \,n € R, z € C\ [0, 24] is an eigenvalue of HY?,(0) with multiplicity m if and only if BSj,(0, z) has
an eigenvalue of 1 with multiplicity m.

Proof. Let \,;u € R. For z € R\ [0,24], the operator Ry(0,2) = [Ho(0) — 2I]~* is well-defined within the space
L*®12(T3), Therefore, the equation
H)e\i(O)(p =20, @€ L2,e,a12 (TS)

is equivalent to (Ho(0) — 21)¢ = — V¢, and further to
o =—ViRo(0,2)p, p € L3e212(T3),
This equivalence proves the above relationship between the eigenvalues. (]

Remark 1. Lemma I reduces the spectral analysis of the non-compact operator HYj, (0) o that of the compact operator
B53.(0, 2). Since Vi has a rank of at most two, BYj, (0, z) also has a rank of at most two. Consequently, the self-adjoint
operator HYj,(0) possesses at most two (real) eigenvalues in R \ [0, 24].

Equation (8) establishes the equivalence between the Lippmann-Schwinger equation,
BS.(0,2)p = o, ¢ € L¥*M2(T?), ©)
and the following algebraic linear system:
[1+ Aa11(2)]x1 + paia(z)ze =0,
Aag1(z)xy + [1+ page(z)]xe = 0,
where

a;j(2) == (04, Ro(0, 2)ej) =

%O‘j(i)dp, ij € {1,2}.

&o(p) —
T3
Let z € R\ [0, 24] and

1+ Aaq1(2) paie(2)
Aai2(z) 1+ paga(z)

The following lemma outlines the established relation between the operator HY,(0) and the function A, (-).

Axu(z) = det[I — B§;, (0, 2)] =

Lemma 2. Given \,u € R, a real number z € R\ [0,24] is an eigenvalue of HYj,(0) with the multiplicity m precisely
when it is a zero of Ay, (+) of the multiplicity m. Additionally, A, () has at most two zeros within the interval R \ [0, 24].

Proof. Assume that z € R\ [0, 24] is an eigenvalue of H}7,(0) with multiplicity m > 1, i.e. 1 is an eigenvalue of compact
operator BYj, (0, z) with the same multiplicity.

First, an eigenvalue 2 € R\ [0, 24] of H}7,(0) corresponds to 1 being an eigenvalue of the Birman-Schwinger operator
B7,(0, z), which implies A, (2) = 0 (see [37, Chapter XIIL.14]).

Since Bi‘}j(o, z) is compact operator of rank at most two, for any its isolated eigenvalue, its algebraic multiplicity
equals its geometric multiplicity (see [39, Chapter IV, Sections 3.1-3.5]). Furthermore, the multiplicity of a zero z of
the Fredholm determinant det(I — Bii((), z)) corresponds precisely to the algebraic multiplicity of the number 1 as an
eigenvalue of the compact operator Bf\Z(O, z), provided Bf\Z(O, z) depends analytically on z (for more details, see [39,
Chapter IV, Section 5.3]). Combining these results, one directly establishes that the multiplicity of 2 as an eigenvalue of
H7,(0) is identical to its multiplicity as a zero of Ay, (2).

Finally, the fact that Ay, (+) has at most two zeros in R\ [0, 24] follows directly from BY7, (0, z) being of rank at most
two. ]

The forthcoming lemma details the global properties and asymptotic expansions of a;;(z).
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Lemma 3. The functions a;;(z), ,j € {1,2} are real-valued and exhibit the following behavior:

581

(i) The functions a;;(2), i = 1,2 are strictly increasing and positive on (—o0, 0], and strictly increasing and negative

on [24, +00).
(ii) The equality

zggloo ij (Z> =0

holds forall v,j = 1, 2.
(iii) The limits a;;(0) = li}% a;;(z) and a;;(24) = li\r1214 a;;(2) both exist and satisfy the relations
aij(24) = (=1)"7a;;(0),
a11(0) >0, (122(0) >0, (lll(O)CLQQ(O) > a?Q(O)
(iii) The functions a;;(z) admit the following asymptotics:

aij(z) :aij(O) + O(*Z), z /l 0,
aij(z) =(=1) 1 [a;;(0) + O(z — 24)], 2\, 24.

Proof. The equality

(o3 « — « 2
a11(0)az2(0) —a%Q(O) = by / Ll %&q()p)gol(%) 2(z) dpdg

T3 XT3

(where a1,y are as in (7)), along with the monotonicity of the Lebesgue integral, directly implies a11(0)a22(0) —
a35(0) > 0. For the remaining statements of this lemma, a demonstration similar to Proposition 1 in [35] can be employed.

O

Lemma 4. For any A\, i € R the function Ay, (z) is holomorphic in z € R\ [0,24]. Furthermore, this function is real

analytic for z € R\ [0, 24] and possesses the following asymptotics:
@ ZEIEOO Axu(z) =1,
(i) i% Axu(z) = P (A ),
(i) lim Ay(z) = PT(A ),
where
PEO 1) = a[(AF Xo) (1 F o) — bl

and

a12(0)
a11(0)az2(0) — a3, (0) |

Ho =

a11(0)az2(0) — a3, (0)

are positive real numbers.

Proof. In view of Lemma 3, the proof is obtained by a simple inspection.

Lemma 5. In R2, the set of points satisfying P+ (\, 1) = 0 precisely forms the graph of the function

b
_>\:F)\Q

P (A) + po-
This graph consists of two isolated smooth unbounded simple connected curves:

o ={(\p) eR®:p=

b
+ po, £A < Ao},
AT Ao Ho 0}

i ={(\p) ER*:p=

b
+ o, £X < Ao}
AT Ao Ho o}

and separates the (\, p)-parameter plane into three unbounded, contiguous, and connected components:

(10)



582 M. O. Akhmadova, M. A. Azizova

Cy ={(\p) eR®:dp< + po, £A < Ao,
0

A - A

CF ={(\p) €R*: £p ¥ 0, X < Ao} U{(£)o, 1) € R2),

S

{(\p) eR?: £ + po, £A > Ao}, (11)

ST

CE={(\p) e R?: +pu > + po, £X> Ao}

b
A —Xo
The proof of Lemma 5 resembles that of Lemma 1 in [40].
4. Main results
4.1. Critical operators
To elucidate the mechanisms of eigenvalue birth and annihilation, we introduce the concept of a critical operator.

Definition 1. A parameter point (o, po) is lower-critical for HYj, (0) if the number of discrete eigenvalues below the
essential spectrum is non-constant in every neighborhood of ()Xo, 1o). Upper-critical points are defined analogously for
eigenvalues above the essential spectrum.

The following theorem characterizes criticality of the operator H /C\Z (0) through its interaction parameters.

Theorem 1. A parameter point (g, j1o) € R? is:
(i) Lower-critical for HY;,(0) iff P~ (Ao, to) = 0
(ii) Upper-critical for H33,(0) iff P*(Xo, po) = 0

The following theorem, establishes that the number of isolated eigenvalues of the operator H f{Z(O) lying above (resp.
below) its essential spectrum is constant within each connected component C;, (resp. C.f), a = 0,1, 2.

Theorem 2. Let C~ resp. C* be one of the open connected components C;, resp. Ct,ac = 0,1,2, of the (), i)-plane
defined in (11). Then for any (\, ;1) € C™ resp. (A, i) € C" the number of eigenvalues of H{7,(0), lying below resp.
above the essential spectrum remains constant (counting multiplicities).

Proof. Theorem 2 can be proved analogously to [36, Theorem 3.2]. (]

We will now determine the exact number of eigenvalues of the operator HYj,(0) lying below and above the essential
spectrum within the connected components CE and Czr, ¢(=0,1,2.

Theorem 3. Let A\, € Rand ¢ = 0,1,2. If (\,p) € C; (resp. (A, n) € CZ“) then the operator HY;,(0) has exactly ¢
eigenvalues lying below (resp. above ) its essential spectrum.

The next theorem demonstrates the exact number of eigenvalues of the operator H37,(0) that lie below and above the
essential spectrum within different unbounded smooth curves 7 and T; , ¢ =0, 1, respectively.

Theorem 4. Let A\, pp € Rand ¢ = 0,1. If (A, ) € 7¢ (resp. (A, p) € T;) then the operator HYj,(0) has C eigenvalues,
which lie below (resp. above) the essential spectrum.

Let us define the partitions {P; }2—o and {732' }2_ of the plane R*:
Pri=Crut, (=01 and Py :=C;.

Now, we present a criterion, based on the perturbation parameters A, u € R, detailing when the operator H5j,(0) has
exactly « eigenvalues in (—o0, 0) or (24, +00), « € {0, 1,2}.

Corollary 1. Let A\, ;1 € Rand ¢ € {0,1,2}. The operator HY;,(0) has exactly ¢ eigenvalues in (—o0,0) if and only if
(A, p) € P . Similarly, it has exactly  eigenvalues in (24, +00) if and only if (A, j1) € Pzr.

Let us define
gaﬁ :'PC;O’PE" OZ,BZO,LQ. (12)

Corollary 2. Let A\, i € R and the number o, 5 = 0, 1,2 satisfies « + 8 < 2. Then, Hﬁi(()) has « eigenvalues below
and [ eigenvalues above its essential spectrum if and only if (A, 1) € Gap.

Proof. Corollary 2 can be proved by combining Corollary 1 and (12). O
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The following theorem offers a lower estimate for the number of eigenvalues of the operator H., (K), K € T3,
dependent only on A, p.

Theorem 5. Let v, \,n € Rand o, f € {0,1,2}. If (A, it) € Gagp, then for each K € T3, the operator H.»,(K) has at
least o eigenvalues below and at least B eigenvalues above its essential spectrum.

Proof of Theorem 5. Theorem 5 can be proved as Theorem 3 in [40]. (I

5. Proof of the main results

Proof of Theorem 1. Due to symmetry, we only prove the statement for the upper threshold.
Assume that P™(\, y) = 0. Then Lemma 5 shows that (), i) € 7.5 for some o € {0, 1}, and any neighborhood of a
point (\, ;1) € 7.7 contains points from both C. and C. 1. Moreover, Lemma 4 states that:

lim Ayu(z)=1 and li\r‘1r214A>\M(z):P+()\,u).

z—+00

Since P (A, ) exhibits different signs within C; and C., | for each v = 0, 1, this implies that Ay, (-) has a different
number of zeros on (24, 4+00) in these regions. Consequently, by Lemma 2, the number of eigenvalues of Hy IL(O) lying
in (24, +00) is not constant in any neighborhood of (A, 12). This indicates that HyJ, (0) is critical at the upper threshold.
We now assume that H57,(0) is critical at the upper threshold for some (A, ) € R?2, and proceed to prove that
P+()\,u) = 0. Assume for contradiction, that P*(\, ) # 0. Then, Lemma 5 implies (A, ) € C for some a €
{0,1,2}. Since C; is an open set, there exists a neighborhood Us(\, ) € CI. Within this neighborhood U(;()\ i),
Theorem 2 ensures a constant number of eigenvalues of H M(O) lying above the essential spectrum and therefore HYj, (0)

is not critical at its upper threshold, leading to a contradiction.
O

Note that f’\Z(O) has at most two discrete eigenvalues. Let us denote these eigenvalues, arranged in increasing order,
by 21 (HX},(0)) and 25 (H (0)).
Lemma 6. (1) For each fixed 1 € R, the maps
A= 21 (HS5,(0)) and A= z(HY,(0))

are non-decreasing on R.
(i1) Analogously, for each fixed \ € R, the maps

pr 21 (HYG(0))  and e 2o (HSG(0))
are non-decreasing on R.

Proof. (i) Let 4 € R be fixed and A\; < Ay be an arbitrary real numbers. Then, the representation (8) and the inequality
A1 < Ag imply that
( /\1;L( )w w) ( Azu(0)¢’¢) = (Al - A2)(¢’041)2 < 07 ie.
( )\1,u( )77[’ 1:[]) ( )\2#(0)’1/}7’1/})3 V’IZJ € L2,e7a12(r]r2).

For each n = 1, 2, the last inequality leads that

H 0)) := su inf
zn (H33,,(0)) : ¢1,...,¢n_1e£2,eva12(ir2) we[%”_’%_l}{”w:l( H3E,(0)9,4)
< sup inf ( )\2#( )¢ ¢) - Zn(H)\g,u(O))

1yeebn_1€L2212(T2) YE[P1,.,Pn_1]t, [[P]]=1

(ii) For every fixed A € R, the case of u € R — 2z, (H}7,(0)), n = 1,2 can be proved similarly. O
Proof of Theorem 3. We’ll prove the “plus” case, as the "minus” case follows a similar logic and its proof is omitted for
brevity.

Let us start the proof with the case a = 1 and assume that (A, u) € Cf . From (10) and (11), we deduce that

P\ p) = al(X = Xo)(p — po) — k] < 0.
Then, Lemma 4 demonstrates that
lim Ay,(z) =1and lim Ay,,(z) =PT(A\,p) <0
2N\24

z—~400

Since A, (-) changes sign on (24, +-00), it has at least one there. If there were more zeros, the endpoint sign changes
would require at least three, contradicting Lemma 2. Thus, A, (-) has exactly one zero in (24, +00), which Lemma 2
then implies to a unique eigenvalue of Hy7, (0) in the same interval.

Case o = 0. Assuming (A, u) € C0 , we have from (11) that

u<)\ o Ho and A < A, (13)
— Ao
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which implies Pt (), x1) > 0. Lemma 4 then allows us to obtain
lim Ay,(z) =1 and 1{‘11214 Au(z) = PT(\ p) > 0. (14)

z—+o0
Relation (14) and Lemma 2 imply that A, (z) possesses either zero or two zeros above the essential spectrum.
Assume, for contradiction, that there are two such zeros, z; (HY},(0)) and 22 (H}7,(0)), satisfying

24 < 2y (HS3(0)) < z(HS(0)). (15)

s
In other hand, (11) states that
(Mo, p) €Cf Vu e R.
Further, the inequality A\ < g in (13), the relation (15), and Lemma 6 yield

22(H33,,(0)) = 22(H;,(0)) > 24,

indicating that Hy ,(0) has at least two eigenvalues located in (24, +00), contradicting the previous result. Thus, for all
(A, 1) € Cy» HS2(0) lacks eigenvalues in (24, 400).
Take any (A, 1) € C5. Then, (10) and (11) provide the inequalities

P(A,M) :a[()‘_AO)(:U/_MO)_k] > 0; (16)
B> o, A> A0-
Using Lemma 4 and (16), we find that

zl'ﬂnoo Axu(z)=1 and Zli\11214 Axu(z) = PT(\p) > 0. (17)
Note that (Ao, 1) € C; and so H{?%,(0) has exactly one eigenvalue 21 (H ,(0)) > 24. Then the relation A > g in
(16) and Lemma 6 give that
21(H3,(0)) = 21 (HXG,(0)) > 24,
which yields that Hj,(0) has at least one eigenvalue in (24, +-00). Then, Lemma 2 implies that Ay, (-) has at least one
zero in (24, +00). On the other hand, (17) indicates that Ay, has the same sign at the endpoints of (24, +00); therefore,
it must possess an even number of zeros (counting multiplicities). Thus, HYj,(0) has exactly two (simple) eigenvalues

located in (24, 400). O

Proof of Theorem 4. The function (A, u) — ny (HS;,(0)) (resp. (A, p) — n_(HS},(0))) is continuous on each 7?;
(respectively, on each P.), for ¢ = 0,1,2, where, n (H5],(0)) (respectively, n_(Hj,(0))) denotes the number of
isolated eigenvalues of Hy7,(0) located in (24, +-00) (resp. (—00, 0)). This proves the assertion. O

Proof of Corollary 1. Let (X, ) € P . Then Theorem 3 implies that H? (0) has exactly a eigenvalues in (24, +00).
For the converse, assume Hy7, (0) has precisely « eigenvalues in (24, +00). We proceed by contradiction to establish
that (A, 1) € PF. Suppose (\, 1) ¢ P . Since {Py,P;",P5} forms a partition of R?, there exists 3 # a such that
(\p) € 77;. Theorem 3 then implies that H}7,(0) has exactly 3 # « eigenvalues above its essential spectrum, directly
contradicting our initial assumption. (]

6. Conclusion

This paper meticulously analyzed the spectral characteristics of the lattice Schrodinger operators, H.,, (), which
model two identical bosons on Z* with on-site and nearest-neighbor interactions. Our study of H.,y,(0) revealed an
invariant subspace where its restricted form, f{Z(O), depends only on A and u. To elucidate eigenvalue birth and annihi-
lation for H57,(0), we defined a critical operator and developed a detailed criterion in the A —  plane. This involved: (i)
deriving smooth critical curves that delineate the onset of criticality; and (ii) proving exact conditions for the existence of
precisely « eigenvalues below and (3 eigenvalues above the essential spectrum, with «, 8 € {0,1,2} and o + 5 < 2.
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