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ABSTRACT In this paper, we consider a family of Friedrichs models that arise in quantum mechanics and corre-
sponding to the Hamiltonian of a two-particle system on a one-dimensional lattice. The number, location, and
existence conditions of eigenvalues of this family were analyzed. An asymptotic expansion for the associated
Fredholm determinant in a neighborhood of the origin has been derived.
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1. Introduction

The Friedrichs model is among the most fundamental and classical frameworks in spectral theory and quantum
mechanics [1-3]. It was introduced by Kurt Friedrichs as a simplified model to investigate how discrete spectra may
become embedded in, or interact with, the continuous spectrum under perturbations. The Friedrichs model, also referred
to as the Friedrichs-Lee model, is a quantum mechanical framework describing the interaction between a discrete energy
level and a continuous spectrum. It is worth noting that the properties of the Friedrichs model find applications in various
fields, including the quantum field theory of unstable particles, non-relativistic quantum electrodynamics, and quantum
optics.

It should be noted that the Friedrichs model is among the most widely used and powerful theoretical tools for the
mathematical analysis of quantum decay, resonances, and energy leakage into the continuum in nanosystems [4]. This
model enables both analytical and numerical investigations of the stability of quantum dots, the lifetimes of resonance
states, energy exchange processes, and decoherence phenomena.

In [5], a family of Friedrichs models h,,(p), with u > 0 and p € (—;7]® of the generalized Friedrichs model
featuring a rank-one perturbation, associated with a two-particle system moving on a one-dimensional lattice, is studied.
The existence of a unique eigenvalue below the bottom of the essential spectrum of h,,(p) for all non-trivial values of p
is established under the assumption that %, (0) possesses either a threshold energy resonance (virtual level) or a threshold
eigenvalue. The threshold energy expansion of the Fredholm determinant associated with a family of the Friedrichs
models has also been derived.

In [6], a family H,,(p), © > 0, p € (—m; x| of the generalized Friedrichs model with perturbation of rank one,
associated with a system of two particles, moving on the one-dimensional lattice is considered. The existence of a unique
eigenvalue E(u,p), of the operator H,,(p) lying below the essential spectrum, is established. Moreover, for all p in a
neighborhood of the origin, the Puiseux series expansion of the eigenvalue E' (1, p) at the point © = p(p) — 0 is derived.
Furthermore, the asymptotic behavior of E(u,p) as 1 — +o0 is established.

In [7], a family of the generalized Friedrichs models H,,(p), 1 > 0, p € (—; 7] with the perturbation of rank one
is investigated. An absolutely convergent expansion for the eigenvalue at the coupling constant threshold is obtained. It is
shown that the form of this expansion crucially depends on whether the lower edge of the essential spectrum corresponds
to a threshold resonance or a threshold eigenvalue.

In the present paper, we consider a family of Friedrichs models hf;’) (k), depending on the parameters i,y > 0 and
k € (—m; 7] with the rank-one perturbation associated to a system of two arbitrary or identical quantum mechanical
particles moving on the one-dimensional lattice. Here we note that the kinetic part of hfﬂ) (k) contains a parameter y > 0
and differs from the above-mentioned works in this respect. One of the important aspect of studying such type Friedrichs
models is that they describe the Hamiltonian for systems of both bosons and fermions (see, for example, [8—11]). It is
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important that when considering three particle model Hamiltonian on a lattice, the role of two-particle discrete Schrodinger

operators is played by a family of Friedrich’s models [12—14]. For each fixed number v > 0, it is proved that there exists
I . 0 .0 . . . .

a critical point s such that for any p € (0; LL,Y] the Friedrichs model hfﬂ)(O) has no negative eigenvalues, and for any

e ( /Jg; +00) the Friedrichs model hfj) (0) has a unique simple negative eigenvalue. For any fixed ;1 > 0 and v > 0 we

study the expansion for the Fredholm determinant Agﬂ) (k; z) associated to hf;’) (k) with respect to the spectral parameters
k and z.

2. Statement of the problem

Let T be the one-dimensional torus and Lo (T) be the Hilbert space of square integrable (complex) functions defined
onT.
For any fixed p > 0 and v > 0, we consider a family of Friedrichs models h,(]) (k), k € T, acting in the Hilbert space
Lo (T), given by
WD (k) = b (k) -

where h((ﬁ) (k) is the multiplication operator by the function E., (k;

+( )
(16" (k) ) (@) = By (k) f (), f € La(T),
E (k,x) :=¢(k)+e(x) +ve(k+ ), e(z):=1--cosz,

and v is a non-local interaction operator:

(vf)(z) = sin(x) / sin(t) f(t)dt.
T

It is clear that the family of Friedrichs models hg’) (k), k € T is a linear, bounded and self-adjoint operator in Lo (T).

We note that in [15, 16], by analyzing the spectra of two Friedrichs models with rank-two perturbations, the existence
of eigenvalues located inside the spectrum, within the spectral gap, and below the bottom of the essential spectrum of the
tensor sum of these Friedrichs models has been established.

Throughout the paper, the notations o(-), 0ess(), 0p(+) and oqisc(+) are employed to represent the spectrum, the
essential spectrum, the point spectrum, and the discrete spectrum, respectively, of a bounded self-adjoint operator. For the
reader’s convenience, we provide the definitions of the essential and discrete spectra for a linear, bounded, and self-adjoint
operator A in a Hilbert space . The set of all isolated eigenvalues of finite multiplicity of the operator A is called the
discrete spectrum of the operator .A. The complement set o (A) \ gqisc(A) is called the essential spectrum of the operator
A.

The perturbation operator v corresponding to the unperturbed operator h(()’Y) (k) is a self-adjoint operator of rank one.
Hence, according to the Weyl theorem regarding the invariance of the essential spectrum under finite-rank perturbations,

the essential spectra of the operators hf]) (k) and héﬂ’) (k) coincide. It is evident that the unperturbed operator hg’) (k) has
a purely essential spectrum and the essential spectrum aess(hgw(k)) equals [m~ (k); M, (k)], where the numbers m., (k)
and M., (k) are defined by

m(k) :=min E,(k,z), M,(k) :=maxFE,(k, ).

z€eT zeT

Consequently, the essential spectrum oo (2 (k)) equals [m. (k); M., (k)], and does not depend on the parameter 11 > 0.

14

Notably, when k£ = 0 the following equality
UeSS(h/(])(O)) = [0;2(1 + )]

holds.
For any p,~v > 0 and k € T we define an analytic function A('Y)( -) (the Fredholm determinant corresponding to

the Friedrichs model hf])( ) in C\ [m~ (k); M, (k)] by
sin?(t) dt
E’Y(ka t) -

The following lemma is a straightforward consequence of the Birman-Schwinger principle and the Fredholm theorem.

AE])(k:;z) =1—pu

Lemma 2.1. Let 1,7 > 0 and k € T be fixed. The Friedrichs model h,(])(k:) has an eigenvalue z,~(k) € C\
[m (k); M, (k)] if and only ifAf])(k i 2u~(k)) = 0.

Lemma 2.1 thus yields the following equality
oaisc(hy) (k) = {z € C\ [, (k); M, (k)] = A (k;2) = 0}

n
for the discrete spectrum of hﬁj) (k).
At this point, we specify the number and location of the eigenvalues of the Friedrichs model hiﬂ) (k).
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Lemma 2.2. For any fixed pi,y > 0 and k € T, the Friedrichs model hﬁﬂ)(k) has at most one simple eigenvalue to the
left of m~ (k) and no eigenvalues to the right of M., (k).

The proof of Lemma 2.2 relies on the monotonicity of the function A,(;’)(k ;) over (—oo;m.(k)), the inequality
Af])(k ;2) > 1forall z > M, (k), and Lemma 2.1.

Since for any > 0 the function E, (-, -) has non-degenerate global minimum equal to zero at the point (0,0) € T?,
the following expansion

1 (0%E,(0,0) , _0°E,(0,0)  82E.(0,0) , ) )
Eq,(x,y)_2< 52 © +2 900y xy + By y)+o(:c)+o(y)

holds as x,y — 0. Hence, one can find positive constants C'y (), C2(y) > 0 and § > 0 for which the following estimates
Ci()(@® +9%) < By(w,y) < Ca(n)(@® +37),  (w,9) € (—6;0) x (=6;9), 2.1)

Ey(z,y) = Ci(y), (x,y) & (=0;0) x (=6;0) (2.2)
are valid. Using inequalities (2.1), (2.2), together with the asymptotic relation sin x ~ x as  — 0 one can easily see that
the following integral

sin?(t)dt
T B, (k,t)
is positive and finite for any v > 0 and £ € T. Thus, the Lebesgue dominated convergence theorem implies that
Afﬂ) (0;0) = llin}) Af]) (k;0), and, consequently, the function Afﬁ) (+;0) is continuous on T.
—

Set
2= e ([ 255)

This implies that A (0;0) = 0 if and only if s = 5.
We now examine the eigenvalues of the Friedrichs model hg*) (k) when k = 0.

-1

Theorem 2.3. Suppose v > 0 is fixed. When 1 € (0; u,oy], the Friedrichs model hEﬁ)(O) does not have any eigenvalues.

Whenever p > ,ug, the Friedrichs model hfﬂ) (0) admits single negative eigenvalue.
Proof. Assume p € (0; ME),]- To start, let us prove the following inequality
A(0:2) > A(030) = AT (050)
for all z < 0.
Since the function Al(j) (0;-) is monotonically decreasing on the interval (—oo;0), it follows that
. ( .
ADN052) > A (0;0)
for every z < 0.
Now, we turn to the proof of the inequality
A (050) = AR)(0;0)
for any p € (0; ug]. As a matter of fact, we have
) 22
t)dt t)dt
Af:’)(O;O) =1 *#/ & >1 *Mg/ & — A(YJ)(O;O).
T (1+7)e(t) T (1+7)e(?) Ha

Alternatively, using the definition of ug, we find

D0 ) — sin?(t)dt\ T [ sin?(t)dt
AMQ(O,O)—l—(H-W)(/T) /TW_O

Employing the definition of AE]) (0; ), we deduce that
i M(0: 2) =
. lim A(0;2) =1 (2.3)

and
lim A/(])(O; z) = AE])(O; 0).

z—0—

Since AE]) (0;z) > 0 for all z < 0, it follows from Lemma 2.1 that the Friedrichs model hff) (0) has no eigenvalues
in (—o0; 0) (see Figure 1).
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FIG. 1. An absence of the eigenvalue of hf])(O) for0 < p < ,ug.

Let us now assume that p > ,ug. It can be easily seen from simple calculations that

—1 —1
p>pd = p(p))  >1=1-p()) <0
The last inequality is expressed equivalently by the following relation

AP0 =1 [ TG <0

Since the function AL’” (0;-) is monotone decreasing on the interval (—oo;0) and A/(]) (0;2) < 0, it follows from
equality (2.3) that AL’” (0;-) has unique negative zero z,, ., (see Figure 2).

IAL‘"(()::)
ol

0 2(1+y)
’TN(,IL ‘l(h)

6 AY(0:0)

FIG. 2. An existence of the eigenvalue of hf]) (0) for p > ,ug.

According to 2.1 the number z,, ~ is an eigenvalue of the Friedrichs model hfﬂ) (0). g

3. Expansion for the Fredholm determinant

In this section, we obtain an asymptotic expansion for the Fredholm determinant, which is important in analyzing
the number of eigenvalues of the model operator corresponding to the energy operator of a system of three particles on a
lattice.

Now we formulate the main result of the present paper.

Theorem 3.1. Let 11,y > 0 be a fixed. The following expansion

2um(l+ 2y —+?) 2(1+7)
N (F-») = AD(O- H T 2 _ v 2
AD (k3 2) = AD(0;0) + e YL s 2+ 0K + 0(/]z])

holds as k — 0 and z — —0.
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Proof. Let§ > 0 be sufficiently small and T's := T\ (—d; ¢). We rewrite the function Afﬂ) (+;-) in the from Afj) (k;z) =
Aﬁ’l)(k i 2) + A&V’Q)(k ; z), where

in?(t) dt
A(W’l)(kz;z) =1—p SmAba ( ,
B 15 Ey(kit) — 2
[ sind(t)d
i t)dt
ACD (o) e / sin .
o ( 72) H Ev(k,t)—z

Since AE]’I) (+; 2) is an even analytic function on T for any z < 0, we have
,1 . _ ,1 . 2
APV (K 2) = APD(050) + O(k*) + O(|2]) (3.1
as k — 0 and z — —0. Using the relations
1
sink =k+O(k®), 1—cosk= §k2 + O(k*)

as k — 0, we obtain
5

2 L) e—
Agy ks z) = —2,u/
=5

t2dt

2
AT T okt (AT E—2 T O+ 00D

as k — 0 and z — —0. For the convenience, we rewrite the latter integral as

)

/ t2dt B
(1+7)k2 4+ 2vkt + (L + )12 — 22

)

25 fyk/ otdt
14y T4y (L )E2 29kt + (1 4+ 4)t2 — 22

(LR —2z/ dt
1+~ (1+7)k? + 29kt + (1 +4)t2 — 22
)

Now, we will analyze each integral in the previous equality. Evaluating the integral in the second summand, we obtain
s

/ 2tdt S P 46k
A+ 2+ 29kt + L+ N2 =22 T+~ 2] T (L +)k2 — 290k + (1 + )62 — 22
é

)

2k / dt
147 ) (T4+9)k2+2ykt + (1 +)t2 — 22"
5

Since
4v0k
14+ v)k? — 290k + (1 + )02 — 2z

as k — 0, from the comparison of the last expressions, we derive

log = O(k)

1+(

5

/ t2dt 25
(1+7)k2+ 29kt + (1 +9)t2 -2z 147~
-4

8
1+2y—9% , 2 )/ dt ,
B T k™= +0(k*) +0

as k — 0 and z — —0. Applying the identity
b

/i = i arctani — arctani
k2412 k| || k)’

a
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we obtain

[
2 29, 2 a
AR 29kt (L)t — 22 14y ) (t—i—ﬁk‘) NNy g

- ) L e
1 0+ =k §— Lk
T > arctan = Ll > + arctan T Cas >
L+ ameh — s ey L ek VaRk —
From the properties of the arctan function listed below
1 =
arctany + arctan— = —, y >0
y o 2
and arctany = O(y), y — 0, we conclude that
)
/ dt _
(1+7)k2 4+ 2vkt + (1 + )12 — 22
-5
142y — 2 2 1+2 2
( zrlj)’] T Z) — 2 ‘LO<\/(1J+r ;22_1+ Z)
v
¥ gl (1+7)\/<1+w>2k2_ﬁz gl gl
as k — 0 and z — —0. In view of the fact that
(1 +2y—7% , 2 ) T
— Z =
1+ ~)2 1+ 142 2
(1+7) T (L) Rk - e
Wﬂ k2 _ MZ +O(V=2)
(T4+9)2/1T+ 2y 2y +1 ’
we obtain
2um(1 42y — %) 2(1+7)
AT (K 2) == AD2(0;0 k2 — O(k?*) + O(v/~ 3.2
020k 2) = AT 0:0) + TS > TOR YOV 6D
as k — 0 and z — —0. The equalities (3.1) and (3.2) finalize the proof of the theorem. (]

Since Ag’) (0;0) = 0if and only if p = ,ug, it follows from Theorem 3.1 that the following assertion holds.

Corollary 3.2. Assume that v > 0 is fixed. If p = ug, then the following expansion

R R Y 142y

holds as k — 0 and z — —0.

2+ 0(k*) + 0(V/)z])

As a consequence of Corollary 3.2, the following estimates for Al(ﬁo) (k;0) are obtained.
Y

Corollary 3.3. Let v > 0 be a fixed parameter. If p = ug, then there exist the numbers C1(7),Ca(y) > 0 and 6 > 0
such that the inequalities

() C1 (k] < AR (k30) < Co(3)[l for any k € (~56);

(i) A (k50) > C1 () forany k € T\ (—3; 6)
are satisfied.

Conclusion. In the present paper, we investigate a class (family) of Friedrichs models that arise in quantum me-
chanical problem. It represents the energy operator (Hamiltonian) for a two-particle system defined on a one-dimensional
lattice. We analyze the number, distribution, and existence criteria for the eigenvalues associated with this family. As
the main result, we derive an asymptotic expansion of the associated Fredholm determinant in a neighborhood of the
origin. This asymptotic expansion, along with Corollaries 3.2 and 3.3, plays a crucial role in proving the infiniteness (re-
spectively, finiteness) of the number of eigenvalues lying below the essential spectrum of the corresponding three-particle
lattice model Hamiltonian. It should be noted that the results on the infinite number of eigenvalues of the three-particle
discrete Schrodinger operators and the corresponding model Hamiltonians are very important in quantum mechanics,
modern mathematical physics, and the spectral theory of operators. The eigenvalues correspond to bound states in the
quantum system. If the number of eigenvalues is infinite, then this means that there are infinitely many energy levels in the
system. In [17] it was shown that the number of eigenvalues of the three-particle discrete Schrodinger operator is infinite
in the case where the masses of two particles in a three-particle system are infinite.
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