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1. Introduction

The Friedrichs model is among the most fundamental and classical frameworks in spectral theory and quantum
mechanics [1–3]. It was introduced by Kurt Friedrichs as a simplified model to investigate how discrete spectra may
become embedded in, or interact with, the continuous spectrum under perturbations. The Friedrichs model, also referred
to as the Friedrichs-Lee model, is a quantum mechanical framework describing the interaction between a discrete energy
level and a continuous spectrum. It is worth noting that the properties of the Friedrichs model find applications in various
fields, including the quantum field theory of unstable particles, non-relativistic quantum electrodynamics, and quantum
optics.

It should be noted that the Friedrichs model is among the most widely used and powerful theoretical tools for the
mathematical analysis of quantum decay, resonances, and energy leakage into the continuum in nanosystems [4]. This
model enables both analytical and numerical investigations of the stability of quantum dots, the lifetimes of resonance
states, energy exchange processes, and decoherence phenomena.

In [5], a family of Friedrichs models hµ(p), with µ > 0 and p ∈ (−π;π]3 of the generalized Friedrichs model
featuring a rank-one perturbation, associated with a two-particle system moving on a one-dimensional lattice, is studied.
The existence of a unique eigenvalue below the bottom of the essential spectrum of hµ(p) for all non-trivial values of p
is established under the assumption that hµ(0) possesses either a threshold energy resonance (virtual level) or a threshold
eigenvalue. The threshold energy expansion of the Fredholm determinant associated with a family of the Friedrichs
models has also been derived.

In [6], a family Hµ(p), µ > 0, p ∈ (−π;π] of the generalized Friedrichs model with perturbation of rank one,
associated with a system of two particles, moving on the one-dimensional lattice is considered. The existence of a unique
eigenvalue E(µ, p), of the operator Hµ(p) lying below the essential spectrum, is established. Moreover, for all p in a
neighborhood of the origin, the Puiseux series expansion of the eigenvalue E(µ, p) at the point µ = µ(p) → 0 is derived.
Furthermore, the asymptotic behavior of E(µ, p) as µ → +∞ is established.

In [7], a family of the generalized Friedrichs models Hµ(p), µ > 0, p ∈ (−π;π]3 with the perturbation of rank one
is investigated. An absolutely convergent expansion for the eigenvalue at the coupling constant threshold is obtained. It is
shown that the form of this expansion crucially depends on whether the lower edge of the essential spectrum corresponds
to a threshold resonance or a threshold eigenvalue.

In the present paper, we consider a family of Friedrichs models h(γ)
µ (k), depending on the parameters µ, γ > 0 and

k ∈ (−π;π] with the rank-one perturbation associated to a system of two arbitrary or identical quantum mechanical
particles moving on the one-dimensional lattice. Here we note that the kinetic part of h(γ)

µ (k) contains a parameter γ > 0
and differs from the above-mentioned works in this respect. One of the important aspect of studying such type Friedrichs
models is that they describe the Hamiltonian for systems of both bosons and fermions (see, for example, [8–11]). It is
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important that when considering three particle model Hamiltonian on a lattice, the role of two-particle discrete Schrödinger
operators is played by a family of Friedrich’s models [12–14]. For each fixed number γ > 0, it is proved that there exists
a critical point µ0

γ such that for any µ ∈ (0;µ0
γ ] the Friedrichs model h(γ)

µ (0) has no negative eigenvalues, and for any
µ ∈ (µ0

γ ; +∞) the Friedrichs model h(γ)
µ (0) has a unique simple negative eigenvalue. For any fixed µ > 0 and γ > 0 we

study the expansion for the Fredholm determinant ∆(γ)
µ (k ; z) associated to h(γ)

µ (k) with respect to the spectral parameters
k and z.

2. Statement of the problem

Let T be the one-dimensional torus and L2(T) be the Hilbert space of square integrable (complex) functions defined
on T.

For any fixed µ > 0 and γ > 0, we consider a family of Friedrichs models h(γ)
µ (k), k ∈ T, acting in the Hilbert space

L2(T), given by
h(γ)
µ (k) := h

(γ)
0 (k)− µv,

where h
(γ)
0 (k) is the multiplication operator by the function Eγ(k; ·):

(h
(γ)
0 (k)f)(x) = Eγ(k, x)f(x), f ∈ L2(T),

Eγ(k, x) := ε(k) + ε(x) + γε(k + x), ε(x) := 1− cosx,

and v is a non-local interaction operator:

(vf)(x) = sin(x)

∫
T
sin(t)f(t)dt.

It is clear that the family of Friedrichs models h(γ)
µ (k), k ∈ T is a linear, bounded and self-adjoint operator in L2(T).

We note that in [15,16], by analyzing the spectra of two Friedrichs models with rank-two perturbations, the existence
of eigenvalues located inside the spectrum, within the spectral gap, and below the bottom of the essential spectrum of the
tensor sum of these Friedrichs models has been established.

Throughout the paper, the notations σ(·), σess(·), σp(·) and σdisc(·) are employed to represent the spectrum, the
essential spectrum, the point spectrum, and the discrete spectrum, respectively, of a bounded self-adjoint operator. For the
reader’s convenience, we provide the definitions of the essential and discrete spectra for a linear, bounded, and self-adjoint
operator A in a Hilbert space H. The set of all isolated eigenvalues of finite multiplicity of the operator A is called the
discrete spectrum of the operator A. The complement set σ(A) \ σdisc(A) is called the essential spectrum of the operator
A.

The perturbation operator v corresponding to the unperturbed operator h(γ)
0 (k) is a self-adjoint operator of rank one.

Hence, according to the Weyl theorem regarding the invariance of the essential spectrum under finite-rank perturbations,
the essential spectra of the operators h(γ)

µ (k) and h
(γ)
0 (k) coincide. It is evident that the unperturbed operator h(γ)

0 (k) has

a purely essential spectrum and the essential spectrum σess(h
(γ)
0 (k)) equals [mγ(k);Mγ(k)], where the numbers mγ(k)

and Mγ(k) are defined by

mγ(k) := min
x∈T

Eγ(k, x), Mγ(k) := max
x∈T

Eγ(k, x).

Consequently, the essential spectrum σess(h
(γ)
µ (k)) equals [mγ(k);Mγ(k)], and does not depend on the parameter µ > 0.

Notably, when k = 0 the following equality

σess(h
(γ)
µ (0)) = [0; 2(1 + γ)]

holds.
For any µ, γ > 0 and k ∈ T we define an analytic function ∆(γ)

µ (k ; ·) (the Fredholm determinant corresponding to
the Friedrichs model h(γ)

µ (k)) in C \ [mγ(k);Mγ(k)] by

∆(γ)
µ (k ; z) := 1− µ

∫
T

sin2(t) dt

Eγ(k, t)− z
.

The following lemma is a straightforward consequence of the Birman-Schwinger principle and the Fredholm theorem.

Lemma 2.1. Let µ, γ > 0 and k ∈ T be fixed. The Friedrichs model h(γ)
µ (k) has an eigenvalue zµ,γ(k) ∈ C \

[mγ(k);Mγ(k)] if and only if ∆(γ)
µ (k ; zµ,γ(k)) = 0.

Lemma 2.1 thus yields the following equality

σdisc(h
(γ)
µ (k)) = {z ∈ C \ [mγ(k);Mγ(k)] : ∆

(γ)
µ (k ; z) = 0}

for the discrete spectrum of h(γ)
µ (k).

At this point, we specify the number and location of the eigenvalues of the Friedrichs model h(γ)
µ (k).



588 T. Rasulov, G. Umirkulova

Lemma 2.2. For any fixed µ, γ > 0 and k ∈ T, the Friedrichs model h(γ)
µ (k) has at most one simple eigenvalue to the

left of mγ(k) and no eigenvalues to the right of Mγ(k).

The proof of Lemma 2.2 relies on the monotonicity of the function ∆(γ)
µ (k ; ·) over (−∞;mγ(k)), the inequality

∆(γ)
µ (k ; z) > 1 for all z > Mγ(k), and Lemma 2.1.

Since for any γ > 0 the function Eγ(·, ·) has non-degenerate global minimum equal to zero at the point (0, 0) ∈ T2,
the following expansion

Eγ(x, y) =
1

2

(
∂2Eγ(0, 0)

∂x2
x2 + 2

∂2Eγ(0, 0)

∂x∂y
xy +

∂2Eγ(0, 0)

∂y2
y2
)
+ o(x2) + o(y2)

holds as x, y → 0. Hence, one can find positive constants C1(γ), C2(γ) > 0 and δ > 0 for which the following estimates

C1(γ)(x
2 + y2) ≤ Eγ(x, y) ≤ C2(γ)(x

2 + y2), (x, y) ∈ (−δ; δ)× (−δ; δ), (2.1)

Eγ(x, y) ≥ C1(γ), (x, y) ̸∈ (−δ; δ)× (−δ; δ) (2.2)

are valid. Using inequalities (2.1), (2.2), together with the asymptotic relation sinx ∼ x as x → 0 one can easily see that
the following integral ∫

T

sin2(t)dt

Eγ(k, t)

is positive and finite for any γ > 0 and k ∈ T. Thus, the Lebesgue dominated convergence theorem implies that
∆(γ)

µ (0 ; 0) = lim
k→0

∆(γ)
µ (k ; 0), and, consequently, the function ∆(γ)

µ (· ; 0) is continuous on T.
Set

µ0
γ := (1 + γ)

(∫
T

sin2(t) dt

ε(t)

)−1

.

This implies that ∆(γ)
µ (0 ; 0) = 0 if and only if µ = µ0

γ .

We now examine the eigenvalues of the Friedrichs model h(γ)
µ (k) when k = 0.

Theorem 2.3. Suppose γ > 0 is fixed. When µ ∈ (0;µ0
γ ], the Friedrichs model h(γ)

µ (0) does not have any eigenvalues.
Whenever µ > µ0

γ , the Friedrichs model h(γ)
µ (0) admits single negative eigenvalue.

Proof. Assume µ ∈ (0;µ0
γ ]. To start, let us prove the following inequality

∆(γ)
µ (0 ; z) > ∆(γ)

µ (0 ; 0) ≥ ∆
(γ)
µ0
γ
(0 ; 0)

for all z < 0.
Since the function ∆(γ)

µ (0 ; ·) is monotonically decreasing on the interval (−∞; 0), it follows that

∆(γ)
µ (0 ; z) > ∆(γ)

µ (0 ; 0)

for every z < 0.
Now, we turn to the proof of the inequality

∆(γ)
µ (0 ; 0) ≥ ∆

(γ)
µ0
γ
(0 ; 0)

for any µ ∈ (0;µ0
γ ]. As a matter of fact, we have

∆(γ)
µ (0 ; 0) = 1− µ

∫
T

sin2(t) dt

(1 + γ)ε(t)
≥ 1− µ0

γ

∫
T

sin2(t) dt

(1 + γ)ε(t)
= ∆

(γ)
µ0
γ
( 0; 0).

Alternatively, using the definition of µ0
γ , we find

∆
(γ)
µ0
γ
(0; 0) = 1− (1 + γ)

(∫
T

sin2(t) dt

ε(t)

)−1 ∫
T

sin2(t) dt

(1 + γ)ε(t)
= 0.

Employing the definition of ∆(γ)
µ (0; ·), we deduce that

lim
z→−∞

∆(γ)
µ (0; z) = 1 (2.3)

and
lim

z→0−
∆(γ)

µ (0; z) = ∆(γ)
µ (0; 0).

Since ∆(γ)
µ (0; z) > 0 for all z < 0, it follows from Lemma 2.1 that the Friedrichs model h(γ)

µ (0) has no eigenvalues
in (−∞; 0) (see Figure 1).
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FIG. 1. An absence of the eigenvalue of h(γ)
µ (0) for 0 < µ ≤ µ0

γ .

Let us now assume that µ > µ0
γ . It can be easily seen from simple calculations that

µ > µ0
γ =⇒ µ(µ0

γ)
−1

> 1 =⇒ 1− µ(µ0
γ)

−1
< 0.

The last inequality is expressed equivalently by the following relation

∆(γ)
µ (0 ; 0) = 1− µ

∫
T

sin2(t) dt

(1 + γ)ε(t)
< 0.

Since the function ∆(γ)
µ (0 ; ·) is monotone decreasing on the interval (−∞; 0) and ∆(γ)

µ (0 ; z) < 0, it follows from
equality (2.3) that ∆(γ)

µ (0 ; ·) has unique negative zero zµ,γ (see Figure 2).

FIG. 2. An existence of the eigenvalue of h(γ)
µ (0) for µ > µ0

γ .

According to 2.1 the number zµ,γ is an eigenvalue of the Friedrichs model h(γ)
µ (0). □

3. Expansion for the Fredholm determinant

In this section, we obtain an asymptotic expansion for the Fredholm determinant, which is important in analyzing
the number of eigenvalues of the model operator corresponding to the energy operator of a system of three particles on a
lattice.

Now we formulate the main result of the present paper.

Theorem 3.1. Let µ, γ > 0 be a fixed. The following expansion

∆(γ)
µ (k ; z) = ∆(γ)

µ (0 ; 0) +
2µπ(1 + 2γ − γ2)

(1 + γ)2
√
1 + 2γ

√
k2 − 2(1 + γ)

1 + 2γ
z +O(k2) +O(

√
|z|)

holds as k → 0 and z → −0.
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Proof. Let δ > 0 be sufficiently small and Tδ := T\(−δ; δ). We rewrite the function ∆(γ)
µ (· ; ·) in the from ∆(γ)

µ (k ; z) =

∆(γ,1)
µ (k ; z) + ∆(γ,2)

µ (k ; z), where

∆(γ,1)
µ (k ; z) := 1− µ

∫
Tδ

sin2(t) dt

Eγ(k, t)− z
,

∆(γ,2)
µ (k ; z) := −µ

δ∫
−δ

sin2(t) dt

Eγ(k, t)− z
.

Since ∆(γ,1)
µ (· ; z) is an even analytic function on T for any z ≤ 0, we have

∆(γ,1)
µ (k ; z) = ∆(γ,1)

µ (0 ; 0) +O(k2) +O(|z|) (3.1)

as k → 0 and z → −0. Using the relations

sin k = k +O(k3), 1− cos k =
1

2
k2 +O(k4)

as k → 0, we obtain

∆(γ,2)
µ (k ; z) := −2µ

δ∫
−δ

t2dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
+O(k2) +O(|z|)

as k → 0 and z → −0. For the convenience, we rewrite the latter integral as
δ∫

−δ

t2dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
=

=
2δ

1 + γ
− γk

1 + γ

δ∫
−δ

2tdt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
−

− (1 + γ)k2 − 2z

1 + γ

δ∫
−δ

dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
.

Now, we will analyze each integral in the previous equality. Evaluating the integral in the second summand, we obtain
δ∫

−δ

2tdt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
=

1

1 + γ
log

∣∣∣∣1 + 4γδk

(1 + γ)k2 − 2γδk + (1 + γ)δ2 − 2z

∣∣∣∣
− 2γk

1 + γ

δ∫
−δ

dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
.

Since

log

∣∣∣∣1 + 4γδk

(1 + γ)k2 − 2γδk + (1 + γ)δ2 − 2z

∣∣∣∣ = O(k)

as k → 0, from the comparison of the last expressions, we derive
δ∫

−δ

t2dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
=

2δ

1 + γ
−

−
(
1 + 2γ − γ2

(1 + γ)2
k2 − 2

1 + γ
z

) δ∫
−δ

dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
+O(k2) +O(|z|)

as k → 0 and z → −0. Applying the identity
b∫

a

dt

k2 + t2
=

1

|k|

(
arctan

b

|k|
− arctan

a

|k|

)
,
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we obtain
δ∫

−δ

dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
=

1

1 + γ

δ∫
−δ

dt(
t+ γ

1+γ k
)2

+ 1+2γ
(1+γ)2 k

2 − 2
1+γ z

=

1

(1 + γ)
√

1+2γ
(1+γ)2 k

2 − 2
1+γ z

arctan
δ + γ

1+γ k√
1+2γ
(1+γ)2 k

2 − 2
1+γ z

+ arctan
δ − γ

1+γ k√
1+2γ
(1+γ)2 k

2 − 2
1+γ z

 .

From the properties of the arctan function listed below

arctan y + arctan
1

y
=

π

2
, y ≥ 0

and arctan y = O(y), y → 0, we conclude that
δ∫

−δ

dt

(1 + γ)k2 + 2γkt+ (1 + γ)t2 − 2z
=

(
1 + 2γ − γ2

(1 + γ)2
k2 − 2

1 + γ
z

)
π

(1 + γ)
√

1+2γ
(1+γ)2 k

2 − 2
1+γ z

+O

(√
1 + 2γ

(1 + γ)2
k2 − 2

1 + γ
z

)
as k → 0 and z → −0. In view of the fact that(

1 + 2γ − γ2

(1 + γ)2
k2 − 2

1 + γ
z

)
π

(1 + γ)
√

1+2γ
(1+γ)2 k

2 − 2
1+γ z

=

π
1 + 2γ − γ2

(1 + γ)2
√
1 + 2γ

√
k2 − 2(1 + γ)

2γ + 1
z +O(

√
−z),

we obtain

∆(γ,2)
µ (k ; z) := ∆(γ,2)

µ (0 ; 0) +
2µπ(1 + 2γ − γ2)

(1 + γ)2
√
1 + 2γ

√
k2 − 2(1 + γ)

2γ + 1
z +O(k2) +O(

√
−z) (3.2)

as k → 0 and z → −0. The equalities (3.1) and (3.2) finalize the proof of the theorem. □

Since ∆(γ)
µ (0 ; 0) = 0 if and only if µ = µ0

γ , it follows from Theorem 3.1 that the following assertion holds.

Corollary 3.2. Assume that γ > 0 is fixed. If µ = µ0
γ , then the following expansion

∆
(γ)
µ0
γ
(k ; z) =

2πµ0
γ(1 + 2γ − γ2)

(1 + γ)2
√
1 + 2γ

√
k2 − 2(1 + γ)

1 + 2γ
z +O(k2) +O(

√
|z|)

holds as k → 0 and z → −0.

As a consequence of Corollary 3.2, the following estimates for ∆(γ)
µ0
γ
(k ; 0) are obtained.

Corollary 3.3. Let γ > 0 be a fixed parameter. If µ = µ0
γ , then there exist the numbers C1(γ), C2(γ) > 0 and δ > 0

such that the inequalities
(i) C1(γ)|k| ≤ ∆

(γ)
µ0
γ
(k ; 0) ≤ C2(γ)|k| for any k ∈ (−δ; δ);

(ii) ∆(γ)
µ0
γ
(k ; 0) ≥ C1(γ) for any k ∈ T \ (−δ; δ)

are satisfied.

Conclusion. In the present paper, we investigate a class (family) of Friedrichs models that arise in quantum me-
chanical problem. It represents the energy operator (Hamiltonian) for a two-particle system defined on a one-dimensional
lattice. We analyze the number, distribution, and existence criteria for the eigenvalues associated with this family. As
the main result, we derive an asymptotic expansion of the associated Fredholm determinant in a neighborhood of the
origin. This asymptotic expansion, along with Corollaries 3.2 and 3.3, plays a crucial role in proving the infiniteness (re-
spectively, finiteness) of the number of eigenvalues lying below the essential spectrum of the corresponding three-particle
lattice model Hamiltonian. It should be noted that the results on the infinite number of eigenvalues of the three-particle
discrete Schrödinger operators and the corresponding model Hamiltonians are very important in quantum mechanics,
modern mathematical physics, and the spectral theory of operators. The eigenvalues correspond to bound states in the
quantum system. If the number of eigenvalues is infinite, then this means that there are infinitely many energy levels in the
system. In [17] it was shown that the number of eigenvalues of the three-particle discrete Schrödinger operator is infinite
in the case where the masses of two particles in a three-particle system are infinite.
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