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ABSTRACT Quantum random number generators are becoming mandatory in a demanding technological world
of high-performing learning algorithms and security guidelines. Our implementation, based on the principles
of quantum mechanics, enables us to achieve the required randomness. We have generated high-quality
quantum random numbers from a weak coherent source at the telecommunication wavelength. The entropy
is based on the time of arrival of quantum states within a predefined time interval. The detection of photons
by the InGaAs single-photon detectors and high-precision time measurement of 5 ps enables us to generate
16 random bits per arrival time, which is the highest reported to date. We have presented the theoretical
analysis and experimental verification of the random number generation methodology. The method eliminates
the requirement of any randomness extractor, thereby leveraging the principles of quantum physics to generate
random numbers. The output data rate averages 2.4 Mbps. The generated raw quantum random numbers are
compared with the NIST-prescribed Blum-Blum-Shub pseudo-random number generator and an in-house-built
hardware random number generator from FPGA, on the ENT and NIST platform.
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1. Introduction

In the present era, random numbers play a significant role in statistical analysis, stochastic simulations, cyber security
applications, gaming, cryptography and many others. Random numbers can be generated via two approaches: pseudo-
random number generators (PRNGs) [1], which rely on deterministic algorithms, and true random number generators
(TRNGs), which derive randomness from physical processes. While PRNGs risk predictability due to seed reuse or
algorithmic backdoors, TRNGs leverage physical entropy sources. Quantum random number generators (QRNGs), a
subset of TRNGs, exploit the inherent unpredictability of quantum mechanics to produce unbiased and irreproducible
outputs.

A random bit sequence is characterized by two fundamental properties, i.e., uniformity and unpredictability, of which
the latter is the most important. Uniformity is achievable by mathematical algorithms, however, for unpredictability, none
other than the inherent randomness of quantum mechanics can be trusted. Quantum random numbers can be generated
from several sources, for example, radioactive decay [2, 3], branching path [4], photon arrival times [5–9], quantum
vacuum fluctuations [10–14], laser phase fluctuations [15, 16], optical parametric oscillators [17], amplified spontaneous
emission [18] etc. Several optical QRNG schemes [19] have been proposed on the principle of time of arrival (ToA) of
photon. The arrival time of photon is considered as a quantum random variable and it can generate n random bits, where,
n depends on the precision of time measurement. Software [6, 7, 20] and hardware [21] approaches were investigated
to eliminate the bias and improve the quality of throughput from the time of arrival entropy. The authors in [8] showed
that when an external time reference is used, the raw random numbers are generated from the photon arrival in time bins
within the external time reference and are uniformly distributed in time. Hence, we can consider this quantum entropy
source to be one of the ideal candidates for TRNG.

In this paper, we have reported our work on QRNG based on ToA principle using an external time reference. We
have implemented the scheme using InGaAs detectors. We have used a different method for generating random numbers
and could extract 16 random bits per detection event. This is the highest reported entropy per detection event among
time-of-arrival based QRNGs. In our work, we have adhered to the quantum noise random number generator architecture
recommended by ITU-T X.1702 [22] and this is presented in Fig. 1. The raw data is extracted by performing a measure-
ment on a quantum state and we are deriving the random numbers from the data acquisition process. Minimum entropy
is accessed by estimating the implementation imperfections. The quantum state is prepared using an optical process and
the quantum measurement is based on the Poisson nature of photon detection by single-photon detector (SPD). Raw data
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is generated by digitizing the output from the SPD. Continuous monitoring of laser parameters, detector parameters and
amplitude of the quantum signal at the detector enables assessment of entropy for evaluation of quantum randomness
in the random number sequence. The implementation imperfections lead to an increase in the classical noise, therefore,
these are identified, continuously monitored and eliminated.

FIG. 1. Schematic of the quantum random number generator architecture. The process involves quan-
tum state preparation using a coherent source, photon detection via InGaAs single-photon detectors,
and continuous parameter monitoring to ensure entropy quality. Time-of-arrival measurements gener-
ate raw data, which undergoes direct processing and entropy verification to guarantee uniformity and
unpredictability. Post-processed bitstreams and essential parameters are displayed through a graphical
user interface (GUI) [22]

Section 2 of this paper explains the source of quantum randomness. In section 3, we have discussed the principle
of time of arrival along with its theoretical analysis and sources of bias in the implementation. Section 4 presents the
experimental setup and section 5 discusses the entropy estimation. Finally, we have concluded the work in section 6.

2. Source of randomness

The quantum randomness in the presented QRNG arises from the collapse of the coherent state during photon de-
tection. Since our QRNG method is based on the ToA principle, it is important to briefly discuss the coherent state
and present a mathematical description of the photon. The coherent state α is the quantum mechanical counterpart of
monochromatic light. It can be represented by amplitude and phase, α = |α| eiθ, where the complex number specifies the
amplitude in photon number units. The coherent state can be represented in Dirac notation as |α⟩. The wave function of a
highly attenuated laser state (coherent state) can be represented as a product of all the coherent states within the coherence
time,

|ϕ⟩ =
nc⊗
t=1

|αt⟩ (1)

where, nc is the number of time bins within the coherence time of the laser. The Fock-state representation of a coherent
state distributed over nc time bins can be written as

|ϕ⟩ =
∞∑
k=0

√
Pk

(
1

√
nc

nc∑
t=1

a†t

)k

|0⟩, (2)

where Pk = e−ncµ(ncµ)
k/k! is the Poisson probability of having k photons with mean photon number ncµ, and a†t is the

photon creation operator in the t-th time bin. This equation shows that each photon is in a superposition of all time bins,
and the collapse of the wavefunction upon detection gives rise to intrinsic quantum randomness.
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2.1. Photon statistics within a time segment

It is known that the photon number distribution of perfectly coherent light within a fixed time segment follows a
Poisson distribution [23]. Consider a beam segment corresponding to a predefined time segment with an average photon
count represented by µ = ϕT , where ϕ is the average optical flux. We divide the time segment into small time bins. It
is then demonstrated that the probability of finding n photons within a time segment (T ) containing N time bins follows
a Poisson distribution. Let the probability of detecting n photons within the time segment T be represented by P (n).
Consider the probability of finding n time bins containing 1 photon and N − n time bins containing no photons, which is
denoted as p1 and calculated as p1 = µ/N . This probability is given by a binomial distribution,

P (n) =
N !

n!(N − n)!
pn1 (1− p1)

N−n

=
N !

n!(N − n)!Nn
µn
(
1− µ

N

)N−n

.
(3)

In the limit N → ∞, the probability is lim
N→∞

[P (n)] =
1

n!
µne−µ. Thus, the probability of finding n photons in the time

segment T follows a Poisson distribution, denoted as P (n). It is important to mention that we have considered ideal
detectors with 100% efficiency.

2.2. Quantum theory of photon detection

When conducting an experiment to leverage the Poisson nature of photon statistics of coherent light, we have to
consider the optical losses and imperfections in the devices. These are inefficient optics, absorption and imperfect detec-
tors. These lead to a random sampling of photons, which degrades the photon statistics. The quantum theory of photon
detection [23] establishes a connection between the photon count statistics recorded by the detector within a time segment
T and the photon statistics incident upon the detector. The variance in the photo count number is denoted by (△C)

2 and
the variance in the photon number is denoted by (△n)

2. The relationship between these two parameters is established by

(△C)
2
= η2 (△n)

2
+ η(1− η)µ. (4)

If the detector was perfect (i.e. η = 1), then the photon count statistics would have been equal to the photon statistics.
Consider a coherent source with (△n)

2
= µ and an imperfect detector, such as a PMT or SPAD. In this case, equation 4

becomes (△C)
2
= µη = C. Thus, the photo count statistics (C) and the photon statistics (µ) both follow the Poisson

distribution for all values of detection efficiencies.

3. Time of arrival generators

ToA-based QRNG systems encode the arrival time of photons. During the short time periods, the arrival of a photon
at the detector follows an exponentially distributed time, λe−µT . The time between the two arrivals is the difference
between two exponential random variables, which is also exponential. The randomness in the exponential distribution
can be converted to a uniform bit sequence using post-processing algorithms. Another approach to flatten the exponential
distribution is by taking short time bins from an external reference and considering the time of arrivals within those bins.
Nie et al. [8] have explained that when randomness is extracted from the arrival time, the generated random numbers are
biased. They have proposed a new method to generate uniform random numbers from photon clicks within a fixed time
duration (t, t + T ). The fixed time period is divided into small time bins with precision tmin. The time period is always
less than the dead time of the detector, allowing single detection. This method offers advantages of low bias and high
throughput compared to other methods of quantum random number generation.

3.1. Theoretical analysis

The photon flux, which is an average number of photons passing through a cross-section of a coherent beam, follows
a Poisson process. Precisely, a coherent beam with well-defined average photon number will exhibit photon number
fluctuation in a short time interval. This fluctuation occurs because we cannot predict the positions of these photons.
Consider a 1550 nm laser emitting 0 dBm of power, this will have an average flux of 7.78 × 1015 photons s−1. If we
apply 60 dB attenuation to this, the average flux will then be 7.7×109 photons s−1. We can interpret this as an average of
7.7 photons in the 1 ns time segment. Also, consider a time segment of 100 ps, corresponding to an average flux of 0.77.
To summarize, if the coherent beam is attenuated to an extent that the beam segment contains few photons, say, on an
average of 0.77 photons and we make measurements of some n samples, then, one can observe the random fluctuations in
the photon number. This comes from the fact that the stimulated emission in the semiconductor laser is inherently random.
Considering a time segment T , with mean photon number of µT , then the probability distribution of k photons arriving

in time interval T is given by P (k) =
e−λT(µT )k

k!
. The photon number follows a Poisson distribution. Hence, the time

interval between the arrival of consecutive photons also follows the Poisson process [6]. For λT = 0.1, there is 90.5%
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probability of detecting no photons, 9% of detecting single photons and finite probability of 0.5% of detecting multi-

photons in time segment T . The time period is divided into Nb time bins and each time bin is τi =

(
i− 1

Nb
T,

i

Nb
T

)
.

In the case of an ideal detector (η = 1), there would have been multiple clicks in T , and the first detection would be the
minimum value of the random variable representing photon arrival times. However, since the dead time of the detector is
more than T , there is a single detection in T . For a detection event, the conditional probability of getting a detection at
ith position, given k photons appear in period T , is given by P (i |k). It represents the probability of a detection occurring
at τi when k photons are present in a period,

P (i | k) = P (i, k) · P (T − τi, k = 0)

P (k)

=

e−λτi

(
λ
(

T−(i−1)T
Nb

−T−iT
Nb

))k

k! · e−λ(T−τi)

e−λT (λT )k

k!

=

(
1− (i− 1)

Nb
− 1− i

Nb

)k

=

(
1− (i− 1)

Nb

)k

−
(
1− i

Nb

)k

.

(5)

The probability distribution function of the arrival of a photon conditioned on the fact that only 1 photon is available
in the time period T is (substituting k=1 in equation 5)

P (i|k = 1) =
1

Nb
=

1

T/τ
=

τ

T
, (6)

which clearly shows that the photon arrival time is uniformly distributed across all Nb bins of the interval T and the

probability of a photon arriving at each time bin is
1

Nb
[8, 9]. In this expression, τ is the independent variable of the

probability distribution function. The probability density is given by
1

T
. Thus, the arrival time is uniformly distributed in

[0, T ].
We have used binary code to encode the time bins. In Fig. 2, we have presented different methods for implementing

time of arrival based QRNG. Wayne et al. [6] extracted random numbers by translating the time interval between detec-
tions into time bins. Nie et al. [8] generated raw quantum random numbers by considering time difference between the
photon click and an external time reference. The distribution of time difference between the photon click and the external
reference clock is approximately uniform. Yan et al. [9] have generated the highest-reported raw data bits of 128 Mbps
by measuring the time of arrival from a common starting point. They have converted each arrival time into sum of fixed
period and phase time. Thereafter, they have generated random numbers from the phase time. In this work, we address
the arrival time of photon differently; we have considered an external time reference for the generation of raw bits. We
have divided the external time reference T into NT divisions. The arrival time is given by

An = mod[Nb, NTi ], (7)

where Nb is the total number of random digits that we want to generate. We do not restrict ourselves to modular arithmetic;
rather, the purpose is to divide the time segment T into NT fragments, with each fragment equal to the precision of the
measurement device. These fragments are divided into Nb divisions to generate Nb random digits. The arrival of a photon
will randomly fall within the range 1 ≤ NTi

≤ NT . Thus, applying equation 7, we can prove that NTi
is uniformly

distributed in [0, T ) [6, 8]. Table 1 compares the proposed work with existing works.

TABLE 1. Comparison of the proposed QRNG with existing works on the basis of the nature of source,
detector, external reference clock, entropy per detection, precision of time measurement and throughput.
CS stands for coherent source

Reference Source Detector External reference clock Entropy Resolution Rate (Mbps)

[6] LED SiAPD — 5.5 5 ns 40

[8] CS SiAPD 40.96 ns 8 0.160 ns 109

[9] CS SiAPD 20 ns 8 20 ns 128

This work CS InGaAs 500 ns 16 0.005 ns 2.4
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FIG. 2. Timing diagrams for photon arrival time methods: (a) Wayne et al. [6] uses intervals ∆t1
between detections; (b) Nie et al. [8] employs an external reference clock (SS: start signal); (c) Yan et
al. [9] measures phase time relative to a fixed period; (d) Proposed method divides external reference T
into NT bins. Gray rectangles represent detection events, and dashed lines mark time bins

3.2. Source of bias

To quantitatively evaluate the randomness of the raw data, we need to model the system carefully and figure out the
facts that would introduce bias. There are a few major device imperfections to be examined.

(1) The laser intensity must remain constant. We have analyzed the number of detections per 101µs to validate that
the average photon count statistics is uniform. For an average photon number of 0.1 for 100 ns duration and
a 10µs detector dead time, there should be one detection every 10100 ns or 10 detections every 101µs. We
take 100 samples of 1010µs interval to validate the mean photon number (this sample size is enough to ensure
statistical confidence of photon statistics).

(2) Detector dark counts are random clicks in the absence of photons. Analyzing the effect of random noise from
dark counts mixed with random numbers generated from photon arrival times would be insightful. The dark
count rate (350–400 cps) is much less than the detection rate. Such negligible dark counts do not measurably
affect uniformity or bias in raw data.

(3) In one of our implementations, we have considered a dead time of 5µs, far greater than the duration of external
reference, which is 100 ns. The dead time can be considered as a drift [8] and it does not affect the quality of
random numbers.

(4) The probability for multi-photon emission from an attenuated continuous-wave (CW) laser is non-zero. If we
use detectors capable of distinguishing between multi-photon and single-photon events, we can discard the multi-
photon cases. This would reduce bias in the output. However, considering the mean photon number much less
than 1 significantly reduces the chances of multi-photon events.

4. Experimental analysis

The experimental setup is presented in Fig. 3. It comprises a distributed feedback laser (DFB) operated in continuous
mode with a wavelength of 1550 nm and an output power of 0.1 mW. We have two variable optical attenuators (VOAs) to
adjust the amplitude of the weak coherent source to the desired value. One of them is kept fixed and the other is altered
to achieve granularity. We have implemented SPD from CHAMPION Aurea in free-running mode. It has the flexibility
of adjusting at variable efficiencies, for example, 10%, 20% and 30%. The dead time can be configured to achieve the
required count rate for a specific efficiency. We have considered different values of Nb as 8, 100, 200, 256, 500 and 512
for an external clock of 100 ns. When we implemented the scheme with 500 ns clock reference, we have considered
65536 divisions and generated 16 bits per detection. This implies that each division is 7.6 ps. The jitter in the SPD is 180
ps, which ideally suggests that a division size greater than this period should be considered to mitigate timing uncertainty.
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In our current experiments, we did not implement larger division sizes, but we fully recognize this approach’s importance
and will incorporate it into future experiments to improve randomness quality. At 10% efficiency and 10 µs dead time,
the SPD recorded a dark count rate of 350-400 cps and a photon count rate of 90 Kcps, corresponding to a photon flux
at the input of approximately 9 × 106 cps (equivalent to −89 dBm optical power) with a mean photon count of 0.09. In
a separate experimental run with increased photon flux (achieved by adjusting the variable optical attenuator), the SPD
count rate reached 96 Kcps, corresponding to 2.4 × 107 cps at the input and a mean photon count of 0.24 (−85 dBm).
The adjustments in the optical attenuation settings between these runs were manual and static, not dynamically dependent
on input optical power. In continuous operation, we have considered the SPD count rate as 9 × 104 cps. Fig. 4 presents
the probability distribution of the generated random digits 1 to 256. We find that the throughput is almost uniform. We
converted this data to binary and then tested it on the NIST and ENT test platforms [24, 25]. The dataset used for these
tests comprised approximately 1 gigabit of raw quantum random data. At 5 µs dead time, we have considered a counting
rate of 150 Kcps. A field-programmable gate array (FPGA) (Zynq UltraScale+ MPSoC) does the post-processing of
the data. It also incorporates a time-to-digital converter (TDC) (TDC AS6501), which can respond to an external clock
reference from 2 MHz to 12.5 MHz. The TDC has an internal clock of 5 ps and can count till 500 ns. An external clock
reference with frequency 10 MHz in one implementation and 2 MHz in other implementation, with a jitter of 3 ps is used
as a reference clock and is edge synchronized with the TDC counter. The throughput at 150 Kcps count rate is 2.4 Mbps
(raw QRNG data) with 5µs dead time.

FIG. 3. Experimental setup

FIG. 4. Probability distribution for theoretical versus experimental values for 256 time bins with 90 Kb
of raw data

5. Entropy estimation

Entropy in the information-theoretic sense is a measure of the randomness or unpredictability of the outputs of an
entropy source. The larger the entropy, the greater the uncertainty in predicting the outcomes [26]. Estimating the amount
of entropy available from a source is necessary to determine how many bits of randomness are available. If a discrete
random variable X has n possible values, where the ith outcome has probability pi, then the Rényi entropy of order α is
defined as [27]



Unpredictable and uniform random number generation based on time of arrival... 603

TABLE 2. Results of ENT tests

ENT test item QRNG TRNG Ideal value

Entropy (bits per bit) 1.000000 1.000000 1.000000

Chi-square distribution 45 % 15.11 % 10 % ∼ 90 %

Arithmetic mean value 0.4997 0.5001 0.5000

Monte Carlo value for Pi 3.1515369080 3.142180307 3.1415926536

Serial correlation coefficient 0.000590 0.000088 0.000000

TABLE 3. Results of NIST tests

NIST test item
BBS QRNG TRNG

p-value p-value p-value

Frequency 0.816537 0.534146 0.213309

Block frequency 0.366918 0.122325 0.015598

Cumulative sums 0.955835 0.634146 0.851383

Runs 0.090936 0.739918 0.137282

Longest run 0.202268 0.534146 0.494392

Rank 0.202268 0.534146 0.383827

FFT 0.275709 0.350485 0.494392

Non overlapping template 0.764295 0.991468 0.883171

Overlapping template 0.455937 0.350485 0.779188

Universal 0.060806 0.213309 0.699313

Approximate entropy 0.971699 0.839918 0.739918

Random Excursions 0.534146 0.739918 0.186566

Random Excursions Variant 0.911413 0.457799 0.311542

Serial 0.739918 0.911413 0.779188

Linear complexity 0.145326 0.739918 0.289667

Hα(X) =
1

1− α
log2

(
n∑

i=1

pαi

)
, (8)

for 0 ≤ α ≤ ∞. As α → ∞, the Rényi entropy of X converges to the negative logarithm of the probability of the most
likely outcome, called the min-entropy,

H∞(X) = lim
α→∞

Hα(X) = − log2 max pi. (9)

The name min-entropy (H∞) stems from the fact that it is the smallest in the family of Rényi entropies. In this sense,
it is the most conservative approach to measuring the unpredictability of a set of outcomes or the randomness content of
a distribution. The standard Shannon entropy, which measures the average unpredictability of the outcomes, offers only
a rough estimation of randomness. On the other hand, H∞ is used as a worst-case measure of the uncertainty associated
with observations of X . It represents the best-case scenario for an adversary trying to guess an output from the noise
source. For H∞, pi represents the detection probability at the ith time bin and

H∞ = − log2 Pmax

log2 Nb
= 0.9971 (10)
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from the maximum frequency of 0.00397, which is higher than [8]. The maximum probability Pmax was computed as the
normalized frequency of the most populated time bin in the photon arrival histogram. As depicted by Fig. 4, the frequency
distribution is almost uniform and the experimental values are close to the theoretical values.

We tested the QRNG output using ENT program and NIST test suite. ENT program computes some important
statistical properties of the generated random bit-streams. It is a series of basic statistical tests that evaluate the random
sequence by some elementary features such as the equal probabilities of ones and zeros, the serial correlation, etc. Testing
results with ENT performed on a 1 GB dataset are presented in Table 2. The ENT test results indicate high-quality
randomness, with only slight variations in arithmetic mean and serial correlation. These small deviations are attributed to
residual classical noise sources. Each test in the NIST suite evaluates a p-value which should be larger than the significance
level. The significance level in the tests is α = 0.01. The test is considered successful if all the p-values satisfy 0.01 ≤
p-value ≤ 0.99. In the tests producing multiple outcomes of p-values, the worst outcomes are selected. Testing results
with NIST conducted on a 1 GB dataset are presented in Table 3. All the output p-values are larger than 0.01 and smaller
than 0.99, which indicates that the generated random bits well pass the NIST tests. ENT and NIST were selected for
initial validation due to their broad acceptance and comprehensive coverage of randomness properties. However, future
work will expand the analysis to include other test suites as well to further ensure the robustness of the QRNG output. We
have also compared raw quantum random numbers with the random numbers generated from NIST’s Blum-Blum-Shub
(BBS) algorithm and an in-house TRNG built from FPGA based on the asynchronous sampling of a ring oscillator.

6. Conclusion

We have designed and tested a practical high-speed QRNG based on the time-of-arrival quantum entropy from a CW
laser at telecommunication wavelength. This study is the first to explore time-of-arrival QRNG using InGaAs detectors.
These detectors have a greater dead time than silicon detectors, enabling us to increase the external reference time to 500
ns compared to previous values of 40.6 ns [8] and 20 ns [9]. We have implemented precision time measurement of 5 ps,
which is reported here for the first time. Hence, we could extract 16 bits of entropy from one photon arrival time. The
photon arrival time follows a Poisson distribution; an exponential waiting time introduces bias, which is overcome using
an external reference clock. We successfully generated uniform random numbers with high entropy, particularly min-
entropy always greater than 0.99 value. The method of time measurement of photons is simpler in implementation and
higher in precision time measurement than earlier works [6,8,9]. We propose that implementing the time-of-arrival QRNG
with InGaAs detectors and high precision time measurement will enable generating maximum entropy per detection event.
The proposed work can be used to generate higher throughput by increasing the duration of the external reference clock;
however, the increase in throughput will be linear. The proposed work also eliminates the need for any mathematical
algorithm to generate uniform output; thus, the random numbers produced are derived from the quantum behavior of
photons and are truly random.
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