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ABSTRACT Machine Learning Interatomic Potentials (MLIPs) promise to combine the accuracy of DFT with the
speed of classical force fields. However, their reliability for complex, multi-component systems requires rigorous
validation. Here, we perform a targeted evaluation of three leading universal MLIPs using niobium oxide
clusters (NbnOm, n ≤ 6, m ≤ 6) as a challenging test case. The Nb–O system is very well suited for this task
due to its complex electronic interactions, manifested in existence of the bulk phase with 25% vacancy-ordered
lattice and, at nanoscale, by a diverse range of non-stoichiometric clusters. We employ a dataset of global
minima structures identified via DFT-based evolutionary search as a strict reference. A comparative analysis is
then performed by executing evolutionary searches with the MLIPs. By directly comparing predicted structures,
energies, and relative stability, we provide a comprehensive assessment of the accuracy and limitations of
current universal potentials for modeling complex nanoscale oxides.
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1. Introduction

The rapid development of universal machine learning interatomic potentials (MLIPs) [1–3] has opened new avenues
for high-throughput materials screening and the modeling of complex processes. Trained on extensive datasets [4–8] com-
prising millions of structures, these potentials claim to predict energies and forces for a wide range of chemical systems
with accuracy close to that of the density functional theory (DFT) calculations, but at a fraction of the computational cost.
Despite the emergence of general metrics and rankings (such as Matbench Discovery [9]), the reliability of these poten-
tials for specific, particularly complex multi-component systems, remains questionable and requires rigorous validation
against well-characterized reference data.

In this work, we perform a targeted evaluation of three top-ranked universal MLIPs according to the Matbench Dis-
covery ranking (Summer 2025), using niobium oxide clusters (NbnOm) as a reference test system. The choice of this
system is motivated by a number of unique factors. Niobium monoxide (NbO) possesses a non-trivial crystal lattice
(space group Pm-3m), which is derived from the B1 (NaCl) structure type with 25% ordered vacancies in both sublat-
tices [10–13]. The stability of this vacancy-ordered crystal structure is due to complex electronic interactions involving
the formation of Nb–Nb bonds via delocalized d-electrons [13, 14]. At nanoscale, the phase equilibria of the Nb–O sys-
tem become even more complex: in processes such as magnetron sputtering, numerous clusters of diverse stoichiometric
composition (NbO, NbO2, Nb2O5, Nb3O7, and others) are observed [15–17], whose precise molecular structures have
long remained an unresolved problem. Thus, the Nb–O system serves as an excellent testing ground for MLIPs, as it
combines complex chemical bonding, a wide range of stoichiometries and sizes, as well as the presence of surfaces.

For this validation, we employ a previously curated reference dataset [18], generated via an exhaustive search for
the global energy minima of NbnOm clusters (n≤6, m≤6) using the USPEX evolutionary algorithm in combination
with DFT calculations. The first part of the paper briefly summarizes the results of the creation and characterization of
this reference dataset. In the second part, we conduct a large-scale comparative study by performing an evolutionary
structural search for the same set of clusters using the three selected universal MLIPs. Through a direct comparison of
the structures, energies, and predicted relative stability obtained by the DFT+USPEX and MLIPs+USPEX methods, we
provide a comprehensive assessment of the accuracy, reliability, and limits of applicability of modern universal potentials
for predicting the properties of complex nanoscale oxides.
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2. Models and methods

The evolutionary search for the thermodynamically most stable NbnOm clusters of a given composition was per-
formed using the USPEX package [19, 20]. USPEX has been successfully applied previously to determine the structures
of Sin [21], SinOm [20], (TiOn)n [22], CenOm [23], FenOm [23], BnPn [24], PdnBim [25], Al6CMn (M = Li, Na, K;
n = 2, 4, 6) [26], as well as Mgn clusters using other evolutionary algorithms [27], among others. The criterion for “natu-
ral selection” in USPEX was the lowest value of the total energy of the crystal/molecular structure. Although evolutionary
algorithms are effective in locating global and local minima on the potential energy surface, they require significant com-
putational resources. The set of investigated clusters included NbnOm compositions with 1 ≤ n ≤ 6 and 0 ≤ m ≤ 6.
The population size per generation was 20 clusters (plus the most stable configurations from previous generations). The
algorithm was terminated after 9 consecutive generations failed to yield a more stable structure. The initial population
was generated by randomly selecting point groups and creating structures based on them. Subsequent generations were
created based on the following ratio of variation operators: 50% heredity, 20% generation of random structures based on
space groups, and 30% mutation. The contribution of variation operators was subsequently automatically adjusted by the
program during the calculations to improve the performance of the evolutionary algorithm.

To create the reference set of structures, geometry optimization and total energy calculations for the NbnOm clusters
generated by USPEX were performed using the Density Functional Theory (DFT) method, as implemented in the VASP
package [28]. Spin-polarized calculations for the clusters were conducted using the Gamma-point approximation, with
a vacuum region of at least 12 Å separating the clusters. The exchange-correlation potential was described within the
Generalized Gradient Approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) parameterization. The plane-
wave basis set cutoff energy was set to 450 eV. The convergence criteria for the electronic self-consistent cycle and the
ionic relaxation cycle were set to 10−5 eV and 10−4 eV, respectively.

An analogous procedure for searching for the most stable NbnOm clusters was conducted using a combination of
USPEX and MLIPs. The initial plan was to use three potentials leading the Matbench Discovery ranking as of summer
2025: eSEN-30M-OAM [29], ORB v3 [30], and SevenNet [31]. However, because the developers of the eSEN-30M-
OAM potential denied access to this model, adhering to discriminatory restrictions against citizens of Russia, Belarus,
and China, we used another potential from the same developers – UMA [32]. Two UMA potential variants uma-m-
1.1 and uma-s-1.1 were used, differing in model size, performance, and forecast accuracy. From here on, the larger and
smaller models will be referred to as UMA(m) and UMA(s), respectively. Both potentials were applied with the parameter
task name = “omat”. In the case of the ORB v3 potential, the orb v3 conservative inf omat model was used as the most
accurate one within this family. For the SevenNet potential, the 7net-mf-ompa model was employed with the parameter
modal = “omat24”.

The Atomic Simulation Environment (ASE) library [33] was used as an interface for the selected MLIPs to perform
geometry optimization of the NbnOm clusters generated by the USPEX program. Since USPEX does not natively support
the ASE library, two primary solutions were possible. The first involved writing a custom interface between USPEX and
ASE. In this work, an alternative approach was implemented. Within the USPEX calculation parameters, the LAMMPS
program [34] was specified for geometry optimization and energy evaluation. The command to launch LAMMPS was
set to execute a custom Python script. This script performed the following steps: it converted the LAMMPS input files
generated by USPEX into ASE-compatible formats, executed the ASE calculation, and subsequently converted the ASE
output files back into the format of LAMMPS output files.

Atomic structure visualization of the clusters was performed using the OVITO program [35]. All graphs were gener-
ated using the matplotlib library [36].

3. Results and discussion

3.1. NbO nanoparticles generated by the USPEX and DFT

The search for stable NbnOm clusters that could be based on coordination polyhedra different from those found in
crystalline Nb3O3 and Nb4O4 polymorphs was conducted using the USPEX program. The evolutionary algorithm was
run once for each chemical composition with given n and m indices, without repeated runs, due to the high computational
costs and the long execution time of each calculation.

To illustrate the operation of the evolutionary algorithm, let us consider the study of Nb6O6 clusters as an example.
Fig. 1 shows the total energies of all optimized Nb6O6 clusters generated by the USPEX algorithm, excluding clusters with
very high total energy values. Horizontal lines separate configurations belonging to 13 sequentially generated populations,
arranged from bottom to top. The configuration with the lowest total energy in a given generation is highlighted with a
yellow circle. Configurations resulting from the action of heredity, random structure generation, and mutation variation
operators, as well as the best configurations from previous generations, are denoted by red, green, blue, and gray dots,
respectively. In the first generation, configuration number 13, characterized by an octahedral Nb atom framework, was
the most stable. In the second and third generations, more stable configurations were identified, including Nb frameworks
in the shape of a triangular prism or two tetrahedra sharing a common edge. Other even more stable clusters were not
found in the fourth generation. The most stable configuration, number 93, was discovered in the fifth generation, after
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which no new, more stable configurations were found. A total of 298 Nb6O6 configurations were investigated before the
evolution stopping criteria were met. A configuration based on random generation proved to be the most stable only in
the first generation, where other variation operators are not applied. Further reduction of the cluster’s total energy was
achieved by applying heredity and mutation operators to configurations obtained earlier. Nevertheless, random generation
was continued to explore the configuration space and introduce greater diversity into the NbnOm populations.

FIG. 1. Total energies of Nb6O6 clusters obtained during the USPEX evolutionary algorithm based on
DFT calculations

The configurations of the most stable NbnOm clusters for each of the investigated compositions are shown in Fig. 2.
All clusters are characterized by dense atomic packing and minimal surface area. Clusters with an equal number of Nb
atoms can be described by one or two types of Nb frameworks, to which O atoms are sequentially attached. For example,
clusters with two Nb atoms form a dimer surrounded by oxygen atoms. Clusters with three Nb atoms tend to form a
triangle of Nb atoms. Four Nb atoms in a cluster lead to the formation of a tetrahedral framework. For clusters with five
Nb atoms, the frameworks were either a triangular bipyramid or a distorted square pyramid, depending on the number
and position of the O atoms. Nb6Om clusters are characterized by an Nb atom framework forming either an octahedron
or two tetrahedra sharing a common edge. The most favorable positions for O atoms in most clusters are located above
the centers of Nb-Nb edges. A significant excess of oxygen leads to the formation of –O–O– bridges within the clusters,
which possess a high excess energy. Nevertheless, such “peroxide-containing” clusters were still found to be more stable
than the corresponding oxide clusters with the same number of atoms and individual O2 molecules. In general, clusters in
the studied size range tend to form symmetric or regular geometric configurations. It is likely that further growth in cluster
size will lead to a reduction in cluster symmetry and the formation of more amorphous structures, as has been observed
in other binary systems [22, 24].

A comparative study of the relative stability of clusters of different compositions was carried out using two descrip-
tors [20]: the disproportionation energy (Edisp) of two identical clusters with the transfer of one Nb or O atom from
one cluster to another, and the dissociation energy (Ediss) of a cluster into two fragments. Higher values of Edisp and
Ediss indicate greater stability of the cluster and a lower tendency for decomposition or disproportionation. The results
of the Edisp and Ediss calculations are shown in Fig. 3. Although the constructed Edisp and Ediss energy landscapes
differ, the positions of the most of their main maxima coincide. According to our results, the most stable clusters have
the compositions NbO, NbO2, Nb2O5, Nb2O6, and Nb4O6. The existence of NbO, NbO2, Nb2O5, and Nb2O6 clusters
has been previously registered experimentally, along with heavier clusters such as Nb3O7, Nb4O9, and Nb5O12 [15, 16],
which are beyond the scope of our study.

Edisp(Nb) = E(Nbn+1Om) + E(Nbn−1Om)− 2E(NbnOm) (1)

Edisp(O) = E(NbnOm+1) + E(NbnOm−1)− 2E(NbnOm) (2)

Edisp = min(Edisp(Nb), Edisp(O)) (3)

Ediss = min(E(Nbn−xOm−y) + E(NbxOy)− E(NbnOm)) (4)
An estimate of the probability of detecting different configurations of particles of the same composition was made

using the Boltzmann distribution as a thumb approximation. The corresponding distributions for the compositions Nb2O5,
Nb2O6, and Nb4O6 are shown in Fig. 4. The graphs for Nb2O5 and Nb2O6 compositions at temperatures 1500–3000 K
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FIG. 2. Structure of the most stable NbnOm clusters as a function of n and m indices, identified using
the USPEX evolutionary algorithm coupled with DFT calculations. Nb and O atoms are represented by
large orange and small blue spheres, respectively

FIG. 3. Comparative analysis of the thermodynamic stability of NbnOm clusters using the dispropor-
tionation energy, Edisp (left), and the dissociation energy, Ediss (right). Higher positive values indicate
greater cluster stability. DFT calculations

demonstrate the coexistence of several cluster configurations, with the most stable configuration being predominant. It is
quite probable that under the conditions of a high-temperature synthesis, several isomers of these clusters will coexist in
the medium. The opposite picture is observed for the Nb4O6 composition. Due to the significant energy gap between the
most stable cluster and the others, the most stable configuration, which possesses high symmetry, will dominate over the
entire temperature range, while other isomers are expected only in trace amounts.

3.2. NbO nanoparticles generated by the USPEX and MLIPs

MLIPs were used in conjunction with evolutionary algorithms to search for the most stable structures of NbnOm

clusters, mirroring the approach previously taken with the DFT + evolutionary algorithms combination. The settings
for the evolutionary algorithms remained unchanged. For the UMA(m) and SevenNet potentials, a single search without
repeats was performed for each composition. For the UMA(s) and ORB potentials, the evolutionary algorithm was run
three times to verify the reaching of the global minimum and to assess reproducibility. The structures of the clusters found
during the global optimization process with ORB v3 and UMA(m) are shown in Figures S1–S2.

The results of comparing the most stable structures predicted by the MLIPs with those found by DFT are presented
in Fig. 5. In the case of the UMA(m) potential, 25 out of 39 most stable NbnOm structures with a total number of atoms
between 3 and 12 match the DFT results. However, this potential is the most resource-consuming and computationally
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FIG. 4. Estimated probability of detecting different isomeric clusters using the Boltzmann distribution
for: Nb2O5 (top), Nb2O6 (center), and Nb4O6 (bottom)

“heavy” compared to the others. The UMA(s) potential demonstrates the lower resource demands and the higher calcu-
lation speeds but shows a notable deterioration in results: 16, 14, and 14 out of 39 structures found in each independent
run match the DFT results. When selecting the single most stable configuration from each set of three replicates, 14 out
of 39 structures remain correctly identified. The structures correctly predicted by UMA(s) are, for the most part, also
correctly predicted by UMA(m). The only exception is the Nb5O4 composition, where UMA(m) fails to find the most
stable configuration according to DFT calculations.

The ORB potential correctly identifies the most stable configurations for 25, 22, and 19 structures in the first, second,
and third independent runs, respectively. Combining the results from all independent runs and retaining only one most
stable structure per composition yields 22 out of 39 correct structures. However, if the most stable clusters from all three
replicates are considered together, they contain 28 out of 39 correctly identified configurations. The SevenNet potential
correctly identifies the most stable configurations for 19 out of 39 NbnOm compositions. This value is lower than that of
the ORB potential, and almost all compositions correctly predicted by SevenNet are also correctly predicted by ORB.

Consequently, the best results can be achieved by using the UMA(m) and ORB potentials jointly. Their combined
predictions allow for the correct identification of 29 out of 39 compositions. This value can be further increased by
considering not only the most stable configurations but also several energy-rich configurations. Notably, incorporating the
most stable configuration from three independent USPEX+ORB runs already elevates this count to 32 out of 39.

The most stable structures identified via DFT+USPEX were re-optimized using MLIPs. During structural relaxation
with MLIP potentials, structural rearrangements were observed in the following cases: ORB v3 – the Nb6 cluster adopts
an octahedral shape; SevenNet – the same process occurs for Nb6, along with structural changes in NbO6; UMA(m) –
modification of the NbO6 cluster; UMA(s) – opening of the Nb2O2 cycle and deformation of the Nb5 bipyramid into
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FIG. 5. Comparison of the most stable cluster configurations found using MLIPs and USPEX with the
corresponding results from DFT and USPEX. A “+” sign indicates structural agreement, while a “-”
sign indicates a discrepancy

FIG. 6. Energy difference between the most stable clusters found by USPEX+MLIPs and
USPEX+DFT. The global minimum structures found via the USPEX+DFT approach were re-
optimized and their energies were recalculated using the MLIPs (ORB v3 and UMA(m) models)
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FIG. 7. Cumulative fraction of configurations in the evolutionary search that differ in total energy by
no more than ∆E from the most stable configuration found

a planar configuration. In these cases, the total energy was taken from single-point calculations without relaxation. In
all other instances, only minor changes in bond lengths and angles were observed. The re-optimization with MLIPs was
performed to evaluate where the global minimum of the potential energy surface found via DFT is located on the MLIP
potential energy surface and how significantly it differs from the MLIP global minima. The total energy differences are
presented in Fig. 6 for ORB v3 and UMA(m), and in Figures S3–S4 for SevenNet and UMA(s). When the ∆E value
in Fig. 6 is positive, a more stable structure is identified on the MLIP potential energy surface than that found in the
USPEX+MLIP evolutionary search. A negative value indicates that such a configuration could have been discovered
during the USPEX+MLIP evolutionary search. For ORB v3 and UMA(m) potentials, the vast majority of ∆E values
do not exceed 0.1 eV/atom. In the case of SevenNet and UMA(s) potentials, the deviations can be more substantial,
indicating their lower accuracy.

Subsequently, an approximate estimation was performed for the fraction of configurations that lag in total energy by a
certain value ∆E from the most stable configuration. For this purpose, USPEX+ORB and USPEX+UMA(m) calculations
for Nb6O6, Nb5O6, and Nb4O6 compositions were arbitrarily selected. During the analysis, the “keep best” configurations
repeated every generation were removed from the sampling, but other possible duplicates were not eliminated. The results
are presented in Fig. 7. The obtained data indicate that the number of configurations with ∆E less than 0.1 eV ranges
between 5–10% of all configurations considered during the search. To accelerate the global minimum search for a given
composition, one can perform such a search using USPEX+MLIPs, followed by DFT geometric re-relaxation for the top
5-10% most stable configurations. However, even within this computational scheme, a significant time saving would be
achieved compared to pure DFT calculations for global minimum searches via evolutionary algorithms. Such a combined
approach – rapid screening of a large number of configurations using MLIPs followed by the selection of a small number of
the most stable candidates for re-evaluation with a more accurate DFT method – holds significant promise for discovering
new material phases with desired properties by substantially reducing research time.

4. Conclusion

Using the USPEX evolutionary algorithm in combination with DFT calculations, we have identified the thermody-
namically most stable structures of NbnOm clusters (1 ≤ n ≤ 6, 0 ≤ m ≤ 6). It was found that clusters with the same
number of Nb atoms can be described by one or two types of Nb frameworks, to which O atoms are sequentially attached.
The most stable compositions across the studied range were identified as NbO, NbO2, Nb2O5, Nb2O6, and Nb4O6.

Furthermore, a comprehensive assessment of four universal machine learning interatomic potentials (MLIPs) –
UMA(m), UMA(s), ORB and SevenNet – was performed. The results indicate varying levels of accuracy and computa-
tional cost. The UMA(m) potential demonstrated the highest accuracy, correctly predicting 25 out of 39 stable structures,
albeit with the highest computational cost. The ORB potential showed strong performance and accuracy close to the
UMA(m) potential. A synergistic approach, using the combined predictions of the UMA(m) and ORB potentials, allowed
for the correct identification of 32 out of 39 compositions.

This study confirms that while even the best universal MLIPs may not yet be perfectly reliable for standalone global
minimum search in complex systems like Nb–O clusters, they are highly valuable in a hybrid computational scheme. The
most promising strategy involves the rapid preliminary screening of a vast configurational space using MLIPs, followed
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by targeted re-evaluation of a limited number of low-energy candidates with high-precision DFT. This approach should
significantly accelerate the discovery of new molecular species and crystal phases.
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