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ABSTRACT This paper presents a detailed spectral analysis of the discrete Schrédinger operator H.,», (K),
which describes a system of two identical bosons on a two-dimensional lattice, Z?. The operator’s family is
parameterized by the quasi-momentum K < T2 and real interaction strengths: ~ for on-site, A for nearest-
neighbor, and 1 for next-nearest-neighbor interactions. A key finding of our study is that, under specific condi-
tions on the interaction parameters, the operator H.,,, (K) consistently possesses a total of seven eigenvalues
that lie either below the bottom or above the top of its essential spectrum, over all K € T?.
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1. Introduction

Lattice models constitute a fundamental framework within mathematical physics [1]. Among these, the lattice V-
body Hamiltonian provides a simplified representation of the corresponding Bose- or Fermi-Hubbard models, specifically
focusing on the dynamics of a limited number, N, of identical particles. These Hamiltonians remain an area of significant
research interest, particularly for low particle counts where 1 < N < 3, and the associated lattice /N-particle problems
have been subject to intense scrutiny over the past decades [2-9].

A compelling motivation for studying these lattice Hamiltonians is their intrinsic connection to continuous systems;
they naturally serve as a discrete approximation to the continuous N-body Schrodinger operators [10]. Formulating the
N-body problem on a lattice offers the distinct advantage of placing the analysis within the established theory of bounded
operators. It should be noted that the one-particle (N = 1) problem on a 1D lattice is largely addressed by the general
perturbation theory applicable to infinite Jacobi matrices (see, for instance, [11, 12]). The bound state energies of one-
and two-particle systems, situated in two adjacent 3D layers linked by a window, were numerically reported in [13].

Lattice N-body Schrodinger operators are essential models for systems describing N particles traveling through
periodic structures, exemplified by ultracold atoms injected into optical crystals [14, 15]. The study of ultracold few-atom
systems in optical lattices has been particularly active in recent decades due to the experimental control over critical
parameters, including temperature, particle masses, and interaction potentials (see, e.g., [15-19] and references therein).

It is well known that the celebrated Efimov effect [20] was initially attributed to three-particle systems in the three-
dimensional continuous space R>. A rigorous mathematical confirmation of the Efimov effect was established in [21-24].
Subsequently, it has been demonstrated that the Efimov effect also occurs in three-particle systems defined on lattices
[25,26]. Consequently, lattice three-body problems represent another significant domain for Efimov physics research [27].

Furthermore, lattice Hamiltonians find application in fusion physics. For example, [28] utilized a 1D lattice-based
Hamiltonian to successfully illustrate that arranging molecules of a specific type into a lattice structure can substantially
enhance their nuclear fusion probability.

In contrast to the continuous setting, the center-of-mass motion of an /N -particle system (/N > 2) on a lattice cannot be
fully decoupled. However, the inherent lattice translational invariance of the Hamiltonian permits the use of the Floquet-
Bloch decomposition. Specifically, for the (quasi)momentum-space representation of the /N-particle lattice Hamiltonian
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H, one can employ the following von Neumann direct integral decomposition (see, e.g., [2, Sec. 4]):

(&)
H o~ / H(K)dK, (1)
KeTa

where T¢ denotes the d-dimensional torus, K is the center-of-mass quasimomentum, and H(K) is referred to as the
fiber Hamiltonian. For each K € T¢, the entry H (K) operates within the functional Hilbert space associated with
TNV-14  The decomposition (1) effectively reduces the problem of studying the total Hamiltonian H to analyzing the
simpler fiber operators H(K). We observe that the dependence of H(K') on the quasimomentum K € T, although
non-trivial, is confined solely to the kinetic energy part and does not involve the (pairwise) inter-particle interaction terms
(see, e.g., [2,29]).

In this paper, we focus on the fiber Hamiltonians H.,,(K) on a 2D lattice, acting in the Hilbert space L*°(T?). The
Hamiltonian is defined as

H’YNL(K) = Ho(K) + Varus

where H((K) is the kinetic-energy operator and V/,y,, represents the interaction potential. The real parameters -, A,
and p describe interactions between particles at the same site, nearest-neighbor sites, and next-nearest-neighbor sites,
respectively.

The discrete eigenvalue problem for H.,,,(K) is complex, but the operator has at most seven eigenvalues outside the
essential spectrum, which is given by

Oess(Hyxu(K)) = [Qi (1 — cos I;),Zi (1 + cos I;)] .

The space L2’e(T2) can be decomposed into a direct orthogonal sum of invariant subspaces:
L2’e(T2) — L2,oos(-]r2) o L2,ees(1-2) @ L2,ea(r]r2).

This decomposition simplifies the spectral analysis of the full operator to studying its restrictions on these subspaces, as
shown by the equality

o (Hyxu(0)) = o (H;(0)) U o (HI5,(0)) U o (H5,(0)). 2)

Our primary objective is to find simple conditions on the parameters for which H.,,(0) possesses precisely seven
isolated eigenvalues. We then apply this result to determine the exact count of discrete eigenvalues for H., (K) over
all K € T?. This work extends previous results on the ground state of H,»,(K) by providing a more comprehensive
analysis of all eigenvalues.

In [30-35], similar spectral results were obtained for two-boson systems on d = 1, 2 lattices with on-site and nearest-
neighbor interactions governed by real parameters  and .

For a system of two identical bosons on a d-dimensional lattice 74 (d = 1, 2) with on-site (), nearest-neighbor
(), and next-nearest-neighbor (u) interactions, the discrete spectrum of the associated two-particle Schrodinger operator
H., 5, (k), k € T has been studied and determined the number and position of isolated eigenvalues for all values of the
interaction parameters in [36-39].

The paper is structured as follows. In Section 2, we introduce the two-particle lattice Schrodinger operator. Section
3 presents our main results, and the proofs are provided in Section 4.

2. Discrete Schrodinger operators on lattices
2.1. Schrodinger operator for particle pairs with fixed quasimomentum and its essential spectrum

Let T? be the 2D torus, and let L*(T?) denote the subspace of L?(T?) consisting of even functions.
For v, A\, € R and K € T3, the bounded and self-adjoint Schrodinger operator H,»,(K) describing interacting
particle pairs ( [2,35])is defined as:

Hoyzu(K) = Ho(K) + Vi

The unperturbed operator, Hy(K), acts as

(Ho(K)f)(p) = Ex(p)f(p),

where the dispersion function £k (-) is given by:

2
Ex(p) = QZ (1 —cos &t cosp;), p=(p1,p2) € T
i=1
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The perturbation operator V,, is given by

A
Vo) = 135 [ F@)da+ oz > cosms [ cosaif(a)dg ®

2
I
+t i z; cos pz/ cos2¢; f(q) dg

+ LQ COS P COS P2 / cos q1 cos g2 f(q) dg
2T T2

+ LQ sin p1 sin py / sin g1 sin g2 f(q) dq
27T T2

Since the interaction potential V., 5, has a rank of at most seven, it constitutes a compact perturbation to the kinetic-
energy operator Hy(K). According to Weyl’s theorem, such a perturbation does not alter the essential spectrum of the
operator. Consequently, the essential spectrum of the full operator H.,,, (K) is identical to the spectrum of the unperturbed
operator Ho(K):

Uess(H'yAu(K)) = U(HO (K))
This essential spectrum corresponds to the range of the kinetic energy function £k (p) over the domain p € T2, forming
the interval [Epin (K), Emax (K)]. The minimum and maximum energy values are given by:

2
Emin(K) =2 Z <1 — cos I;) > Emin(0) =0,

i=1
2 K
Emax(K) =2 ; (1 + cos 2) < Emax(0) = 8.
3. Main results
The following results summarize and extend the findings presented in [2, Theorems 1 and 2] and [35, Theorem 3.1].

Theorem 1. If, for some v, \, u € R, the operator H.,,(K) has at least n eigenvalues in (—00, Emin(K)) (o1, respec-
tively, (Emax(K),+00)), then for any quasi-momentum K € T?, the operator H.,(K) has at least n eigenvalues in
(—00,0) (or, respectively, (8, +00)).

This implies that the number of discrete eigenvalues observed at the zero quasi-momentum (K = 0) establishes the
sharpest possible lower bound (across all K € T?) for the total count of discrete eigenvalues of H. (K.
Our next findings detail the precise count of these discrete eigenvalues.

Theorem 2. Let K € T? and , \, u € R. The following assertions hold:
(i) If the coupling constants are sufficiently negative (y < —12, A < —12, and p < —12), then H,x,(K) features
exactly seven discrete eigenvalues positioned in (—o0, Enmin (K)).
(ii) If the coupling constants are sufficiently positive (y > 12, X\ > 12, and p > 12), then H.,»,,(K) features exactly
seven discrete eigenvalues positioned in (Epax(K), +00).
4. Proof of the main results
4.1. Invariant subspaces of the Schridinger operators H.,,,(0)
Lemma 1. The Hilbert space Lz’e(']IQ) admits the orthogonal decomposition
L2¢(T?) = L2°e5(T2) @ L2°%(T2) @ L2°9(T?), (4)
where
L2(T?) = {¢p € L*°(T?) : ¢(t1,t2) = p(ta, t1) = d(—t1,t2), Vi1, s € T}
L209(T2) = {§ € L2°(T2) : §(tr,ta) = Blta,t1) = —(—t1,12), Vt1, ts € T} )
L¥(T%) = {¢ € L*(T?) : §(t1,t2) = —o(t2, 1), Vtr,t2 € T}

Moreover, the action of the operator H.»,,(0) preserves the invariance of every subspace defined in (4) .

Proof. The definition (5) correspond to the standard decomposition of L?°(T?) into irreducible subspaces under the
action of the permutation group G,. Orthogonality of these subspaces follows from symmetry considerations, and their
direct sum exhausts L>°(T?). Since H.,,(0) commutes with permutations of variables, each subspace is invariant under
its action. O
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From Lemma 1 (ii) it immediately follows Eq. (2). Therefore, it suffices to independently analyze the eigenvalue
spectra of the restrictions of H.,y,(0) to the reducing subspaces L*°*(T?), L?**(T?), and L*°°5(T?) to obtain the
complete discrete spectrum of the total operator ., (0) on L?¢(T?).

4.2. The Lippmann-Schwinger operator

Let {a$°%, a5, a§%, a5°} € L?°*(T?), resp. {a§”, a5} C L**(T?) and {a$°*} C L*°°*(T?) be a orthonor-

mal system of vectors with

eee(p) _ 1 a;eS(p) _ cosp1+cosp2’ a;eS(p) _ cos 2py +cos 2p2 azes(p) __ COSpj COS P2

al - ﬂ’ 27 2 T ’ (6)
Oé‘l)os (p) _ sin pl;mpg , Oé‘ia (p) _ Cosp12fﬂ—cosp2 , aga(p) __ cos 2p127r00:> 2p2
We note that, the perturbation operator V5, can be expressed in terms of the orthonormal systems (6):
(V’Y)\Mf)( ) (f7 663) TGS (f7 668) €ees (f’ 663) 663 (f7 665) €ees (7)
_"_ §(f’ aia)aia + §(f’ a;a)aga + (f’ OOS) ?OS.
By applying the representation (7) of V,,, one concludes that
;g\su(o) = H’Y/\H(O)|L2,ees(’1r2) = HO(O) + ’)?iim
HE™(0) 1= Hyxg ()] oo oy = Ho(0) + V0,
Hiz(o) = H’YA#(O)|L2,ca(T2) = HO(O) V)\;n
where
xnd = Varu(0)] o ooy [ = (f7 ai®)ai® (f7 a5”)a5™
(j‘7 668) €ees (f’ 665) 6667
008 008 00s (8)
Vvu f= v)\u )’L:»,oos(']p)f = (fa ) )
ea ea lL ea ea
f - 'y)\u )|L2,oa(’]r2)f: §(faa1 )al +§(faa2 )a2 )

where (-, -) is the inner product in L*¢(T?).
The Lippmann-Schwinger operators corresponding to HIY,, H;°%, and HY), are defined for any 2 € C \ [0, 8] (and

YA
shown here in their transpose form, following, e.g., [41]) as:
'c;is,u(ov Z) = ';};ZRO(O’ Z)a

B;(0,2) = =V, Ry (0, 2),
BiZ(O, z)=-Vy ’RO(O z),
Here, Ro(0, z) := [Ho(0) — zI]~* represents the resolvent of the free operator Hy(0), defined for z € C \ [0, 8].

Lemma 2. Let v, A\, ;1 € R. The number z € C\ [0, 8] is an eigenvalue of the operator HSY; (0) (resp. H;%*(0) and

H{7.(0)), if and only if the number 1 is an eigenvalue for B15;,(0, ) (resp. B;?*(0, 2) and By, (0, 2)).
The lemma’s proof is standard, following well-known techniques (e.g., [40]), and is therefore omitted.

Due to the representation provided in (8), the eigenvalue equation
S:(0,2)p =, € L¥*(T?)
668)

can be transformed into the following algebraic linear system involving the component coefficients x; := (¢, 1=

1,2,3,4:

Y

)

[1 4 2va11(2)]x1 + Aa12(2)ze + pars(z)zs + para(z)zs =0
0,
2va13(2)x1 + Aags(2)xe + [1 + pass(2)]zs + pass(z)zs =0,

2va14(2)x1 + Aaga(2)xe + pasze(2)zs + [1 + pagsa(z)]zs =0
Analogously, the Lippmann-Schwinger equation BSj,(0,2)¢ = ¢, ¢ € L?*°%(T?) respectively B2%(0,2)p =

)
2va12(z)x1 + [1 4+ Aaga(2)]z2 + pags(z)xs + page(z)xy =
)

)

@, ¢ € L?°°%(T?) is equivalent to

[14 Ab11(2)]y1 + pbia(2)y2 = 0, cay
’ y (@7 )’ L= 17 2
Abi2(2)y1 + [1+ pbaa(2)]y2 = 0
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respectively
(14 pe(2))(p, a%%) =0,
where
1 [ af®(p)as=(p)p
aii(2) == [ T R =1,2,3,4
i) Q/Tz G-z
:*(p)as*(p)p
bii(z ::/ 7ﬂ, i,j=1,2, 9)
=3 e e - ’
c(z) _1/ (% (p))’ P
"2 e Eolp)— 2
Let us introduce the determinant functions Aiefu( z), i‘;(z), AZOS(Z) forz € R\ [0, 8]:
1+ 2va11(2)  Aaia(z paz(z pais(z

,effu(z) :=det[I — Bf;isﬂ((),z)] =
)\(123(2’

1+ paszs(z)  pasa(z

( ) ) )
2va12(2) 1+ daga(2) pass(2) Hagq(2)
2va13(2) ) ( )

) ) ) (

2va14(z Aag4(z JIENE 1+ paqgq(2)

(=) 1= det{] — BE(0, 2)] = L+ Xo1i(2)  pbia(2) ’ (10)

aulZ
)\blg(z) 1+ /ngg(z)
AL (2) i=det[I — B;*%(0, 2)] = 1+ pc(z).

We state the well-known lemma connecting the eigenvalues of the restricted operators H37%),(0), H,,°*(0), and HYj,(0)
to the zeros of the corresponding determinants.

Lemma 3. A number z € R\ [0, 8] is an eigenvalue of H3S,,(0) (resp. H,°*(0), HY7,(0)) with multiplicity m > 1 if and

YAp
only if z is a zero of ATY (2) (resp. Ay(2), A}, (2) ) with multiplicity m. Moreover, the maximum number of zeros in
R\ [0, 8] for ATY,(2), AL (2), and AT, (2) is four; one, and two, respectively.

The proof for this lemma follows from routine methods (see [35]), so we proceed without including it.

Theorem 3. For z € R\ [0, 8], the functions a;;(z) (i,j = 1,2,3,4) are real-valued. They are strictly increasing on
both (—00,0) (where they are positive) and (8, +00) (where they are negative). Additionally, they satisfy the following
asymptotic relations:

1
P e <
a;i(2) = T
i2) FOLLG ) <1>+ 1) 8
a;; 877 —a;; to(l), as =z ,

—pM
by (=) — bH) +o(1), as z /0,
by +o(l), as 238,
37T_8 o(1), as z /0,
c(z) = gﬂ_
+0(1), as z\8.

The functions In(—z) and In(z — 8) are understood to be the specific branches chosen to be real when z < 0 and z > 8§,
respectively. The coefficient matrices a'®) = (al(-?), aV = (agjl) (i,j = 1,2,3,4, ) and bV = (bgjl) (i,j = 1,2), are
given by

0 -1 -7+ 2 1
1 2 2 2 4 T
1 1 o744 p)
2 4 4 4 - ) B -
0) _ 1 _ T 2 s s
a'V = , aV =1 _ _ _ 88 e |,
9 4 4 4 T+ 2 T+ 2 1071'—!-3 2T 3
T
29 4 4 4 1 2 or — % -T+3
™ s ™ 2T
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Proof. Theorem 3 can be proven by adapting the proof of Proposition 4.4 in [35]. (]
Lemma 4. The asymptotic behavior of the real-valued functions A%Y, (z), A}, (2) and A} (2) is given by:

() lim AS(:) = lm ASL()= lm AT(z)=1;

(ii)

C(;\s ( ) = _ﬁ _('Y, )\,,u)ln(—Z) + D’y)\,u (1)’ as  z /‘ 07
T _ﬁQ—’_(’Yv )\,/J,)ZTL(—Z) + D'y)\p (1)’ as  z \‘ 8,

() _{1+ U\ 4 282291 G209 Ny 4 o(1), as 2 210,

VA - omy 26209 (32 97r) Mito(l), as 2\ 8,

s ™

1+ 371-_8,u—|—0(1), as z /0,
A%%3(z) = 37r3— <
1- gy nwto(l), as 2,8,
where
QF (1A ) = (v F ) (QF (WA F QF (1)) — 805 (1)
and

— 4(10-3
Qi () = 1858my2 5 4050 1 4,

Qli(u) . 2(16-57) 1% F 8= 217r'u +1.

™

Proof of Lemma 4. The proof is facilitated by the Lebesgue dominated convergence theorem (for the first part) and Propo-
sition 3 (for the final part). O

The following lemmas provide the exact count of the zeros for the determinant functions A}%(z), AY),(2), and

~au(2) outside the essential spectrum [0, 8].

Lemma 5. The following assertions hold for the determinant A7 (z):
(i) If p < =12, the function A}°*(2) has precisely one zero in (—0c0,0).
(ii) If p > 12, the function AOOS( ) has precisely one zero in (8, +00).

Proof. The result follows directly from [35, Theorem 4.5]. O

Lemma 6. The following assertions hold for the determinant A%, (2):

(i) If A < =12 and p < —12, the function AS;, () has precisely two zeros in (—00,0).
(ii) If A > 12 and pi > 12, the function AY),(z) has precisely two zeros in (8, +00).

Proof. The proof for Lemma 6 follows established techniques, such as those demonstrated in [37, Theorem 1] and [39,
Theorem 2]. O
Lemma 7. The following assertions hold for the determinant ASY,,(2):

(i) Ify < =12, A < =12, and ju < —12, the determinant function AZY, (2) has exactly four zeros in (—o0,0).

(ii) If vy > 12, A > 12, and p > 12, the determinant function AZY,,(2) has exactly four zeros in (8, +00).

Proof of Lemma 7. i) Lety < —12, A < —12 and p < —12. Assuming p is negative (1 < 0), the function
0(2) := 1+ paga(z)

—where a44(z) is defined in (9)—is continuous and strictly decreasing for z € (—o0,0). From the explicit definition of
a44 in (9) it follows that

lim §(z) =

Z—r—00

At the same time, the asymptotic expression for a44(z) in Proposition 3 implies that

il;% §(z) = —o0.

Therefore the function 6(z) = 1 4 pag4(z) has exactly one zero z1; within the half-axis (—oo, 0) and, thus,

14+ pags(z) >0 if 2z <z, (an
1—|—,ua44(z)<0 if z11 <z<0.
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Notice that the equality 1 4+ pag4(z11) = 0 implies that
AGe (z11) = (1 + pass(z11)) (1 + pasa(z11)) — p(asa(z11))?
= —p*(aza(211))? < 0. (12)
The inequality ;1 < —12 implies that
Q(0,0,p) = MDD gy 4 o2l > 0.

The inequality @~ (0,0, ) > 0 and Lemma 4 yield that

Jim_AG(2) =1, lim A5(2) = +oc. (13)
The relations (12) and (13) imply that
zgr_noo Afou(2) =1, AgGy,(211) <0 and ll}% AGG,,(2) = +oo.
This means that there exist real numbers zo; and z95 such that
291 < 211 < 299 < 0 (14)
and
AGou(221) = AGgy.(222) = 0. (15)
The equality (8) implies that the operator V{5, has rank at most two. Therefore, by the minimax principle, the
operator Hgg;, has at most two eigenvalues below zero. By the first statement in Lemma 3, the function AG (2) has at

most two zeros in R \ [0, 8]. Hence, and by (15) the function AGF, (2) has precisely two zeros (221 and zg2), lying in
(—00,0). Therefore

ARG (2) >0 if 2 < 2915
S%L(Z) <0 if 291 < 2z < 299 (16)
AS%SH(Z) >0 if z90 <2z<0.

The equalities A, (221) = Agp,, (222) = 0 yield the following relations

(14 pass(z01))(1 + pasa(221)) = p?(asa(221))* > 0,
(1 + pazz(z22))(1 4 pasa(z02)) =  p*(aza(222))? > 0.

Hence 1 + pass(z91) and 1 + pagq(z21) (resp. 1 4 pass(za2) and 1 + pagy(292)) have the same signs. Combining this
with (11) and (14) yields

7)

1+ pazs(z21) >0 and 1+ pa(z21) > 0;

1+ paszs(z22) <0 and 14 pagq(zae2) <O0. {19
For the roots z21 and z99 of
b (2) = (1 + pass(2)) (1 + pasa(z)) — pa3,(z) =0
we then have
V1 + pags(221)\/1+ pasa(zo1) = —paza(zo1) (19)
and
\/—[1 + pass(z22)] \/—[1 + paga(z22)] = —pase(za2). (20)
Using the explicit representation (10) for Ag‘f\su(z) and (19) one arrives with the following equality:
83;(221) = —/\M[\/ 1+ paga(z21)a23(z21) + /1 + ua33(2’21)a24(221)]2- (21)
Clearly, (21) implies that
Agisu(zgl) < 0. (22)

Analogously, the identity (20) gives that
2
ARy (222) = e[/ =1+ pasa(z22)]ass(z22) + V-1 + 2pass(222)]asza(z22)]” > 0. (23)
Meanwhile, for A < —12 va < —12 we have

Qo (w) = 1052 + A0 4 3 > 0

and

4(Q1 (1) —12Q7 (1)) = 1025y 4 2005128m, 45>,
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The above inequalities obeys that
Q7 (0, A ) = 4Q5 (1)(A +10) = 4(QF (1) = 12Q5 (1)) < 0.

Lemma 4 and inequality Q™ (0, \, ) < 0 give

ZLiIElOO oa(2) =1 and ll}% AgR(z) = —o0. (24)

Taking into account (22), (23) and (24) this implies there existence of real numbers z31, 232 and z33 such that
231 < 291 < 239 < 292 < 233 <0 25)

and

AR (231) = AGN(232) = AGR,(233) = 0. (26)

The equality (8) implies that the operator V;j\}, has rank at most three. Therefore, again by the minimax principle [42,

Theorem XIII.1], the operator H{y,, has at most three discrete eigenvalues. Then, Lemma 3 guarantees that the function
0ap(2) has at most three zeros in R \ [0, 8]. Given these bounds and established results, the function AgY), () is found

to have precisely three zeros (231, 232, and z33), all of which lie in the interval (—o0, 0).

Let
1+
An(z) —  det Ma33(z) Ma34(2) ’
pazs(z) 1+ pasa(z)
14+ A
Apa(2) = det az(z) - ponu(s) @7
Aag4(2) 1+ pags(2)
14\
A33(Z) = det GQQ(Z) Ma23(Z)
Aags(2) 1+ pass(z)
and
A
Aja(z) := det a23(2) Haza(2) , Agq(2) = det Hazs(2) Haz(2) ,
Aaga(z) 14 pagq(z) pnasa(z) 1+ pagq(2)
A 1+
Aua(e) o= det M40 TR0} ) e [ 1) el (28)
Aagq(2) pasa(z) 1+ pass(z)  pesa(z)
14+ A 1+ A
A23(Z) = det a22(z> Iua23(Z) y A32(Z) = det aQQ(Z) paza (Z)
Aaza(z)  pasa(z) Aags(z)  pasa(z)
The definition (28) implies that
pA12(2) = AMai(2),  pAia(z) = Mai1(2),  As(z) = Asa(2) (29)

From the definitions (27) and (28) one derives that

A11(2)Azz(2) — A13(2)Az1(2) = AGR,(2) - [1 + pass(2)],

Ar1(2)A22(2) — Ar2(2)A21(2) = AR, (2) - [1 + paaa(2)], (30)

Ag2(2) Asz(2) — A2s(2) As2(2) = AGRL(2) - [1 + Aazz(2)]
and

A11(2)A2(2) Azz(2) — A12(2) A3 (2)Az1(2) = Sisu(z)RM(z), (31)
where
Ryu(2) = [1+ Aagz(2)] - [1 + pass(2)] - [1 + paas(2)] — ApParz(z)aia(2)aza(z).
Then the equality AgY),(z31) = 0 and identity (30) resp. (31) imply that

Aq1(z31)As3(231) = A13(231)A31(231),

A11(231)A22(Z31) = A12(Z31)A21(Z31), (32)
Ago(231)As3(231) = Aas(231)As2(231)

resp.
All(Z)AQQ(Z)A33(Z) = Alg(z)Agg(z)Agl(Z). (33)



Two-particle Schrodinger Operators 745

It is worth noting that the functions 1 + pags(2) and 1+ paq4(2) both exhibit strict decrease on the interval (—oo, 0).
Then the relations z3; < 221 and (18) yield that

1+ pass(z31) > 14+ pass(ze1) >0 and 1+ paga(z31) > 14 paga(ze1) > 0. (34)
The inequality (34), the negativity of A, u and positivity of the functions as3, as4, as4 (See Proposition 3) yield that
A1a(231) = Aaos(231)[1 + pass(z31)] — Apaza(z31)asa(zs1) <0,
A13(231) = Apans(z31)asa(z31) — Aaza(z31) [1 4 pass(zs1)] > 0. (35)
The relations (29) and (32) yield that

MAZ, (2
A11(Z31)A33(231) = A13(Z31)A31(231) = M >0,
H (36)
(1A% (231)
Aq1(2z31)A22(231) = A12(231)A21(231) = — 0.

The inequalities (36) give that the numbers A11(231), A22(z31), As3(231) has the same signs. The relations (16) and
(25) yield that
Ar1(z31) = AR, (231) > 0, therefore  Agg(231) >0,  Aszz(231) > 0. 37
Then the relations (33), (35) and (37) obeys that
Aas(z31) < 0.
The equality (29) and inequalities A23(231) < 0, (35) imply that
A12(z31) <0, Aoi(z31) <0, (38)
Aos(z31) <0, Asae(z31) <0,
As1(z31) >0, Aiz(z31) > 0.
The equalities (29) and (30) give that

A%g(zsl) — M7 A§1(231) — M (39)
A35(231) = Aoa(z31)Ass(231),  Alx(z31) = Aoa(231)Ass(231)
A§1(231) _ uA11(231;A33(231)’ A%g('z:}l) _ AAH(ZM;ASS(ZSI)'

Taking into account the signs of the numbers A, ;(z31) in (38) and using the equality (39) we arrive that

Al (231) - _ />\A11(Z31,2A22(Z3L)’ A21(Z31) = —4/ F‘All(z31>)\A22(231),
Ass(231) = —\/Asa(231) Az (231),  Asa(z31) = —/Aaa(231) As3(231), (40)
Aszi(231) = M’ Ars(z1) = M_

We can represent the determinant ATY (2) in (10) as follow:

S (2) =1+ 27411 (2)]AGS, (2) — 27Aai5(2) A1 (2) 4 2ypara(2)ais(2) Ara(2) — 2ypa12(2)a1a(z) Ars(2)
+ 29ha13(2)a12(2) Aoy (2) — 2ypa3;(2) Ass(2) 4 2yuai3(2)ais(2) Ass(2)
— 2yAa14(2)a12(2) As1 (2) + 2ypa14(2)ars(2) Asa(2) — 2ypai,(2) Ass(z).

Using the above representation of the determinant ASY, (2), equality AgY),(z31) = 0 and (40) we find that

Su(z31) = — 2yAafs(231) Arn (231) — 2ypais(2s1) Asa(za1) — 2vpady(231) Ass(251)
- 4’7\//\MA11(2’31)A33 (2’31)6112(231)&14(231)
— dypar3(z31)a1a(2zs1) v/ Az (231) Ass (231) 41)
— dy\/ApA 1 (231) Aoz (231)a12(231)ars(231)

=— 2(6112(231)\/ YAA11(231) + a13(231) VY1 A22(231) + a14(231) ’Y,UA33(231))2-

The equality (41) and positivity of the function a2, a13, a4 gives that

Sau(z81) < 0. 42)

Combining the relation (16) with inequalities 251 < 232 < 2292 and 295 < z33 We arrive that

Aq1(z32) <0, Aga(z32) <0, Asz(z32) <0
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and
All(Z33) > 0, AQQ(Z33) > 0, A33(233) > 0.

respectively.
So, in a similar way we show that

AEJYC)\SM(Z32)

2
= 2(012(232)\/ —YAA11(232) + a13(232)/ — Y1 A22(232) + a14(232) *’WA33(232)) >0

and

'Cyc)\su (233)

2
= —2(&12(233)\/ YAA11(233) + a13(233) /Y A22(233) + a1a(233) ’WA33(233)) < 0.

The assertions v < —12, A < —12, u < —12 yield that
Q™ (1A 1) =(7+ 4)(Q5 (WA + Q1 (1) — 8Q5 (1) =
(7+12)(Q5 (WA + Q1 (1) = 8Q5 (WA +12) +8(11Q5 (1) - Q7 (1) > 0.
The relation Q™ (v, A, ) > 0 and Lemma 4 obeys that

zEIEloo AR, (z) =1 and ;1}1(1) AT (2) = +oo.
Therefore
Jlim ASRL(2) =1, ATR(z81) <0, AT, (232) > 0,
i‘i\su(z%) <0, 21}% Ai‘i\su(z) = 400.
The above relations yield there existence of four zeros z41, 242, 243, 244 Of function ,CYC/\SM(z), satisfying the following
inequalities
z41 < 231 < Z40 < 239 < 243 < 233 < 244 < O. 43)
The proof for item (ii) follows an analogous procedure. O
Proof of Theorem 1. The result is proven analogously to Theorem 3.1 in [35]. (]

Proof of Theorem 2. (i) Assume that v, A\, u < —12.
We first determine the number of bound states for X' = 0. Combining the results of Lemmas 5, 6, and 7 provides the
number of negative zeros for the corresponding determinants:

o A)%(z) has exactly one zero (Lemma 5).
o Af,(2) has exactly two zeros (Lemma 6).

A (2) has exactly four zeros (Lemma 7).

The decomposition (2) and Lemma 3 confirm that the total number of bound states for H.,,(0) with negative energy is
1+2+4=1.

Next, Theorem 1 ensures that for any K, the operator H., (K) possesses at least seven eigenvalues in (—oo, 0).
Since the rank of the perturbation operator V.5, (K) is at most seven, the min-max principle (see [42], page 85) dictates
that H,», (/) has at most seven isolated eigenvalues. Therefore, H.,, (K) must have precisely seven bound states in
(—00,0).

(ii) Suppose that v, A\, u > 12. The proof for Item (ii) is entirely analogous, relying on the corresponding assertions
for the zeros of the determinants lying in (8, +00). O

5. Conclusion

In conclusion, this article provides a comprehensive spectral analysis of the two-boson discrete Schrodinger operator
H,»,(K) with short-range interactions, including on-site (y), nearest-neighbor (), and next-nearest-neighbor (1) cou-
plings. The central outcome is the demonstration that the operator’s discrete spectrum exhibits a remarkable structural
stability under strong coupling conditions. Specifically, we have established sufficient conditions on the interaction pa-
rameters such that the operator possesses a total of seven bound states (eigenvalues), located either below (—oo,0) or
above (8, +-00) the essential spectrum, irrespective of the quasi-momentum K € T?.

Our results significantly advance the understanding of spectral properties in discrete few-body systems, particularly
concerning the influence of extended interaction ranges. Previous studies focusing on two-boson systems on a 2D lattice
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with interactions limited to on-site and nearest-neighbor sites [35] showed a maximum of only three eigenvalues. Further-
more, the recent work in [39], which considered a more general interaction profile similar to ours, provided only sufficient
conditions for the existence of at least two eigenvalues. In stark contrast, our work explicitly demonstrates that the full in-
clusion of next-nearest-neighbor coupling (u) is responsible for stabilizing and increasing the maximum possible number
of bound states to seven, providing easily verifiable criteria for this maximum count. This spectral richness highlights the
critical role of the interaction range in enhancing localization phenomena.

Despite these advancements, several challenges remain. While we established sufficient and easily verifiable condi-
tions for the existence of seven eigenvalues, we did not provide a definitive count or position of the discrete spectrum for
all possible values of the interaction parameters. A complete mapping of the (v, A, u)-space into regions corresponding to
exactly n € {0,1,...,7} eigenvalues is a complex, unsolved problem that requires further computational and analytical
methods.

Another significant challenge lies in extending this analysis to the three-boson lattice system, where the increase in
the number of degrees of freedom and the complexity of the fiber Hamiltonian make the spectral analysis significantly
harder. Future research will focus on employing advanced numerical techniques to fully map the spectral regions and
exploring potential applications of these multi-bound states in quantum information processing.
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