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ABSTRACT This paper presents a detailed spectral analysis of the discrete Schrödinger operator Hγλµ(K),
which describes a system of two identical bosons on a two-dimensional lattice, Z2. The operator’s family is
parameterized by the quasi-momentum K ∈ T2 and real interaction strengths: γ for on-site, λ for nearest-
neighbor, and µ for next-nearest-neighbor interactions. A key finding of our study is that, under specific condi-
tions on the interaction parameters, the operator Hγλµ(K) consistently possesses a total of seven eigenvalues
that lie either below the bottom or above the top of its essential spectrum, over all K ∈ T2.
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1. Introduction

Lattice models constitute a fundamental framework within mathematical physics [1]. Among these, the lattice N -
body Hamiltonian provides a simplified representation of the corresponding Bose- or Fermi-Hubbard models, specifically
focusing on the dynamics of a limited number, N , of identical particles. These Hamiltonians remain an area of significant
research interest, particularly for low particle counts where 1 ≤ N ≤ 3, and the associated lattice N -particle problems
have been subject to intense scrutiny over the past decades [2–9].

A compelling motivation for studying these lattice Hamiltonians is their intrinsic connection to continuous systems;
they naturally serve as a discrete approximation to the continuous N -body Schrödinger operators [10]. Formulating the
N -body problem on a lattice offers the distinct advantage of placing the analysis within the established theory of bounded
operators. It should be noted that the one-particle (N = 1) problem on a 1D lattice is largely addressed by the general
perturbation theory applicable to infinite Jacobi matrices (see, for instance, [11, 12]). The bound state energies of one-
and two-particle systems, situated in two adjacent 3D layers linked by a window, were numerically reported in [13].

Lattice N -body Schrödinger operators are essential models for systems describing N particles traveling through
periodic structures, exemplified by ultracold atoms injected into optical crystals [14,15]. The study of ultracold few-atom
systems in optical lattices has been particularly active in recent decades due to the experimental control over critical
parameters, including temperature, particle masses, and interaction potentials (see, e.g., [15–19] and references therein).

It is well known that the celebrated Efimov effect [20] was initially attributed to three-particle systems in the three-
dimensional continuous space R3. A rigorous mathematical confirmation of the Efimov effect was established in [21–24].
Subsequently, it has been demonstrated that the Efimov effect also occurs in three-particle systems defined on lattices
[25,26]. Consequently, lattice three-body problems represent another significant domain for Efimov physics research [27].

Furthermore, lattice Hamiltonians find application in fusion physics. For example, [28] utilized a 1D lattice-based
Hamiltonian to successfully illustrate that arranging molecules of a specific type into a lattice structure can substantially
enhance their nuclear fusion probability.

In contrast to the continuous setting, the center-of-mass motion of an N -particle system (N ≥ 2) on a lattice cannot be
fully decoupled. However, the inherent lattice translational invariance of the Hamiltonian permits the use of the Floquet-
Bloch decomposition. Specifically, for the (quasi)momentum-space representation of the N -particle lattice Hamiltonian
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H, one can employ the following von Neumann direct integral decomposition (see, e.g., [2, Sec. 4]):

H ≃
⊕∫

K∈Td

H(K) dK, (1)

where Td denotes the d-dimensional torus, K is the center-of-mass quasimomentum, and H(K) is referred to as the
fiber Hamiltonian. For each K ∈ Td, the entry H(K) operates within the functional Hilbert space associated with
T(N−1)d. The decomposition (1) effectively reduces the problem of studying the total Hamiltonian H to analyzing the
simpler fiber operators H(K). We observe that the dependence of H(K) on the quasimomentum K ∈ Td, although
non-trivial, is confined solely to the kinetic energy part and does not involve the (pairwise) inter-particle interaction terms
(see, e.g., [2, 29]).

In this paper, we focus on the fiber Hamiltonians Hγλµ(K) on a 2D lattice, acting in the Hilbert space L2,e(T2). The
Hamiltonian is defined as

Hγλµ(K) := H0(K) + Vγλµ,

where H0(K) is the kinetic-energy operator and Vγλµ represents the interaction potential. The real parameters γ, λ,
and µ describe interactions between particles at the same site, nearest-neighbor sites, and next-nearest-neighbor sites,
respectively.

The discrete eigenvalue problem for Hγλµ(K) is complex, but the operator has at most seven eigenvalues outside the
essential spectrum, which is given by

σess(Hγλµ(K)) =

[
2

2∑
i=1

(
1− cos Ki

2

)
, 2

2∑
i=1

(
1 + cos Ki

2

)]
.

The space L2,e(T2) can be decomposed into a direct orthogonal sum of invariant subspaces:

L2,e(T2) = L2,oos(T2)⊕ L2,ees(T2)⊕ L2,ea(T2).

This decomposition simplifies the spectral analysis of the full operator to studying its restrictions on these subspaces, as
shown by the equality

σ(Hγλµ(0)) = σ(Hoos
µ (0)) ∪ σ(Hees

γλµ(0)) ∪ σ(Hea
λµ(0)). (2)

Our primary objective is to find simple conditions on the parameters for which Hγλµ(0) possesses precisely seven
isolated eigenvalues. We then apply this result to determine the exact count of discrete eigenvalues for Hγλµ(K) over
all K ∈ T2. This work extends previous results on the ground state of Hγλµ(K) by providing a more comprehensive
analysis of all eigenvalues.

In [30–35], similar spectral results were obtained for two-boson systems on d = 1, 2 lattices with on-site and nearest-
neighbor interactions governed by real parameters γ and λ.

For a system of two identical bosons on a d-dimensional lattice Zd (d = 1, 2) with on-site (γ), nearest-neighbor
(λ), and next-nearest-neighbor (µ) interactions, the discrete spectrum of the associated two-particle Schrödinger operator
Hγλµ(k), k ∈ Td has been studied and determined the number and position of isolated eigenvalues for all values of the
interaction parameters in [36–39].

The paper is structured as follows. In Section 2, we introduce the two-particle lattice Schrödinger operator. Section
3 presents our main results, and the proofs are provided in Section 4.

2. Discrete Schrödinger operators on lattices

2.1. Schrödinger operator for particle pairs with fixed quasimomentum and its essential spectrum

Let T2 be the 2D torus, and let L2,e(T2) denote the subspace of L2(T2) consisting of even functions.
For γ, λ, µ ∈ R and K ∈ T3, the bounded and self-adjoint Schrödinger operator Hγλµ(K) describing interacting

particle pairs ( [2, 35])is defined as:
Hγλµ(K) := H0(K) + Vγλµ.

The unperturbed operator, H0(K), acts as

(H0(K)f)(p) = EK(p)f(p),

where the dispersion function EK(·) is given by:

EK(p) = 2

2∑
i=1

(
1− cos Ki

2 cos pi
)
, p = (p1, p2) ∈ T2.
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The perturbation operator Vγλµ is given by

Vγλµf(p) =
γ

4π2

∫
T2

f(q) dq +
λ

4π2

2∑
i=1

cos pi

∫
T2

cos qif(q) dq (3)

+
µ

4π2

2∑
i=1

cos 2pi

∫
T2

cos 2qif(q) dq

+
µ

2π2
cos p1 cos p2

∫
T2

cos q1 cos q2f(q) dq

+
µ

2π2
sin p1 sin p2

∫
T2

sin q1 sin q2f(q) dq.

Since the interaction potential Vγλµ has a rank of at most seven, it constitutes a compact perturbation to the kinetic-
energy operator H0(K). According to Weyl’s theorem, such a perturbation does not alter the essential spectrum of the
operator. Consequently, the essential spectrum of the full operator Hγλµ(K) is identical to the spectrum of the unperturbed
operator H0(K):

σess(Hγλµ(K)) = σ(H0(K)).

This essential spectrum corresponds to the range of the kinetic energy function EK(p) over the domain p ∈ T2, forming
the interval [Emin(K), Emax(K)]. The minimum and maximum energy values are given by:

Emin(K) = 2

2∑
i=1

(
1− cos

Ki

2

)
≥ Emin(0) = 0,

Emax(K) = 2

2∑
i=1

(
1 + cos

Ki

2

)
≤ Emax(0) = 8.

3. Main results

The following results summarize and extend the findings presented in [2, Theorems 1 and 2] and [35, Theorem 3.1].

Theorem 1. If, for some γ, λ, µ ∈ R, the operator Hγλµ(K) has at least n eigenvalues in (−∞, Emin(K)) (or, respec-
tively, (Emax(K),+∞)), then for any quasi-momentum K ∈ T2, the operator Hγλµ(K) has at least n eigenvalues in
(−∞, 0) (or, respectively, (8,+∞)).

This implies that the number of discrete eigenvalues observed at the zero quasi-momentum (K = 0) establishes the
sharpest possible lower bound (across all K ∈ T2) for the total count of discrete eigenvalues of Hγλµ(K).

Our next findings detail the precise count of these discrete eigenvalues.

Theorem 2. Let K ∈ T2 and γ, λ, µ ∈ R. The following assertions hold:
(i) If the coupling constants are sufficiently negative (γ < −12, λ < −12, and µ < −12), then Hγλµ(K) features

exactly seven discrete eigenvalues positioned in (−∞, Emin(K)).
(ii) If the coupling constants are sufficiently positive (γ > 12, λ > 12, and µ > 12), then Hγλµ(K) features exactly

seven discrete eigenvalues positioned in (Emax(K),+∞).

4. Proof of the main results

4.1. Invariant subspaces of the Schrödinger operators Hγλµ(0)

Lemma 1. The Hilbert space L2,e(T2) admits the orthogonal decomposition

L2,e(T2) = L2,ees(T2)⊕ L2,oos(T2)⊕ L2,ea(T2), (4)

where
L2,ees(T2) = {ϕ ∈ L2,e(T2) : ϕ(t1, t2) = ϕ(t2, t1) = ϕ(−t1, t2), ∀t1, t2 ∈ T}

L2,oos(T2) = {ϕ ∈ L2,e(T2) : ϕ(t1, t2) = ϕ(t2, t1) = −ϕ(−t1, t2), ∀t1, t2 ∈ T}

L2,ea(T2) = {ϕ ∈ L2,e(T2) : ϕ(t1, t2) = −ϕ(t2, t1), ∀t1, t2 ∈ T}.

(5)

Moreover, the action of the operator Hγλµ(0) preserves the invariance of every subspace defined in (4) .

Proof. The definition (5) correspond to the standard decomposition of L2,e(T2) into irreducible subspaces under the
action of the permutation group S2. Orthogonality of these subspaces follows from symmetry considerations, and their
direct sum exhausts L2,e(T2). Since Hγλµ(0) commutes with permutations of variables, each subspace is invariant under
its action. □
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From Lemma 1 (ii) it immediately follows Eq. (2). Therefore, it suffices to independently analyze the eigenvalue
spectra of the restrictions of Hγλµ(0) to the reducing subspaces L2,ees(T2), L2,ea(T2), and L2,oos(T2) to obtain the
complete discrete spectrum of the total operator Hγλµ(0) on L2,e(T2).

4.2. The Lippmann–Schwinger operator

Let {αees
1 , αees

2 , αees
3 , αees

4 } ⊂ L2,ees(T2) , resp. {αea
1 , αea

2 } ⊂ L2,ea(T2) and {αoos
1 } ⊂ L2,oos(T2) be a orthonor-

mal system of vectors, with

αees
1 (p) = 1

2π , αees
2 (p) = cos p1+cos p2

2π , αees
3 (p) = cos 2p1+cos 2p2

2π , αees
4 (p) = cos p1 cos p2

π ,

αoos
1 (p) = sin p1 sin p2

π , αea
1 (p) = cos p1−cos p2

2π , αea
2 (p) = cos 2p1−cos 2p2

2π .
(6)

We note that, the perturbation operator Vγλµ can be expressed in terms of the orthonormal systems (6):

(Vγλµf)(p) = γ(f, αees
1 )αees

1 +
λ

2
(f, αees

2 )αees
2 +

µ

2
(f, αees

3 )αees
3 +

µ

2
(f, αees

4 )αees
4 (7)

+
λ

2
(f, αea

1 )αea
1 +

µ

2
(f, αea

2 )αea
2 +

µ

2
(f, αoos

1 )αoos
1 .

By applying the representation (7) of Vγλµ one concludes that

Hees
γλµ(0) := Hγλµ(0)

∣∣
L2,ees(T2)

= H0(0) + V ees
γλµ,

Hoos
µ (0) := Hγλµ(0)

∣∣
L2,oos(T2)

= H0(0) + V oos
µ ,

Hea
λµ(0) := Hγλµ(0)

∣∣
L2,ea(T2)

= H0(0) + V ea
λµ,

where
V ees
γλµf := Vγλµ(0)

∣∣
L2,ees(T2)

f = γ(f, αees
1 )αees

1 +
λ

2
(f, αees

2 )αees
2

+
µ

2
(f, αees

3 )αees
3 +

µ

2
(f, αees

4 )αees
4 ,

V oos
µ f := Hγλµ(0)

∣∣
L2,oos(T2)

f =
µ

2
(f, αoos

1 )αoos
1 ,

V ea
λµf := Vγλµ(0)

∣∣
L2,ea(T2)

f =
λ

2
(f, αea

1 )αea
1 +

µ

2
(f, αea

2 )αea
2 ,

(8)

where (·, ·) is the inner product in L2,e(T2).
The Lippmann-Schwinger operators corresponding to Hees

γλµ, Hoos
µ , and Hea

λµ are defined for any z ∈ C \ [0, 8] (and
shown here in their transpose form, following, e.g., [41]) as:

Bees
γλµ(0, z) = −V ees

γλµR0(0, z),

Boos
µ (0, z) = −V oos

µ R0(0, z),

Bea
λµ(0, z) = −V ea

λµR0(0, z),

Here, R0(0, z) := [H0(0)− zI]−1 represents the resolvent of the free operator H0(0), defined for z ∈ C \ [0, 8].

Lemma 2. Let γ, λ, µ ∈ R. The number z ∈ C \ [0, 8] is an eigenvalue of the operator Hees
γλµ(0) (resp. Hoos

µ (0) and
Hea

λµ(0)), if and only if the number 1 is an eigenvalue for Bees
γλµ(0, z) (resp. Boos

µ (0, z) and Bea
λµ(0, z)).

The lemma’s proof is standard, following well-known techniques (e.g., [40]), and is therefore omitted.
Due to the representation provided in (8), the eigenvalue equation

Bees
γλµ(0, z)φ = φ, φ ∈ L2,ees(T2)

can be transformed into the following algebraic linear system involving the component coefficients xi := (φ, αees
i ), i =

1, 2, 3, 4 : 

[1 + 2γa11(z)]x1 + λa12(z)x2 + µa13(z)x3 + µa14(z)x4 = 0,

2γa12(z)x1 + [1 + λa22(z)]x2 + µa23(z)x3 + µa24(z)x4 = 0,

2γa13(z)x1 + λa23(z)x2 + [1 + µa33(z)]x3 + µa34(z)x4 = 0,

2γa14(z)x1 + λa24(z)x2 + µa34(z)x3 + [1 + µa44(z)]x4 = 0,

Analogously, the Lippmann-Schwinger equation Bea
λµ(0, z)φ = φ, φ ∈ L2,ea(T2) respectively Boos

µ (0, z)φ =

φ, φ ∈ L2,oos(T2) is equivalent to [1 + λb11(z)]y1 + µb12(z)y2 = 0,

λb12(z)y1 + [1 + µb22(z)]y2 = 0
, yi := (φ, αea

i ), i = 1, 2
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respectively
(1 + µc(z))(φ, αoos) = 0,

where

aij(z) :=
1

2

∫
T2

αees
i (p)αees

j (p)p.
E0(p)− z

, i, j = 1, 2, 3, 4,

bij(z) :=
1

2

∫
T2

αea
i (p)αea

j (p)p.
E0(p)− z

, i, j = 1, 2, (9)

c(z) :=
1

2

∫
T2

(αoos(p))
2 p.

E0(p)− z
.

Let us introduce the determinant functions ∆ees
γλµ(z), ∆

ea
λµ(z), ∆

oos
µ (z) for z ∈ R \ [0, 8]:

∆ees
γλµ(z) := det[I −Bees

γλµ(0, z)] =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + 2γa11(z) λa12(z) µa13(z) µa14(z)

2γa12(z) 1 + λa22(z) µa23(z) µa24(z)

2γa13(z) λa23(z) 1 + µa33(z) µa34(z)

2γa14(z) λa24(z) µa34(z) 1 + µa44(z)

∣∣∣∣∣∣∣∣∣∣∣∣
,

∆ea
λµ(z) := det[I −Bea

λµ(0, z)] =

∣∣∣∣∣∣1 + λb11(z) µb12(z)

λb12(z) 1 + µb22(z)

∣∣∣∣∣∣ , (10)

∆oos
µ (z) := det[I −Boos

µ (0, z)] = 1 + µc(z).

We state the well-known lemma connecting the eigenvalues of the restricted operators Hees
γλµ(0), H

oos
µ (0), and Hea

λµ(0)
to the zeros of the corresponding determinants.

Lemma 3. A number z ∈ R \ [0, 8] is an eigenvalue of Hees
γλµ(0) (resp. Hoos

µ (0), Hea
λµ(0)) with multiplicity m ≥ 1 if and

only if z is a zero of ∆ees
γλµ(z) (resp. ∆oos

µ (z), ∆ea
λµ(z) ) with multiplicity m. Moreover, the maximum number of zeros in

R \ [0, 8] for ∆ees
γλµ(z), ∆

oos
µ (z), and ∆ea

λµ(z) is four, one, and two, respectively.

The proof for this lemma follows from routine methods (see [35]), so we proceed without including it.

Theorem 3. For z ∈ R \ [0, 8], the functions aij(z) (i, j = 1, 2, 3, 4) are real-valued. They are strictly increasing on
both (−∞, 0) (where they are positive) and (8,+∞) (where they are negative). Additionally, they satisfy the following
asymptotic relations:

aij(z) =


−a

(0)
ij

ln(−z
32 )

8π
+ a

(1)
ij + o(1), as z ↗ 0,

a
(0)
ij

ln( z−8
32 )

8π
− a

(1)
ij + o(1), as z ↘ 8,

bij(z) =

{
−b

(1)
ij + o(1), as z ↗ 0,

b
(1)
ij + o(1), as z ↘ 8,

c(z) =


3π − 8

3π
+ o(1), as z ↗ 0,

−3π − 8

3π
+ o(1), as z ↘ 8.

The functions ln(−z) and ln(z − 8) are understood to be the specific branches chosen to be real when z < 0 and z > 8,
respectively. The coefficient matrices a(0) = (a

(0
ij ), a

(1) = (a
(1
ij ) (i, j = 1, 2, 3, 4, ) and b(1) = (b

(1
ij ) (i, j = 1, 2), are

given by

a(0) =


1 2 2 2

2 4 4 4

2 4 4 4

2 4 4 4

 , a(1) =



0
−1

4

−π + 2

π
− 1

π−1

π
−1

2

−2π + 4

π
− 2

π
−π + 2

π

−π + 2

π

−10π + 88
3

π

2π − 26
3

π

− 1

π
− 2

π

2π − 26
3

π

−π + 4
3

2π


,

b(1) =

 4− π

π

32− 9π

π
32− 9π

π

2(32− 9π)

π

 .
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Proof. Theorem 3 can be proven by adapting the proof of Proposition 4.4 in [35]. □

Lemma 4. The asymptotic behavior of the real-valued functions ∆ees
γλµ(z), ∆

ea
λµ(z) and ∆oos

µ (z) is given by:

(i) lim
z→±∞

∆ees
γλµ(z) = lim

z→±∞
∆ea

λµ(z) = lim
z→±∞

∆oos
µ (z) = 1;

(ii)

∆ees
γλµ(z) =

{
− 1

4πQ
−(γ, λ, µ)ln(−z) +D−

γλµ + o(1), as z ↗ 0,

− 1
4πQ

+(γ, λ, µ)ln(−z) +D+
γλµ + o(1), as z ↘ 8,

∆ea
λµ(z) =

{
1 + (4−π)

π λ+ 2(32−9π)
π µ+ (32−9π)

4π λµ+ o(1), as z ↗ 0,

1− (4−π)
π λ− 2(32−9π)

π µ+ (32−9π)
4π λµ+ o(1), as z ↘ 8,

∆oos
µ (z) =


1 +

3π − 8

3π
µ+ o(1), as z ↗ 0,

1− 3π − 8

3π
µ+ o(1), as z ↘ 8,

where
Q±(γ, λ, µ) = (γ ∓ 4)

(
Q±

0 (µ)λ∓Q±
1 (µ)

)
− 8Q±

0 (µ)

and

Q±
0 (µ) :=

16−5π
4π µ2 ∓ 4(10−3π)

3π µ+ 1
2 ,

Q±
1 (µ) :=

2(16−5π)
π µ2 ∓ 80−21π

3π µ+ 1.

Proof of Lemma 4. The proof is facilitated by the Lebesgue dominated convergence theorem (for the first part) and Propo-
sition 3 (for the final part). □

The following lemmas provide the exact count of the zeros for the determinant functions ∆oos
µ (z), ∆ea

λµ(z), and
∆ees

γλµ(z) outside the essential spectrum [0, 8].

Lemma 5. The following assertions hold for the determinant ∆oos
µ (z):

(i) If µ < −12, the function ∆oos
µ (z) has precisely one zero in (−∞, 0).

(ii) If µ > 12, the function ∆oos
µ (z) has precisely one zero in (8,+∞).

Proof. The result follows directly from [35, Theorem 4.5]. □

Lemma 6. The following assertions hold for the determinant ∆ea
λµ(z):

(i) If λ < −12 and µ < −12, the function ∆ea
λµ(z) has precisely two zeros in (−∞, 0).

(ii) If λ > 12 and µ > 12, the function ∆ea
λµ(z) has precisely two zeros in (8,+∞).

Proof. The proof for Lemma 6 follows established techniques, such as those demonstrated in [37, Theorem 1] and [39,
Theorem 2]. □

Lemma 7. The following assertions hold for the determinant ∆ees
γλµ(z):

(i) If γ < −12, λ < −12, and µ < −12, the determinant function ∆ees
γλµ(z) has exactly four zeros in (−∞, 0).

(ii) If γ > 12, λ > 12, and µ > 12, the determinant function ∆ees
γλµ(z) has exactly four zeros in (8,+∞).

Proof of Lemma 7. i) Let γ < −12, λ < −12 and µ < −12. Assuming µ is negative (µ < 0), the function

δ(z) := 1 + µa44(z)

—where a44(z) is defined in (9)—is continuous and strictly decreasing for z ∈ (−∞, 0). From the explicit definition of
a44 in (9) it follows that

lim
z→−∞

δ(z) = 1.

At the same time, the asymptotic expression for a44(z) in Proposition 3 implies that

lim
z↗0

δ(z) = −∞.

Therefore the function δ(z) = 1 + µa44(z) has exactly one zero z11 within the half-axis (−∞, 0) and, thus,

1 + µa44(z) > 0 if z < z11,

1 + µa44(z) < 0 if z11 < z < 0.
(11)
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Notice that the equality 1 + µa44(z11) = 0 implies that

∆ees
00µ(z11) = (1 + µa33(z11)) (1 + µa44(z11))− µ2(a34(z11))

2

= −µ2(a34(z11))
2 < 0. (12)

The inequality µ < −12 implies that

Q−(0, 0, µ) = 6(16−5π)
π µ

[
µ+ 2π

3(16−5π)

]
> 0.

The inequality Q−(0, 0, µ) > 0 and Lemma 4 yield that

lim
z→−∞

∆ees
00µ(z) = 1, lim

z↗0
∆ees

00µ(z) = +∞. (13)

The relations (12) and (13) imply that

lim
z→−∞

∆ees
00µ(z) = 1, ∆ees

00µ(z11) < 0 and lim
z↗0

∆ees
00µ(z) = +∞.

This means that there exist real numbers z21 and z22 such that

z21 < z11 < z22 < 0 (14)

and

∆ees
00µ(z21) = ∆ees

00µ(z22) = 0. (15)

The equality (8) implies that the operator V ees
00µ has rank at most two. Therefore, by the minimax principle, the

operator Hees
00µ has at most two eigenvalues below zero. By the first statement in Lemma 3, the function ∆ees

00µ(z) has at
most two zeros in R \ [0, 8]. Hence, and by (15) the function ∆ees

00µ(z) has precisely two zeros (z21 and z22), lying in
(−∞, 0). Therefore

∆ees
00µ(z) > 0 if z < z21;

∆ees
00µ(z) < 0 if z21 < z < z22;

∆ees
00µ(z) > 0 if z22 < z < 0.

(16)

The equalities ∆ees
00µ(z21) = ∆ees

00µ(z22) = 0 yield the following relations

(1 + µa33(z21))(1 + µa44(z21)) = µ2(a34(z21))
2 > 0,

(1 + µa33(z22))(1 + µa44(z22)) = µ2(a34(z22))
2 > 0.

(17)

Hence 1 + µa33(z21) and 1 + µa44(z21) (resp. 1 + µa33(z22) and 1 + µa44(z22)) have the same signs. Combining this
with (11) and (14) yields

1 + µa33(z21) > 0 and 1 + µa44(z21) > 0;

1 + µa33(z22) < 0 and 1 + µa44(z22) < 0.
(18)

For the roots z21 and z22 of

∆ees
00µ(z) = (1 + µa33(z)) (1 + µa44(z))− µ2a234(z) = 0

we then have √
1 + µa33(z21)

√
1 + µa44(z21) = −µa34(z21) (19)

and √
−[1 + µa33(z22)]

√
−[1 + µa44(z22)] = −µa34(z22). (20)

Using the explicit representation (10) for ∆ees
0λµ(z) and (19) one arrives with the following equality:

∆ees
0λµ(z21) = −λµ

[√
1 + µa44(z21)a23(z21) +

√
1 + µa33(z21)a24(z21)

]2
. (21)

Clearly, (21) implies that
∆ees

0λµ(z21) < 0. (22)
Analogously, the identity (20) gives that

∆ees
0λµ(z22) = λµ

[√
−[1 + µa44(z22)]a23(z22) +

√
−[1 + 2µa33(z22)]a24(z22)

]2
> 0. (23)

Meanwhile, for λ < −12 va µ < −12 we have

Q−
0 (µ) =

16−5π
4π µ2 + 4(10−3π)

3π µ+ 1
2 > 0

and
4
(
Q−

1 (µ)− 12Q−
0 (µ)

)
= (16−5π)

π µ2 + 400−123π
3π µ+ 5 > 0.
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The above inequalities obeys that

Q−(0, λ, µ) = 4Q−
0 (µ)(λ+ 10)− 4

(
Q−

1 (µ)− 12Q−
0 (µ)

)
< 0.

Lemma 4 and inequality Q−(0, λ, µ) < 0 give

lim
z→−∞

∆ees
0λµ(z) = 1 and lim

z↗0
∆ees

0λµ(z) = −∞. (24)

Taking into account (22), (23) and (24) this implies there existence of real numbers z31, z32 and z33 such that

z31 < z21 < z32 < z22 < z33 < 0 (25)

and
∆ees

0λµ(z31) = ∆ees
0λµ(z32) = ∆ees

0λµ(z33) = 0. (26)

The equality (8) implies that the operator V ees
0λµ has rank at most three. Therefore, again by the minimax principle [42,

Theorem XIII.1], the operator Hees
0λµ has at most three discrete eigenvalues. Then, Lemma 3 guarantees that the function

∆ees
0λµ(z) has at most three zeros in R \ [0, 8]. Given these bounds and established results, the function ∆ees

0λµ(z) is found
to have precisely three zeros (z31, z32, and z33), all of which lie in the interval (−∞, 0).

Let

A11(z) := det

1 + µa33(z) µa34(z)

µa34(z) 1 + µa44(z)

 ,

A22(z) := det

1 + λa22(z) µa24(z)

λa24(z) 1 + µa44(z)

 ,

A33(z) := det

1 + λa22(z) µa23(z)

λa23(z) 1 + µa33(z)

 .

(27)

and

A12(z) := det

λa23(z) µa34(z)

λa24(z) 1 + µa44(z)

 , A21(z) := det

µa23(z) µa24(z)

µa34(z) 1 + µa44(z)

 ,

A13(z) := det

λa23(z) 1 + µa33(z)

λa24(z) µa34(z)

 , A31(z) := det

 µa23(z) µa24(z)

1 + µa33(z) µc34(z)

 ,

A23(z) := det

1 + λa22(z) µa23(z)

λa24(z) µa34(z)

 , A32(z) := det

1 + λa22(z) µa24(z)

λa23(z) µa34(z)

 .

(28)

The definition (28) implies that

µA12(z) = λA21(z), µA13(z) = λA31(z), A23(z) = A32(z) (29)

From the definitions (27) and (28) one derives that

A11(z)A33(z)−A13(z)A31(z) = ∆ees
0λµ(z) · [1 + µa33(z)],

A11(z)A22(z)−A12(z)A21(z) = ∆ees
0λµ(z) · [1 + µa44(z)],

A22(z)A33(z)−A23(z)A32(z) = ∆ees
0λµ(z) · [1 + λa22(z)]

(30)

and
A11(z)A22(z)A33(z)−A12(z)A23(z)A31(z) = ∆ees

0λµ(z)Rλµ(z), (31)

where
Rλµ(z) = [1 + λa22(z)] · [1 + µa33(z)] · [1 + µa44(z)]− λµ2a13(z)a14(z)a24(z).

Then the equality ∆ees
0λµ(z31) = 0 and identity (30) resp. (31) imply that

A11(z31)A33(z31) = A13(z31)A31(z31),

A11(z31)A22(z31) = A12(z31)A21(z31),

A22(z31)A33(z31) = A23(z31)A32(z31)

(32)

resp.
A11(z)A22(z)A33(z) = A12(z)A23(z)A31(z). (33)
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It is worth noting that the functions 1+µa33(z) and 1+µa44(z) both exhibit strict decrease on the interval (−∞, 0).
Then the relations z31 < z21 and (18) yield that

1 + µa33(z31) > 1 + µa33(z21) > 0 and 1 + µa44(z31) > 1 + µa44(z21) > 0. (34)

The inequality (34), the negativity of λ, µ and positivity of the functions a23, a24, a34 (See Proposition 3) yield that

A12(z31) = λa23(z31)
[
1 + µa44(z31)

]
− λµa24(z31)a34(z31) < 0,

A13(z31) = λµa23(z31)a34(z31)− λa24(z31)
[
1 + µa33(z31)

]
> 0. (35)

The relations (29) and (32) yield that

A11(z31)A33(z31) = A13(z31)A31(z31) =
λA2

31(z31)

µ
> 0,

A11(z31)A22(z31) = A12(z31)A21(z31) =
µA2

12(z31)

λ
> 0.

(36)

The inequalities (36) give that the numbers A11(z31), A22(z31), A33(z31) has the same signs. The relations (16) and
(25) yield that

A11(z31) = ∆ees
00µ(z31) > 0, therefore A22(z31) > 0, A33(z31) > 0. (37)

Then the relations (33), (35) and (37) obeys that

A23(z31) < 0.

The equality (29) and inequalities A23(z31) < 0, (35) imply that

A12(z31) < 0, A21(z31) < 0, (38)

A23(z31) < 0, A32(z31) < 0,

A31(z31) > 0, A13(z31) > 0.

The equalities (29) and (30) give that

A2
12(z31) =

λA11(z31)A22(z31)
µ , A2

21(z31) =
µA11(z31)A22(z31)

λ (39)

A2
23(z31) = A22(z31)A33(z31), A2

32(z31) = A22(z31)A33(z31)

A2
31(z31) =

µA11(z31)A33(z31)
λ , A2

13(z31) =
λA11(z31)A33(z31)

µ .

Taking into account the signs of the numbers Aij(z31) in (38) and using the equality (39) we arrive that

A12(z31) = −
√

λA11(z31)A22(z31)
µ , A21(z31) = −

√
µA11(z31)A22(z31)

λ ,

A23(z31) = −
√
A22(z31)A33(z31), A32(z31) = −

√
A22(z31)A33(z31),

A31(z31) =

√
µA11(z31)A33(z31)

λ , A13(z31) =
√

λA11(z31)A33(z31)
µ .

(40)

We can represent the determinant ∆ees
γλµ(z) in (10) as follow:

∆ees
γλµ(z) =[1 + 2γa11(z)]∆

ees
0λµ(z)− 2γλa212(z)A11(z) + 2γµa12(z)a13(z)A12(z)− 2γµa12(z)a14(z)A13(z)

+ 2γλa13(z)a12(z)A21(z)− 2γµa213(z)A22(z) + 2γµa13(z)a14(z)A23(z)

− 2γλa14(z)a12(z)A31(z) + 2γµa14(z)a13(z)A32(z)− 2γµa214(z)A33(z).

Using the above representation of the determinant ∆ees
γλµ(z), equality ∆ees

0λµ(z31) = 0 and (40) we find that

∆ees
γλµ(z31) =− 2γλa212(z31)A11(z31)− 2γµa213(z31)A22(z31)− 2γµa214(z31)A33(z31)

− 4γ
√
λµA11(z31)A33(z31)a12(z31)a14(z31)

− 4γµa13(z31)a14(z31)
√

A22(z31)A33(z31) (41)

− 4γ
√
λµA11(z31)A22(z31)a12(z31)a13(z31)

=− 2
(
a12(z31)

√
γλA11(z31) + a13(z31)

√
γµA22(z31) + a14(z31)

√
γµA33(z31)

)2

.

The equality (41) and positivity of the function a12, a13, a14 gives that

∆ees
γλµ(z31) < 0. (42)

Combining the relation (16) with inequalities z21 < z32 < z22 and z22 < z33 we arrive that

A11(z32) < 0, A22(z32) < 0, A33(z32) < 0
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and
A11(z33) > 0, A22(z33) > 0, A33(z33) > 0.

respectively.
So, in a similar way we show that

∆ees
γλµ(z32)

= 2
(
a12(z32)

√
−γλA11(z32) + a13(z32)

√
−γµA22(z32) + a14(z32)

√
−γµA33(z32)

)2

> 0

and

∆ees
γλµ(z33)

= −2
(
a12(z33)

√
γλA11(z33) + a13(z33)

√
γµA22(z33) + a14(z33)

√
γµA33(z33)

)2

< 0.

The assertions γ < −12, λ < −12, µ < −12 yield that

Q−(γ, λ, µ) =(γ + 4)
(
Q−

0 (µ)λ+Q−
1 (µ)

)
− 8Q−

0 (µ) =

(γ + 12)
(
Q−

0 (µ)λ+Q−
1 (µ)

)
− 8Q−

0 (µ)(λ+ 12) + 8
(
11Q−

0 (µ)−Q−
1 (µ)

)
> 0.

The relation Q−(γ, λ, µ) > 0 and Lemma 4 obeys that

lim
z→−∞

∆ees
γλµ(z) = 1 and lim

z↗0
∆ees

γλµ(z) = +∞.

Therefore

lim
z→−∞

∆ees
γλµ(z) = 1, ∆ees

γλµ(z31) < 0, ∆ees
γλµ(z32) > 0,

∆ees
γλµ(z33) < 0, lim

z↗0
∆ees

γλµ(z) = +∞.

The above relations yield there existence of four zeros z41, z42, z43, z44 of function ∆ees
γλµ(z), satisfying the following

inequalities
z41 < z31 < z42 < z32 < z43 < z33 < z44 < 0. (43)

The proof for item (ii) follows an analogous procedure. □

Proof of Theorem 1. The result is proven analogously to Theorem 3.1 in [35]. □

Proof of Theorem 2. (i) Assume that γ, λ, µ < −12.
We first determine the number of bound states for K = 0. Combining the results of Lemmas 5, 6, and 7 provides the

number of negative zeros for the corresponding determinants:
• ∆oos

µ (z) has exactly one zero (Lemma 5).
• ∆ea

λµ(z) has exactly two zeros (Lemma 6).
• ∆ees

γλµ(z) has exactly four zeros (Lemma 7).
The decomposition (2) and Lemma 3 confirm that the total number of bound states for Hγλµ(0) with negative energy is
1 + 2 + 4 = 7.

Next, Theorem 1 ensures that for any K, the operator Hγλµ(K) possesses at least seven eigenvalues in (−∞, 0).
Since the rank of the perturbation operator Vγλµ(K) is at most seven, the min-max principle (see [42], page 85) dictates
that Hγλµ(K) has at most seven isolated eigenvalues. Therefore, Hγλµ(K) must have precisely seven bound states in
(−∞, 0).

(ii) Suppose that γ, λ, µ > 12. The proof for Item (ii) is entirely analogous, relying on the corresponding assertions
for the zeros of the determinants lying in (8,+∞). □

5. Conclusion

In conclusion, this article provides a comprehensive spectral analysis of the two-boson discrete Schrödinger operator
Hγλµ(K) with short-range interactions, including on-site (γ), nearest-neighbor (λ), and next-nearest-neighbor (µ) cou-
plings. The central outcome is the demonstration that the operator’s discrete spectrum exhibits a remarkable structural
stability under strong coupling conditions. Specifically, we have established sufficient conditions on the interaction pa-
rameters such that the operator possesses a total of seven bound states (eigenvalues), located either below (−∞, 0) or
above (8,+∞) the essential spectrum, irrespective of the quasi-momentum K ∈ T2.

Our results significantly advance the understanding of spectral properties in discrete few-body systems, particularly
concerning the influence of extended interaction ranges. Previous studies focusing on two-boson systems on a 2D lattice
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with interactions limited to on-site and nearest-neighbor sites [35] showed a maximum of only three eigenvalues. Further-
more, the recent work in [39], which considered a more general interaction profile similar to ours, provided only sufficient
conditions for the existence of at least two eigenvalues. In stark contrast, our work explicitly demonstrates that the full in-
clusion of next-nearest-neighbor coupling (µ) is responsible for stabilizing and increasing the maximum possible number
of bound states to seven, providing easily verifiable criteria for this maximum count. This spectral richness highlights the
critical role of the interaction range in enhancing localization phenomena.

Despite these advancements, several challenges remain. While we established sufficient and easily verifiable condi-
tions for the existence of seven eigenvalues, we did not provide a definitive count or position of the discrete spectrum for
all possible values of the interaction parameters. A complete mapping of the (γ, λ, µ)-space into regions corresponding to
exactly n ∈ {0, 1, . . . , 7} eigenvalues is a complex, unsolved problem that requires further computational and analytical
methods.

Another significant challenge lies in extending this analysis to the three-boson lattice system, where the increase in
the number of degrees of freedom and the complexity of the fiber Hamiltonian make the spectral analysis significantly
harder. Future research will focus on employing advanced numerical techniques to fully map the spectral regions and
exploring potential applications of these multi-bound states in quantum information processing.
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