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ABSTRACT In this paper, an inversion problem for the weighted Radon transform along family of cones in three-
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1. Introduction

The standard X-ray transform consists of recovering a function supported in a bounded domain from its integrals
along straight lines through this domain. In dimension two (n = 2), it coincides with the Radon transform [1], which
provides the theoretical underpinning for several medical imaging techniques such as Computed Tomography (CT) and
Positron Emission Tomography (PET). The X-ray tomography method for three-dimensional object reconstruction is
offered in [2] which is based on the 3D Radon transform and is compatible with anisotropic beam conditions.

Weighted and limited data Radon transforms (d = n − 1) have been studied in [3]. The Coherent X-ray Diffraction
Imaging (CXDI) with its application to nanostructures are given in [4]. In [5] examples are constructed for non injectivity
weighted ray and Radon transforms along hyperplanes inRd, d ≥ 3 with a non-trivial kernel in the space of finite infinitely
smooth functions. The weighted Radon transforms in multidimensions are studied in [6]. Authors introduced an analog of
Chang approximate inversion formula for such transforms and describe all weights for which this formula is exact. They
indicated possible tomographic applications of inversion methods for weighted Radon transforms in 3D. In paper [7], the
reconstruction approach proposed in [6] for weighted ray transforms (weighted Radon transforms along oriented straight
lines) in 3D is investigated numerically.

Some problems of integral geometry as restoring a function on some linear space from the set of values of this function
on a given family of manifolds embedded in this space are studied in [8, 9]. In [10–12] a problem of reconstruction of a
function in a strip from their given integrals with known weight function along polygonal and parabolic lines is considered.
The uniqueness theorems are proved and the stability estimates for solutions in Sobolev spaces are obtained.

In this paper, we consider an inversion problem for the weighted Radon transform along family of cones in three-
dimensional space. The problem is reduced to study of Volterra integral equation. Under some natural conditions, an
inversion formula for the weighted Radon transform is obtained for the case when the range is a space of infinitely smooth
functions.

2. Problem statement and the Main results

We introduce the following notations

(x, y, z), (ξ, η, ζ) ∈ R3, λ, µ ∈ R1,

Ω = {(x, y, z) : x, y ∈ R, z ∈ [0, h] h <∞}.
A family of cones S(x, y, z) is considered on Ω, which are uniquely parameterized using the coordinates of their

vertices (x, y, z) ∈ Ω:

S(x, y, z) =
{

(ξ, η, ζ) : (x− ξ)2 + (y − η)2 = (z − ζ)2, ξ ∈ R, 0 ≤ ζ ≤ z
}
.

We denote by J (R2, C[0, h]) the set of infinitely differentiable functions ϕ(x, y, z) in x, y ∈ R2 and continuous in
z ∈ [0, h] for which

sup
∣∣∣xα1yα2

∂β+γϕ(x, y, z)

∂βx∂γy

∣∣∣ <∞
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for all nonnegative integer numbers α1, α2, β and γ.
Problem A. Determine a function of three variables u(x, y, z), if the integrals of the function u(x, y, z) over a family

of cones S(x, y, z) are known for all (x, y, z) of the layer Ω as∫ ∫
S(x,y,z)

g (x− ξ, y − η)u (ξ, η, ζ) ds = f (x, y, z) , (1)

where g is the weight function on R2 and f ∈ J (R2, C[0, h]).
Let us mark that the left hand side of equation (1) can be considered as the generalized Radon transform R over a

family of cones S (See [13] and [14]), i.e. Ru = f .

Denote by ˆ̂
f(·, ·, z) the Fourier transform of f(x, y, z) ∈ J (R2, C[0, h]) with respect to (x, y) ∈ R2, i.e.

ˆ̂
f (λ, µ, z) =

1

2π

+∞∫
−∞

+∞∫
−∞

ei(λx+µy)f(x, y, z)dxdy.

The following theorem describes the uniqueness conditions and the exact solution for the Problem A. Moreover, the
solution expresses the inversion formula for the generalized Radon transform i.e. u = R−1f .

Theorem 2.1. Let g(x, y) = ax+ by, |a|+ |b| 6= 0 and f ∈ J (R2, C[0, h]) have continuous partial derivatives up to the

third order with respect to variable z. We suppose that
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, 2, 3, f(x, y, 0) =

∂

∂z
f(x, y, 0) =

∂2

∂z2
f(x, y, 0) =

∂3

∂z3
f(x, y, 0) = 0 for all x, y ∈ R and ˆ̂

f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R : aλ + bµ = 0} and

z ∈ [0, h]. Then the Problem A has unique solution u(x, y, z) which is continuous on Ω.
Additionally, if f ∈ J (R2, C[0, h]) has continuous partial derivatives up to the ninth order with respect to variable z

and
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, . . . , 9, then the function u(x, y, z) has the following form

u(x, y, z) =
1

18
√

2πi

+∞∫
−∞

+∞∫
−∞

e−i(λx+µy)
( d

2

dt2 + λ2 + µ2)5

(aλ+ bµ)(λ2 + µ2)

z∫
0

t∫
0

(t− τ)2J2
(
(t− τ)

√
λ2 + µ2

) ˆ̂
f(λ, µ, τ)dτdtdµdλ,

(2)
where Jn(·) is the Bessel function of the first kind of order n i.e.

Jn(t) =

∞∑
k=0

(−1)kt2k+n

22k+nk!Γ(n+ k + 1)
.

3. Proof of the Main result

In the integral on the left hand side of (1), we provide the following changing of variable

ζ = z −
√

(x− ξ)2 + (y − η)2.

Then

ζ ′ξ = − x− ξ√
(x− ξ)2 + (y − η)2

, ζ ′η = − y − η√
(x− ξ)2 + (y − η)2

, ds =

√
1 +

(
ζ ′ξ

)2
+
(
ζ ′η
)2
dξdη.

Hence, equation (1) is represented as follows
√

2

∫ ∫
D(x,y,z)

g(x− ξ, y − η)u(ξ, η, z −
√

(x− ξ)2 + (y − η)2)dξdη = f(x, y, z). (3)

Making the following substitutions in (3)

ξ = x− ρ cosφ, η = y − ρ sinφ,

we get

√
2

2π∫
0

z∫
0

g (ρ cosφ, ρ sinφ)u (x− ρ cosφ, y − ρ sinφ, z − ρ) ρdρdφ = f (x, y, z) . (4)

We apply the Fourier transform to the both sides of equation (4) with respect to variables x and y

ˆ̂
f (λ, µ, z) =

√
2

2π∫
0

z∫
0

eiρ(λcosφ+µ sinφ)g (ρ cosφ, ρ sinφ) ˆ̂u (λ, µ, z − ρ) ρdρdφ. (5)
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where

ˆ̂u (λ, µ, z) =
1

2π

+∞∫
−∞

+∞∫
−∞

ei(λx+µy)u (x, y, z) dxdy.

Remark that ˆ̂
f ∈ J (R2, C[0, h]), since f ∈ J (R2, C[0, h]).

Making the change of variable t = z − ρ in equation (5), we obtain

ˆ̂
f(λ, µ, z) =

√
2

2π∫
0

z∫
0

ei(z−t)(λcosφ+µ sinφ)g((z − t) cosφ, (z − t) sinφ)ˆ̂u(λ, µ, t)(z − t)dtdφ. (6)

Thus, equation (1) is equivalent to equation (6). Since g(x, y) = ax+ by, equation (6) yields

ˆ̂
f(λ, µ, z) =

z∫
0

G(λ, µ, z − t)ˆ̂u(λ, µ, t)dt, (7)

where

G(λ, µ, z − t) =
√

2(z − t)2
2π∫
0

ei(z−t)(λ cosφ+µ sinφ)(a cosφ+ b sinφ)dφ.

According to the equality

λ cosφ+ µ sinφ =
√
λ2 + µ2 cos(φ− ψ), cosψ =

λ√
λ2 + µ2

,

changing variable φ = θ + ψ gives us

G(λ, µ, z − t) =
√

2(z − t)2
2π∫
0

eiβ cos θ(a cos(θ + ψ) + b sin(θ + ψ))dθ,

where
β = (z − t)

√
λ2 + µ2.

Since
eiβ cos θ = cos(β cos θ) + i sin(β cos θ),

the function G(λ, µ, z − t) is represented as

G(λ, µ, z − t) =
√

2a(z − t)2
2π∫
0

cos(β cos θ) cos(θ + ψ)dθ + i
√

2a(z − t)2
2π∫
0

sin(β cos θ) cos(θ + ψ)dθ+

+
√

2b(z − t)2
2π∫
0

cos(β cos θ) sin(θ + ψ)dθ + i
√

2b(z − t)2
2π∫
0

sin(β cos θ) sin(θ + ψ)dθ.

Using the identities
cos(θ + ψ) = cos θ cosψ − sin θ sinψ,

sin(θ + ψ) = sin θ cosψ + cos θ sinψ,

we have

G(λ, µ, z − t) =
√

2a(z − t)2 cosψ

2π∫
0

cos(β cos θ) cos θdθ −
√

2a(z − t)2 sinψ

2π∫
0

cos(β cos θ) sin θdθ+

+i
√

2a(z − t)2 cosψ

2π∫
0

sin(β cos θ) cos θdθ − i
√

2a(z − t)2 sinψ

2π∫
0

sin(β cos θ) sin θdθ+

+
√

2b(z − t)2 cosψ

2π∫
0

cos(β cos θ) sin θdθ +
√

2b(z − t)2 sinψ

2π∫
0

cos(β cos θ) cos θdθ+

+i
√

2b(z − t)2 cosψ

2π∫
0

sin(β cos θ) sin θdθ + i
√

2b(z − t)2 sinψ

2π∫
0

sin(β cos θ) cos θdθ.
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Now, according to the integral equalities
2π∫
0

cos(β cos θ) cos θdθ = 2

π∫
0

cos(β cos θ) cos θdθ,

2π∫
0

sin(β cos θ) cos θdθ = 2

π∫
0

sin(β cos θ) cos θdθ

and
2π∫
0

cos(β cos θ) sin θdθ = 0,

2π∫
0

sin(β cos θ) sin θdθ = 0,

we obtain

G(λ, µ, z − t) = 2
√

2(z − t)2(a cosψ + b sinψ){
π∫

0

cos(β cos θ) cos θdθ + i

π∫
0

sin(β cos θ) cos θdθ}.

The equalities (see, pages 419-420 in [16])
π∫

0

cos(β cos θ) cos(nθ)dθ = π cos
nπ

2
Jn(β),

π∫
0

sin(β cos θ) cos(nθ)dθ = π sin
nπ

2
Jn(β),

give one
π∫

0

cos(β cos θ) cos θdθ = 0,

π∫
0

sin(β cos θ) cos θdθ = πJ1(β).

Then equation (7) is written as

ˆ̂
f(λ, µ, z) = 2

√
2iπ

aλ+ bµ√
λ2 + µ2

z∫
0

(z − t)2J1{(z − t)
√
λ2 + µ2}ˆ̂u(λ, µ, t)dt, (8)

Remark that if equation (8) has a solution then ˆ̂
f should be ˆ̂

f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R : aλ+ bµ = 0} and
z ∈ [0, h]. This is provided by the condition of the theorem. To prove the existence of a solution of (8), we write

ˆ̂
f(z) =

z∫
0

G(z, t)ˆ̂u(t)dt, (9)

where

G(z, t) := 2
√

2iπ(z − t)2 aλ+ bµ√
λ2 + µ2

J1{(z − t)
√
λ2 + µ2}, ˆ̂u(t) := ˆ̂u(λ, µ, t),

ˆ̂
f(t) :=

ˆ̂
f(λ, µ, t).

Note that the smoothness of the first kind Bessel function J1(·) and J1(0) = 0 yield the smoothness of the functionG(·) for

any fixed λ, µ ∈ R. The conditions f(x, y, 0) =
∂

∂z
f(x, y, 0) =

∂2

∂z2
f(x, y, 0) =

∂3

∂z3
f(x, y, 0) = 0 yield ˆ̂

f(λ, µ, 0) =

∂

∂z
ˆ̂
f(λ, µ, 0) =

∂2

∂z2
ˆ̂
f(λ, µ, 0) =

∂3

∂z3
ˆ̂
f(λ, µ, 0) = 0. Since G(z, z) = G

′

z(z, z) = G
′′

z (z, z) = 0, G
′′′

z (z, z) 6= 0,

equation (9) has unique solution ˆ̂u(λ, µ, t) for any fixed λ, µ ∈ R. The function u(t) := ˆ̂u(λ, µ, t) is a solution of the
equation

K ′′z (z, z)u(z) +

z∫
0

K ′′′z (z, t)u(t)dt =
ˆ̂
f ′′′z (z),

where ˆ̂
f(t) :=

ˆ̂
f(λ, µ, t). Note that

∂3

∂z3
ˆ̂
f ∈ J (R2, C[0, h]) since

∂3

∂z3
f ∈ J (R2, C[0, h]). Therefore, the function

ˆ̂u(λ, µ, t) is continuous on Ω and, hence, u(x, y, t) is continuous on Ω.

Next, we present the explicit formula for u(x, y, t). The equality ˆ̂
f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R :

aλ+ bµ = 0} and z ∈ [0, h] yields continuity of the ratio function

√
λ2 + µ2

2
√

2πi(aλ+ bµ)

ˆ̂
f(λ, µ, z) on Ω.
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We rewrite equation (7) as

F (z) =

z∫
0

K(z, t)U(t)dt. (10)

where

F (z) =

√
λ2 + µ2

2
√

2πi(aλ+ bµ)

ˆ̂
f(λ, µ, z),

K(z, t) = (z − t)2J1{(z − t)
√
λ2 + µ2}ˆ̂u(λ, µ, t), U(t) = ˆ̂u(λ, µ, t).

Since the function f ∈ J (R2, C[0, h]) has continuous partial derivatives up to the ninth order with respect to variable

z ∈ (0, h), the same is valid for ˆ̂
f(λ, µ, z). The solution of equation (10) has the form (see, section 1.8-1 of [15])

U(z) =

z∫
0

V (t)dt, (11)

where

V (t) =
1

9
√
λ2 + µ2

3 (
d2

dt2
+ λ2 + µ2)5

t∫
0

(t− τ)2J2{(t− τ)
√
λ2 + µ2}F (τ)dτ.

Thus, from (11), we obtain

ˆ̂u(λ, µ, z) =
( d

2

dt2 + λ2 + µ2)5

18
√

2πi(aλ+ bµ)(λ2 + µ2)

z∫
0

t∫
0

(t− τ)2J2{(t− τ)
√
λ2 + µ2} ˆ̂

f(λ, µ, τ)dτdt. (12)

Hence, applying the inverse Fourier transform with respect to variables µ and λ to equation (12), we obtain equation (2).
The Theorem 2.1 is proved.

4. Conclusion

Consider equation (1) as the generalized Radon transform R over a family of cones S, i.e. Ru = f . Let R consist

of functions f ∈ J (R2, C[0, h]) satisfying the following conditions
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, 2, 3, f(x, y, 0) =

∂

∂z
f(x, y, 0) =

∂2

∂z2
f(x, y, 0) =

∂3

∂z3
f(x, y, 0) = 0 for all x, y ∈ R and ˆ̂

f (λ, µ, z) = 0 for all (λ, µ) ∈ {λ, µ ∈ R :

aλ+ bµ = 0} and z ∈ [0, h]. Then R is invertible for the case when the rang of R isR, where u = R−1f is continuous
on Ω. Additionally, if f ∈ R has continuous partial derivatives up to the ninth order with respect to variable z and
∂i

∂zi
f ∈ J (R2, C[0, h]), i = 1, . . . , 9, then R−1f is expressed by (2).
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