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ABSTRACT We consider a general second order elliptic operator in a planar waveguide perforated by small
holes distributed along a curve and subject to classical boundary conditions on the holes. Under weak as-
sumptions on the perforation, we describe all possible homogenized problems.
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1. Introduction

In this paper, we consider a second order elliptic operator in a planar strip perforated along a curve which can be
either infinite or finite and closed. The shapes and the distribution of the holes can be rather arbitrary and no periodicity
is assumed. We impose on the boundary of the holes classical boundary conditions, i.e., Dirichlet, Neumann or Robin
conditions: boundaries of different holes can be subject to different types of boundary conditions.

Our operator describes a quantum particle in a non-isotropic waveguide (the infinite strip) since the coefficients of the
operator are variable. The perforation represents small defects distributed along a given line, while the conditions on the
boundaries of the holes impose certain regime, for instance, the Dirichlet condition describes a wall and the particle can
not pass through such boundary. Our aim is to describe all possible homogenized problems. In fact, the homogenization
process describes the effective behavior of our model once the perforation becomes finer, while the type of resolvent
convergence characterizes in which sense the perturbed model is close to the effective one. The results we will state, are
proved in [1] .

Our first main result describes the homogenized problems depending on the geometry, sizes, and distribution of the
holes as well as of the conditions on the boundary of the holes. The differential expression for the homogenized operator
is the same as for the original operator, but with Dirichlet condition or delta-interaction or no condition on the reference
curve along which the perforation is made. Our second main result is the norm resolvent convergence of the perturbed
operator to the homogenized one and the estimates for the rates of convergence. In all cases except one the operator norm
is that of the operators from L2 intoW 1

2 , while in the exceptional case it is from L2 into L2. Nevertheless, in the latter case
we show that by employing a special boundary corrector one can replace the norm by that of the operators acting from L2

into W 1
2 . Such kind of results on norm resolvent convergence are completely new for the domains perforated periodically

along curves or manifolds, especially in view of the fact that we succeeded in studying the general non-periodic perforation
with arbitrary boundary conditions.

Our technique is based on the variational formulations of the equations for the perturbed and the homogenized opera-
tors. We use no smoothing operator like in previous papers on the operators with rapidly oscillating coefficients. Instead,
we write the integral identity for the difference of the perturbed and homogenized resolvents and then estimate the terms
coming from the boundary conditions. It requires certain accurate estimates for various boundary integrals over holes and
over the reference curve. The main difference of our technique with that in the previous works is the assumptions for
the perforation. In previous works [2–8], the main assumption was the existence of an operator of continuation the holes
for the functions defined outside as well as uniform estimates for this operator. In our work, we assume the solvability
of a certain fixed boundary value problems for the divergence operator in the vicinity of the holes. We believe that our
assumptions are not worse than the existence of the continuation operator, since we require just a solvability of certain
boundary value problem while the existence of the continuation operator means the possibility to extend each function in
a given Sobolev space.

The attention to the norm resolvent convergence started a new direction in the homogenization theory. It was found
for the operators with fast periodically oscillating coefficients that their resolvents converge to the resolvents of the ho-
mogenized operators in the norm resolvent sense. This was a much stronger result in comparison with known classical
results stating just a weak or a strong resolvent convergence. Results based on norm resolvent convergence were obtained
by M.Sh. Birman, T.A. Suslina [9–14], V.V. Zhikov and S.E. Pastukhova [15–20], G. Griso [21, 22], and by C.E. Kenig,
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F. Lin, Z. Shen [23,24]; see also other papers by these authors. Moreover, in the above cited works, the authors succeeded
in establishing sharp estimates for the rates of convergence in the sense of various operator norms.

In view of the above described results, a natural question appeared: whether a similar norm resolvent convergence
is valid for other types of the perturbations in the homogenization theory? This issue was studied recently for certain
perturbations in the boundary homogenization.

In [25–33], [34–40] problems with frequent alternation of boundary conditions were treated. The norm resolvent
convergence was proven for all possible homogenized problems as well as for both periodic and non-periodic alternations.
Estimates for the rate of convergence were obtained. In periodic cases, certain asymptotic expansions for the spectra of
perturbed operators were constructed.

In [41, 42], [43, Ch. III, Sec. 4], the norm resolvent convergence for problems with a fast periodically oscillating
boundary was proven. The most general results were obtained in [41]. Namely, various geometries of oscillations as well
as various boundary conditions on the oscillating boundary were considered. Estimates were obtained for the rate of norm
resolvent convergence in the sense of various operator norms.

The norm resolvent convergence for periodic perforations was studied in [16, 44, 45] . In [44] the whole of a domain
was perforated. The operator was described by the Helmholtz equation; on the boundaries of the holes the Dirichlet
condition was imposed. The authors treated the case when the holes disappeared under the homogenization and made
no influence for the homogenized operators. The norm resolvent convergence was proven; no estimates for the rate of
convergence were found. In [16], an elliptic operator in a perforated domain was studied. Here, again, the whole of the
domain was perforated. It was assumed that the sizes of the holes and the distances between them are of the same order
of smallness. On the boundaries of the holes the Neumann condition was imposed. The norm resolvent convergence and
the estimates for the rate of convergence were established.

One more interesting paper devoted to norm resolvent convergence is [19]. Here, the perturbation was defined by
rescaling an abstract periodic measure. The main result is the description of the homogenized operator, the proof of the
norm resolvent convergence, and the estimates for the rate of convergence. A general model of [19] covered various
perturbations, including periodic perforation of the whole of a domain, provided the sizes of the holes and the distances
between them are of the same smallness order.

2. Problem and main results

Let x = (x1, x2) be the Cartesian coordinates in R2, Ω := {x : 0 < x2 < d} be a horizontal strip of width d > 0.
By γ, we denote a curve in Ω separated from ∂Ω by a fixed distance. Curve γ is supposed to be C3-smooth and to have
no self-intersections. We consider two cases assuming that γ is either an infinite curve or it is a finite closed curve. By s,
we denote the arc length of γ, s ∈ [−s∗, s∗], where s∗ is either finite or s∗ = +∞. If curve γ is finite, we identify points
s = −s∗ and s = s∗. By % = %(s) we denote the vector function describing the curve γ. Since curve γ is C3-smooth,
then % ∈ C3[−s∗, s∗]; for an infinite curve by [−s∗, s∗] we mean R. The above assumptions for γ yield that this curve
partitions domain Ω into two disjoint subdomains. The upper or exterior one is denoted by Ω+ and the lower or interior
subdomain is Ω−. By Br(a) we denote the ball in R2 of radius r centered at a.

Let Mε ⊆ Z be some set, and sεk ∈ [−s∗, s∗], k ∈ Mε, be a set of points satisfying sεk < sεk+1. By ωk, k ∈ Mε,
we indicate a set of bounded domains in R2 having C2-boundaries. We stress that these domains are not supposed to be
simply connected. Denoting by ε a small positive parameter, we define:

θε := θε0 ∪ θε1, θεi :=
⋃
k∈Mi

ωεk, i = 0, 1, ωεk := {x : ε−1η−1(ε)(x− yεk) ∈ ωk}, yεk := %(sεk),

where Mε
0 ∩Mε

1 = ∅, Mε
0 ∪Mε

1 = M
ε, and η = η(ε) is a some function satisfying the inequality 0 < η(ε) 6 1. We

make the following assumptions.
(A1) There exist fixed numbers 0 < R1 < R2, b > 1, L > 0 and points xk ∈ ωk, k ∈Mε, such that

BR1(xk) ⊂ ωk ⊂ BR2(0), |∂ωk| 6 L for each k ∈Mε,

BbR2ε(y
ε
k) ∩BbR2ε(y

ε
i ) = ∅ for each i, k ∈Mε, i 6= k,

and for all sufficiently small ε.
(A2) For b and R2 in A1 and k ∈Mε there exists a generalized solution Xk : Bb∗R2

(0) \ ωk 7→ R2, b∗ := (b+ 1)/2,
to the boundary value problem:

divXk = 0 in Bb∗R2(0) \ ωk,
Xk · ν = −1 on ∂ωk, Xk · ν = ϕk on ∂Bb∗R2(0),

(2.1)

belonging to L∞(Bb∗R2(0) \ ωk) and bounded in the sense of this space uniformly in k ∈ Mε. Here, ν is the
outward normal to ∂Bb∗R2

(0) and to ∂ωk, while ϕk is a some function in L∞(∂Bb∗R2
(0)) satisfying:∫

∂Bb∗R2
(0)

ϕk ds = |∂ωk|. (2.2)
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(a) Perforation along an infinite curve (b) Perforation along a closed curve

FIG. 1. Perforated domain

By Aij = Aij(x), Ai = Ai(x), A0 = A0(x) we denote functions satisfying the conditions:

Aij , Ai ∈W 1
∞(Ω), i, j = 1, 2, A0 ∈ L∞(Ω), Aji = Aji,

2∑
i,j=1

Aijzizj > c2|ξ|2, x ∈ Ω, z = (z1, z2) ∈ R2,
(2.3)

where c2 is a positive constant independent of x and ξ, and Aij , A0 are real-valued.
In the vicinity of γ we introduce local coordinates (s, τ), where τ is the distance to a point measured along the normal

ν0 to γ which is inward for Ω−, and s, we remind, is the arc length of γ. Since the curvature of γ is uniformly bounded,
the coordinates (s, τ) are well-defined for |τ | 6 τ0, s ∈ R, where τ0 is a sufficiently small fixed positive number.

We denote by Ωε := Ω \ θε our perforated domain, cf. Fig. 1. In this paper we study a singularly perturbed operator
depending on ε which we denote asHε. It is introduced by the differential expression

−
2∑

i,j=1

∂

∂xi
Aij

∂

∂xj
+

2∑
j=1

Aj
∂

∂xj
− ∂

∂xj
Aj +A0 (2.4)

in Ωε subject to the Dirichlet condition on ∂Ω ∪ ∂θε0 and to the Robin condition(
∂

∂Nε
+ a

)
u = 0 on ∂θε1,

∂

∂Nε
:=

2∑
i,j=1

Aijν
ε
i

∂

∂xj
+

2∑
j=1

Ajν
ε
j ,

where νε = (νε1 , ν
ε
2) is the inward normal to ∂θε1, a = a(x) is a function defined for |τ | < τ0 and a ∈ W 1

∞({x : |τ | <
τ0}).

By aε we denote the sesquilinear form:

aε(u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ωε)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ωε)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ωε)

+ (A0u, v)L2(Ωε)

(2.5)

in L2(Ωε) on the domain W 1
2 (Ωε). Rigorously, we introduce operator Hε as the lower-semibounded self-adjoint op-

erator in L2(Ωε) associated with the closed lower-semibounded symmetric sesquilinear form hε(u, v) := aε(u, v) +

(au, v)L2(∂θε1) in L2(Ωε) on W̊ 1
2 (Ωε, ∂Ω∪∂θε0). Hereafter, for any domainQ ⊂ R2 and any curve S ⊂ Q, by W̊ 1

2 (Q,S),
we denote the subspace of W 1

2 (Q) consisting of the functions with zero trace on S, and we let W̊ 1
2 (Q) := W̊ 1

2 (Q, ∂Q). If
else is not said, in what follows, all the differential operators are introduced in this way, i.e., they will be self-adjoint lower
semibounded operators in L2(Ω) or L2(Ωε) associated with closed lower-semibounded symmetric sesquilinear form. For
the sake of brevity, for each operator, we shall just write the differential expression with the boundary condition as well
as the associated form.

Our main aim is to study the resolvent convergence and the spectrum’s behavior of the operatorHε. To formulate our
main results, we need additional notations.

By H0
D we denote the operator in L2(Ω) with the differential expression (2.4) subject to the Dirichlet condition on

γ and ∂Ω. The associated form is h0
D(u, v) := a(u, v) in L2(Ω) on W̊ 1

2 (Ω, ∂Ω ∪ γ), where form a is introduced by
expression (2.5), where Ωε is replaced by Ω. By analogy with [46, Lem. 2.2], [47, Ch. IV, Sec. 2.2, 2.3], [48, Lem. 3.2]
one can check that the domains of operator H0

D is given by the identity D(H0
D) = W̊ 1

2 (Ω, ∂Ω ∪ γ) ∩W 2
2 (Ω \ γ). By i

we denote the imaginary unit, and by ‖ · ‖X→Y we denote the norm of an operator acting from a Banach space X to a
Banach space Y .

Now, we are ready to formulate our first main result.

Theorem 2.1. Let
ε ln η(ε)→ 0, ε→ +0, (2.6)

and suppose (A1), (A2), and
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(A3) There exists a constant R3 > bR2 such that

{x : |τ | < εbR2} ⊂
⋃
k∈Mε0

BR3ε(y
ε
k), ωεk ⊂ BR3ε(y

ε
k) for each k ∈Mε

0.

Then, the estimate:
‖(Hε − i)−1 − (H0

D − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 Cε

1
2

(
| ln η(ε)| 12 + 1

)
(2.7)

holds true, where C is a positive constant independent of ε.

Let ν0 = (ν0
1 , ν

0
2) and

∂

∂N0
:=

2∑
i,j=1

Aijν
0
i

∂

∂xj
.

By [·]γ we indicate the jump of a function on γ, [u]γ = u
∣∣
τ=+0

− u
∣∣
τ=−0

. Given a function β = β(s) in W 1
∞(γ), we

introduce operatorH0
β with differential expression (2.4) subject to the boundary conditions

[u]γ = 0,

[
∂u

∂N0

]
γ

+ βu
∣∣
γ

= 0. (2.8)

The associated form is h0
β(u, v) := a(u, v) + (βu, v)L2(γ) in L2(Ω) on W̊ 1

2 (Ω). Again, by analogy with [46, Lem.
2.2], [47, Ch. IV, Sec. 2.2, 2.3], [48, Lem. 3.2], one can show that:

D(H0
β) = {u ∈ W̊ 1

2 (Ω) : u ∈W 2
2 (Ω±) and (2.8) is satisfied}.

If β = 0, instead of H0
0 we shall simply write H0. As one can see, in this case there is no boundary condition on γ and

the domain ofH0 is D(H0) = W̊ 1
2 (Ω) ∩W 2

2 (Ω).
In the next theorem, we deal with the case when the perturbed operator involves the Dirichlet condition at least on a

part of ∂θε but in contrast to (2.6), the function ε ln η(ε) converges either to a non-zero constant or to infinity.

Theorem 2.2. Suppose (A1), (A2), let:
1

ε ln η(ε)
→ −ρ, ε→ +0, (2.9)

and setMε
0 be non-empty. For b and R2 in A1 and s ∈ R we denote:

αε(s) :=


π

bR2
, |s− sεk| < bR2ε, k ∈Mε

0,

0, otherwise.

Suppose also that:
(A4) There exists a function α = α(s) in W 1

∞(γ) and a function κ = κ(ε), κ(ε) → +0, ε → +0, such that for all
sufficiently small ε the estimate:

∑
q∈Z

1

|q|+ 1

∣∣∣∣∣∣
n+`∫
n

(
αε(s)− α(s)

)
e−

iq
2π` (s−n) ds

∣∣∣∣∣∣
2

6 κ2(ε) (2.10)

is valid, where n = −s∗, ` = 2s∗, if γ is a finite curve, and n ∈ Z, ` = 1, if γ is an infinite curve. In the latter
case estimate (2.10) is supposed to hold uniformly in n.

We denote:

β := α
(ρ+ µ)

A11A22 −A2
12

, β0 := α
ρ

A11A22 −A2
12

, µ(ε) := − 1

ε ln η(ε)
− ρ.

Then the estimates:

‖(Hε − i)−1 − (H0
β − i)−1‖L2(Ω)→L2(Ωε) 6 C

(
ε

1
2 + κ(ε)

)
(2.11)

‖(Hε − i)−1 − (H0
β0
− i)−1‖L2(Ω)→L2(Ωε) 6 C

(
ε

1
2 + κ(ε) + µ(ε)

)
(2.12)

hold true, where C is a positive constant independent of ε. There exists an explicit function W ε (see (6.5) in [1]) such
that the estimate:

‖(Hε − i)−1 − (1−W ε)(H0
β − i)−1‖L2(Ω)→W 1

2 (Ωε) 6 C
(
ε

1
2 + κ(ε)(ρ+ µ(ε))

)
, (2.13)

is valid, where C is a positive constant independent of ε. If ρ = 0, the estimate

‖(Hε − i)−1 − (H0 − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 C

(
ε

1
2 + µ

1
2 (ε)

)
(2.14)

holds true, where C is a positive constant independent of ε.

The next two theorems concern the case when Mε
0 is empty, i.e., the perturbed operator involves just the Robin

condition on ∂θε.
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Theorem 2.3. Suppose (A1), (A1), let setMε
0 be empty and either a ≡ 0 or η(ε)→ 0, ε→ +0. Then the estimate

‖(Hε − i)−1 − (H0 − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 Cη(ε)| ln η(ε)| 12 , (2.15)

holds true, if a 6≡ 0, η → +0, and

‖(Hε − i)−1f − (H0 − i)−1f‖L2(Ω)→W 1
2 (Ωε) 6 Cε

1
2 η(ε)(| ln η(ε)| 12 + 1), (2.16)

if a ≡ 0. Here C is a positive constant independent of ε.

Theorem 2.4. Suppose (A1), (A2), let η = const, setMε
0 be empty. For b and R2 in (A1) we denote:

αε(s) :=


|∂ωk|η
2bR2

, |s− sεk| < bR2ε, k ∈Mε,

0, otherwise.

Suppose also that:

(A5) There exists a function α = α(s) in W 1
∞(γ) and a function κ = κ(ε), κ(ε) → +0, ε → +0, such that for all

sufficiently small ε the estimates (2.10) are valid.

Then the estimate:
‖(Hε − i)−1 − (H0

αa − i)−1‖L2(Ω)→W 1
2 (Ωε) 6 C

(
ε

1
2 + κ(ε)

)
, (2.17)

holds true, where C is a positive constant independent of ε.

Let us discuss the main results. Assumption (A1) says that the sizes of holes are of the same order and there is a
minimal distance between them. This is a very natural assumption for the perforation. At the same time, no periodicity
for the perforation is assumed. Moreover, since set Mε is arbitrary, we do not need to assume that it is infinite, and for
instance, the number of holes can be finite. In the latter case, by choosing an appropriate set Mε, we can even get the
situation when the distances between the holes are not small, but finite. In this situation one can still apply Theorems 2.2–
2.4. Theorem 2.1 is valid only in the case when the holes with Dirichlet condition are distributed quite densely in order to
satisfy Assumption A3.

Assumption (A2) is a restriction for the geometry of boundaries ∂ωk. We first stress that problem (2.1) can be
rewritten to the Neumann problem for the Laplace equation by letting Xk = ∇Vk. Then identity (2.2) is the solvability
condition and this is the only restriction for ϕk we suppose. Problem (2.1) is solvable for each fixed k and it is solution
belongs to L∞(Bb∗R2

(0) \ ωk). And we assume that the norm ‖Xk‖L∞(Bb∗R2
(0)\ωk) is bounded uniformly in k.

According to Theorem 2.1, if the sizes of the holes are not too small (cf. (2.6)) and the holes with the Dirichlet
condition are, roughly speaking, distributed “uniformly” (Assumption (A3)), the homogenized operator is subject to the
Dirichlet condition on γ and we have the norm resolvent condition in the sense of the operator norm ‖ · ‖L2(Ω)→L2(Ωε).
As one can see, relation (2.6) admits the situation when the sizes of the holes are much smaller than the distances between
them (for instance, η(ε) = εα, α = const > 0), but nevertheless the homogenized operator is still subject to the Dirichlet
condition on γ. This phenomenon is close to a similar one for the operators with frequent alternation of boundary
conditions, cf. [28, 29, 49].

If the function ε ln η(ε) goes to a constant or to infinity as ε → +0 and there are holes with the Dirichlet condition,
the homogenized operator has boundary condition (2.8) on γ, see Theorem 2.2. This boundary condition describes a
delta-interaction on γ, see, for instance, [50, App. K, Sec. K.4.1], and the similar situation holds for the problems with
frequent alternation of boundary conditions with the Dirichlet conditions on exponentially small parts of the boundary,
cf. [26–28, 49]. The norm resolvent convergence holds in the sense of the operator norm ‖ · ‖L2(Ω)→L2(Ωε) only. To
improve the norm, one has either to employ the boundary corrector, see (2.13), or to assume additionally ρ = 0, see
(2.14). We observe that according to Assumption (A4), coefficient β in boundary condition (2.8) for the homogenized
operator depends only on the distribution of the points sεk and there is no dependence on the geometries of the holes.
There are also no special restrictions for part ∂θε0 with the Dirichlet condition. For instance, the number of holes in ∂θε0
can be finite or infinite and the distribution of this set can be very arbitrary.

If the perturbed operator has no Dirichlet condition on ∂θε, the homogenized operator has either condition (2.8) on
γ (Theorem 2.4) or even no condition (Theorem 2.3). In both cases we again have the norm resolvent convergence in the
operator norm ‖·‖L2(Ω)→W 1

2 (Ωε). In Theorem 2.3 we need no additional restrictions thanks to the assumption η(ε)→ +0
or a ≡ 0. In Theorem 2.4 η is constant and because of this we introduce Assumption (A5). Its means that the lengths of
∂ωk should be distributed rather smoothly to satisfy (2.10). We stress that the coefficient β in (2.8) for the homogenized
operator depends both on the distribution of the holes and the sizes of their boundaries.

Let us also discuss assumptions (A4) and (A5). This is in fact the same assumption but adapted for two different
cases. The sum in the left hand side of (2.10) is nothing but the norm in W−

1
2

2 (0, `). This estimate obviously holds true
for a periodic perforation. As an example of a non-periodic perforation, we can mention the situation when we start with
a strictly periodic perforation along an infinite curve but then we change the geometry and locations of a part of holes
so that the total number of deformed holes associated with each segment s ∈ (q, q + 1), q ∈ Z, is relatively small in
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comparison with unchanged holes. Then inequality (2.10) is still true. Moreover, our conjecture is that Assumptions (A4)
and (A5) can not be improved or omitted once we want to have a norm resolvent convergence.

About the sharpness of the estimates for the rate of convergences, we observe that many of these estimates are order
sharp, i.e., the smallness order can not be improved. At the same time, the study of the sharpness is an independent
problem that requires a completely different approach in comparison with the technique we employ in the proofs of
Theorems 2.1–2.4. The sharpness of the estimates are proved in Section 8 of [1].

Our final main result describes the convergence of the spectrum ofHε.

Theorem 2.5. Under the hypotheses of Theorems 2.1–2.4 the spectrum of perturbed operatorHε converges to that of the
corresponding homogenized operator. Namely, if λ is not in the spectrum of the homogenized operator, for sufficiently
small ε, the same is true for the perturbed operator. And if λ is in the spectrum of the homogenized operator, for each ε,
there exists λε in the spectrum of the perturbed operator such that λε → λ as ε→ +0.

We note that this theorem is not implied immediately by Theorems 2.1–2.4. Despite these theorems state convergence
of the perturbed resolvent to a homogenized one in the norm sense, the norm is ε-dependent. Nevertheless, this makes no
serious troubles and in the proof of Theorem 2.5 it is proved a simple trick to overcome this difficulty.
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[8] Lobo M., Oleinik O.A., Pérez M.E., Shaposhnikova T.A. On boundary-value problems in domains perforated along manifolds. Russ. Math. Surv.,

1997, 52, P. 838–839.
[9] Birman M.Sh. On the averaging procedure for periodic operators in a neighborhood of an edge of an internal gap. St. Petersburg Math. J., 2004,

15, P. 507–513.
[10] Birman M.Sh., Suslina T.A. Homogenization with corrector term for periodic elliptic differential operators. St. Petersburg Math. J., 2006, 17,

P. 897–973.
[11] Birman M.Sh., Suslina T.A. Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class

H1(Rd). St. Petersburg Math. J., 2007, 18, P. 857–955.
[12] Suslina T.A. Homogenization with corrector for a stationary periodic Maxwell system. St. Petersburg Math. J., 2008, 19, P. 455–494.
[13] Suslina T.A. Homogenization in Sobolev class H1(Rd) for periodic elliptic second order differential operators including first order terms. St.

Petersburg Math. J., 2011, 22, P. 81–162.
[14] Suslina T.A., Kharin A.A. Homogenization with corrector for a periodic elliptic operator near an edge of inner gap. J. Math. Sci., 2009, 159,

P. 264–280.
[15] Cardone G., Pastukhova S.E., Zhikov V.V. Some estimates for nonlinear homogenization. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 2005, 29,

P. 101–110.
[16] Pastukhova S.E. Some Estimates from Homogenized Elasticity Problems. Dokl. Math., 2006, 73, P. 102–106.
[17] Pastukhova S.E., Tikhomirov R.N. Operator Estimates in Reiterated and Locally Periodic Homogenization. Dokl. Math., 2007, 76, P. 548–553.
[18] Zhikov V.V. On operator estimates in homogenization theory. Dokl. Math., 2005, 72, P. 534–538.
[19] Zhikov V.V. Spectral method in homogenization theory. Proc. Steklov Inst. Math., 2005, 250, P. 85–94.
[20] Zhikov V.V. Some estimates from homogenization theory. Dokl. Math., 2006, 73, P. 96–99.
[21] Griso G. Error estimate and unfolding for periodic homogenization. Asymptot. Anal., 2004, 40, P. 269–286.
[22] Griso G. Interior error estimate for periodic homogenization. C. R. Acad. Sci. Paris Ser. I Math., 2005, 340, P. 251–254.
[23] Kenig C.E., Lin F., Shen Z. Convergence rates in L2 for elliptic homogenization problems. Arch. Rat. Mech. Anal., 2012, 203, P. 1009–1036.
[24] Kenig C.E., Lin F., Shen Z. Periodic homogenization of green and neumann functions. Comm. Pure Appl. Math., 2014, 67, P. 1219–1262.
[25] Borisov D., Bunoiu R., Cardone G. Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows.

J. Math. Sci., 2011, 176, P. 774–785.
[26] Borisov D., Bunoiu R., Cardone G. On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition. Ann.
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