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ABSTRACT The Chernoff

√
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1. Introduction

Recall that the Chernoff
√
n-Lemma [3, Lemma 2] is one of a key tool in the theory of semigroup approximations,

see e.g. [4, Chapter III, Section 5]. For the reader’s convenience and for motivation of the present comments, we show
this lemma below.

Lemma 1.1. Let bounded operator C on a Banach space X (C ∈ L(X)) be a contraction, i.e., ‖C‖ ≤ 1. Then,
{et(C−1)}t≥0 is a norm-continuous contraction semigroup on X and one has the estimate:

‖(Cn − en(C−1))x‖ ≤
√
n ‖(C − 1)x‖ , (1.1)

for all x ∈ X and n ∈ N.

Proof. To prove the inequality (1.1) we use the representation:

Cn − en(C−1) = e−n
∞∑
m=0

nm

m!
(Cn − Cm) . (1.2)

To proceed we insert:

‖(Cn − Cm)x‖ ≤
∥∥∥(C |n−m| − 1)x

∥∥∥ ≤ |m− n|‖(C − 1)x‖ , (1.3)

into (1.2) to obtain by the Cauchy-Schwarz inequality the estimate:

‖(Cn − en(C−1))x‖ ≤ ‖(C − 1)x‖ e−n
∞∑
m=0

nm

m!
|m− n| ≤

{
∞∑
m=0

e−n
nm

m!
|m− n|2}1/2‖(C − 1)x‖ . x ∈ X ,

(1.4)

Note that the sum in the right-hand side of (1.4) can be calculated explicitly. This gives the value n, which yields
(1.1). �

The aim of the present comments is to revise the Chernoff
√
n-Lemma in two directions. First, we modify the

√
n-

estimate (1.1) for contractions. Then, we apply two new estimates for the proof of the Chernoff product formula for
strongly continuous semigroups (C0-semigroups) in the strong operator topology, see Section 2 and Section 3.

Second, we use the idea of the probabilistic approach to the estimate in strong operator topology (Section 2) to uplift
it to the operator-norm estimate for a special class of contractions: the quasi-sectorial contractions, see Section 4.
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2. Revised
√
n-Lemma and Chernoff product formula

We start by a technical lemma. It is a revised version of the Chernoff
√
n-Lemma 1.1. Our variational estimate (2.1)

in 3
√
n-Lemma 2.1 and the probabilistic approach are, in a certain sense, more flexible than (1.1). Indeed, the scheme of

the proof will be used later (Section 4) for uplifting the convergence of the Chernoff and the Lie-Trotter product formulae
to the operator-norm topology.

Lemma 2.1. ( 3
√
n -Lemma) Let C be a contraction on a Banach space X. Then, {et(C−1}t≥0 is a norm-continuous

contraction semigroup on X and one has the estimate:

‖(Cn − en (C−1))x‖ ≤ n

ε2n
2 ‖x‖+ εn ‖(1− C)x ‖ , n ∈ N \ {0} , (2.1)

for all x ∈ X and εn > 0. For the optimal value of the parameter εn :

ε∗n :=

(
4n ‖x‖

‖(1− C)x ‖

)1/3

, (2.2)

on the right-hand side of (2.1), we obtain the estimate:

‖(Cn − en (C−1)) ‖ ≤ 3

2
3
√
n ‖2 (1− C) ‖2/3 , (2.3)

which is the 3
√
n -Lemma.

Proof. Since operator C is bounded and ‖C‖ ≤ 1, the operator (1−C) is the generator of a norm-continuous contraction
semigroup:

‖ e t(C−1) ‖ ≤ e−t
∥∥∥∥∥
∞∑
m=0

tm

m!
Cm

∥∥∥∥∥ ≤ 1 . (2.4)

In order to prove estimate (2.1), we use the representation:

Cn − en(C−1) = e−n
∞∑
m=0

nm

m!
(Cn − Cm) . (2.5)

Then, we split the sum (2.5) into two parts: the central part for |m − n| ≤ εn and the tails for |m − n| > εn.
Optimisation of the splitting parameter εn in (2.1) yields the best estimate and thus the optimal value of δ ∈ R.

For evaluation of the tails, we use the Tchebychëv inequality. Let Xn ∈ N0 be the Poisson random variable with the
rate parameter n, that is, with the probability distribution P{Xn = m} = nme−n/m! . Then, one gets for the expectation:
E(Xn) = n, and for the variance: Var(Xn) := E((Xn−E(Xn))2) = n. That being so, the Tchebychëv inequality yields

P{|Xn − E(Xn)| > ε} ≤ Var(Xn)

ε2n
, for any εn > 0. (2.6)

Note that although for any x ∈ X there is an evident bound: ‖(Cn − Cm)x‖ ≤ 2 ‖x‖, for estimating (2.5) we shall
also use below inequalities:

‖(C n − Cm)x‖ = ‖C n−k(Ck − Cm−n+k)x‖

≤ |m− n| ‖C n−k(1− C)x‖, k = 0, 1, . . . , n .
(2.7)

Then by ‖C‖ ≤ 1 and by the Tchebychëv inequality (2.6) we obtain the estimate for tails:

e−n
∑

|m−n|>εn

nm

m!
‖(Cn − Cm)x‖ ≤ e−n

∑
|m−n|>εn

nm

m!
· 2 ‖x‖

= P{|Xn − E(Xn)| > εn} · 2 ‖x‖ ≤ n

ε2n
2 ‖x‖ .

(2.8)

To evaluate the central part of the sum (2.5), when |m− n| ≤ εn, note that by virtue of (2.7):

‖(Cn − Cm)x‖ ≤ |m− n| ‖Cn−[εn] (1− C)x‖ (2.9)
≤ εn ‖(1− C)x‖.

Then we obtain:

e−n
∑

|m−n|≤εn

nm

m!
‖(Cn − Cm)x‖ ≤ εn ‖(1− C)x‖ , x ∈ X , (2.10)

for n ∈ N \ {0}. Estimate (2.10), together with (2.8), yield (2.1) for all u ∈ X and εn > 0.
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Minimising the estimate (2.1) with respect to parameter εn > 0 one obtains the optimal value for ε∗n (2.2) and
n

ε∗n
2 2 ‖x‖+ ε∗n ‖(1− C)x ‖ =

3

2
3
√
n (4 ‖x‖)1/3 ‖(1− C)x ‖2/3 , (2.11)

for all x ∈ X and n ∈ N \ {0}. As a consequence, (2.1) and (2.11) yield (2.3), which is the 3
√
n -Lemma. �

Theorem 2.2. (Chernoff product formula) Let Φ : t 7→ Φ(t) be a function from R+
0 to contractions on X such that

Φ(0) = 1. Let {UA(t)}t≥0 be a contraction C0-semigroup, and let D ⊂ dom(A) be a core of the generator A.
If the function Φ(t) has a strong right-derivative Φ′(+0) at t = 0 (that is, Φ′(+0)x exists for any x ∈ dom(Φ′(+0)))

and if

Φ′(+0)x := lim
t→+0

1

t
(Φ(t)− 1)x = −Ax ,

for all x ∈ D, then
lim
n→∞

[Φ(t/n)]n x = UA(t)x , (2.12)

for all t ∈ R+
0 and x ∈ X.

Proof. Consider the bounded approximations {An(s)}n≥1 of generator A:

An(s) :=
1− Φ(s/n)

s/n
, s ∈ R+ , n ∈ N . (2.13)

Note that these operators are m-accretive: ‖(An(s) + ζ1)−1‖ ≤ (Re(ζ))−1 for Re(ζ) > 0 and for any n ∈ N. By
‖Φ(t)‖ ≤ 1 together with (2.13) we obtain ‖e−t An(s)‖ ≤ 1, but also

lim
n→∞

An(s)x = Ax , (2.14)

for all x ∈ D and any s ∈ R+. Then, given that D = core(A), by virtue of the Trotter-Neveu-Kato generalised strong
convergence theorem (see, e.g., [5, Theorem 3.17] or [4, Chapter III, Theorem 4.8]) one obtains

lim
n→∞

e−t An(s) x = UA(t)x , x ∈ X , t ∈ R+
0 . (2.15)

This is the strong and uniform in t and in s convergence (2.15) of contractive approximants {e−t An(s)}n≥1 for
t ∈ [0, τ ] and s ∈ (0, s0].

Now, by Lemma 2.1 for contraction C := Φ(t/n) we obtain owing to (2.3) that:

‖[Φ(t/n)]n x− e−t An(t) x‖ = ‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖

≤ 3

2
3
√
n (4 ‖x‖)1/3 ‖(1− Φ(t/n))x ‖2/3 , x ∈ X .

(2.16)

Since by (2.14) one gets for any x ∈ D and uniformly on (0, t0]:

lim
n→∞

3
√
n ‖ (1− Φ(t/n)) x ‖2/3 = lim

n→∞
t2/3 n−1/3 ‖An(t) x‖2/3 = 0 , (2.17)

equations (2.16) and (2.17) provide uniformly on (0, t0]:

lim
n→∞

‖ [Φ(t/n)]n x− e−t An(t) x‖ = 0, x ∈ D . (2.18)

Then, (2.15) and (2.18) yield uniformly in t ∈ [0, t0] limit:

lim
n→∞

[Φ(t/n)]n x = UA(t)x , x ∈ D . (2.19)

Note that by density of D and by the uniform estimate ‖ [Φ(t/n)]n x− e−t An(t)x‖ ≤ 2 ‖x‖ the convergence in (2.18) can
be extended to all x ∈ X. Indeed, it is known that on the bounded subsets of L(X) the topology of point-wise convergence
on a dense subset D ⊂ X coincides with the strong operator topology, see, e.g., [6, Chapter III, Lemma 3.5]. As a
consequence, limit (2.18) being extended to x ∈ X and limit (2.15) yield (2.12). �

The limit (2.12) is called the Chernoff product formula in the strong operator topology for contractive C0-semigroup
{UA(t)}t≥0.

Proposition 2.3. [3] (Lie-Trotter product formula) Let A, B and C be generators of contraction C0-semigroups on X.
Suppose that algebraic sum:

Cx = Ax+Bx , (2.20)
is valid for all x ∈ D, where domain D = core (C). Then, the semigroup {UC(t)}t≥0 can be approximated on X in the
strong operator topology by the Lie-Trotter product formula:

e−tC x = lim
n→∞

(e−tA/ne−tB/n)n x , x ∈ X , (2.21)
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for all t ∈ R+
0 and C := (A+B), which is closure of the sum (2.20).

Proof. Let us define the contraction R+
0 3 t 7→ Φ(t), Φ(0) = 1, by:

Φ(t) := e−tAe−tB . (2.22)

Note that if x ∈ D, then derivative

Φ′(+0)x = lim
t→+0

1

t
(Φ(t)− 1) x = −(A+B) x . (2.23)

Now, we are in position to apply Theorem 2.2. This yields (2.21) for C := (A+B). �

Corollary 2.4. Extension of the strongly convergent Lie-Trotter product formula of Proposition 2.3 to quasi-bounded and
holomorphic semigroups follows through verbatim.

3. Revision of the Chernoff estimate

In this section, we show a one more Chernoff-type estimate (3.1), which is of a different nature than the variational
estimate (2.1) ( 3

√
n-Lemma 2.1). In fact, it is a kind of improvement of the original Chernoff estimate (1.1) (

√
n-Lemma

1.1).

Lemma 3.1. Let C ∈ L(X) be contraction on a Banach space X. Then {et(C−1}t≥0 is a norm-continuous contraction
semigroup on X and the following estimate:

‖(Cn − en(C−1))x‖ ≤ n

2
(‖(C − 1)2 x‖+

e2

3
‖(C − 1)3 x‖) , (3.1)

holds for all n ∈ N and x ∈ X.

Proof. The first assertion is proven in Lemma 2.1, see (2.4).
To prove inequality (3.1) we use the telescopic representation:

Cn − en(C−1) =

n−1∑
k=0

Cn−k−1 (C − e(C−1)) ek(C−1) . (3.2)

To proceed we exploit that operator C ∈ L(X) is bounded and therefore:

C − e(C−1) = − 1

2
(1− C)2 − (1− C)3

∞∑
m=3

(−1)m

m!
(1− C)m−3 , (3.3)

Owing to ‖C‖ ≤ 1 one obtains the estimate:

‖
∞∑
m=3

1

m!
(1− C)m−3‖ ≤ 1

6
e‖1−C‖ ≤ e2

6
. (3.4)

Then on account of (3.2) - (3.4) and (2.4) we obtain inequality (3.1). �

Corollary 3.2. (Chernoff product formula) Let Φ : t 7→ Φ(t) be a function from R+
0 to contractions on X such that

Φ(0) = 1, which satisfies conditions of Theorem 2.2. Then

lim
n→∞

‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ = 0 , x ∈ X , (3.5)

and one gets the product formula (2.12).

Proof. On account of (3.1) we obtain estimate

‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ ≤ (3.6)
t2

2n

(∥∥∥∥n2

t2
(1− Φ(t/n))2 x

∥∥∥∥+
e2

3

t

n

∥∥∥∥n3

t3
(1− Φ(t/n))3 x

∥∥∥∥) , x ∈ X .

Note that by (2.14) we have on the dense set D = core(A) for any t ∈ R+ :

lim
n→∞

n

t
(1− Φ(t/n))x = Ax , x ∈ D . (3.7)

Given that generator A of contractive C0-semigroup is accretive, for Re(ζ) > 0 the range of resolvent: ran((A +
ζ1)−1) = X. As a consequence (cf. [6, Chapter III, Problem 2.9]), domains dom(A2) ⊃ dom(A3) are dense in X and
limit (3.7) provides:

lim
n→∞

(An(t))2 x = A2 x , lim
n→∞

(An(t))3 x = A3 x , x ∈ D ⊂ dom(A3), (3.8)

where An(t) = (t/n)−1 (1− Φ(t/n)).
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By virtue of estimate (3.6) and (3.8), we obtain:

lim
n→∞

‖([Φ(t/n)]n − en(Φ(t/n)−1)) x‖ = 0 , x ∈ D . (3.9)

Then similarly to concluding arguments in Theorem 2.2 (that on the bounded subsets of L(X) the topology of point-
wise convergence on a dense subset D ⊂ X coincides with the strong operator topology) the limit (3.9) can be extended
to x ∈ X.

Now, given that D = core(A), by virtue of the Trotter-Neveu-Kato theorem we obtain the limit (2.15), and owing to
(3.9) for x ∈ X, we deduce Chernoff product formula (2.12). �

Resuming the Chernoff
√
n-inequality: (1.1), and its variety: (2.1) and (3.1), we conclude that due to the terms with

‖(C−1) x‖ all of them control only the strong convergence of the product formulae. The rates: Rn(t), of these converges
conditioned to x ∈ D have the following asymptotic form for t > 0 and large n ∈ N:
(a) For (1.1): Rn(t) = 1/

√
n ‖An(t)x‖.

(b) For (2.1): Rn(t) = 1/ 3
√
n ‖An(t)x‖2/3.

(c) For (3.1): Rn(t) = 1/n ‖An(t)2 x‖.

Remark 3.3. None of these three methods has an evident straightforward extension that could ensure the operator-norm
convergence of the Chernoff product formula. In the next Section 4 we show that a relatively sophisticated method
(cf.(b)) based on the Tchebychëv inequality (Section 2) is a fortiori more accurate to allow uplifting the convergence of
the Chernoff product formula to the operator-norm topology for quasi-sectorial contractions on a Hilbert space.

4. Quasi-sectorial contractions and ( 3
√
n)−1-Theorem

Definition 4.1. [7] A contraction C on the Hilbert space H is called quasi-sectorial with semi-angle α ∈ [0, π/2) with
respect to the vertex at z = 1, if its numerical range W (C) ⊆ Dα. Here

Dα := {z ∈ C : |z| ≤ sinα} ∪ {z ∈ C : | arg(1− z)| ≤ α and |z − 1| ≤ cosα}. (4.1)

We comment that Dα=π/2 = D (unit disc) and recall that a general contraction C satisfies condition: W (C) ⊆ D.
Note that if operator C is a quasi-sectorial contraction, then 1 − C is an m-sectorial operator with vertex z = 0

and semi-angle α. Then for C the limits: α = 0 and α = π/2, correspond respectively to self-adjoint and to standard
contractions whereas for 1− C they give a non-negative self-adjoint and an m-accretive (bounded) operators.

For λ > 0 the resolvent (A + λ1)−1 of an m-sectorial operator A, with semi-angle α ∈ [0, α0], α0 < π/2, and
vertex at z = 0, gives an example of the quasi-sectorial contraction.

Proposition 4.2. [7, 8] If C is a quasi-sectorial contraction on a Hilbert space H with semi-angle 0 ≤ α < π/2, then

‖Cn(1− C)‖ ≤ Kα

n+ 1
, n ∈ N . (4.2)

The property (4.2) implies that the quasi-sectorial contractions belong to the class of so-called Ritt’s operators [9].
This allows one to go beyond the 3

√
n -Lemma 2.1 to the ( 3

√
n)−1-Theorem and from estimates in the strong operator

topology to the operator-norm topology.

Theorem 4.3. (( 3
√
n)−1-Theorem) Let C be a quasi-sectorial contraction on H with numerical range W (C) ⊆ Dα,

0 ≤ α < π/2. Then ∥∥∥Cn − en(C−1)
∥∥∥ ≤ Mα

n1/3
, n ∈ N , (4.3)

where Mα = 2Kα + 2 and Kα is defined by (4.2).

Proof. With help of inequality (4.2) we can improve the estimate of the central part of the sum (2.5) in Lemma 2.1. Note
that on account of (2.7) we obtain by (4.2) and ‖C‖ ≤ 1:

‖Cn − Cm‖ ≤ |m− n| ‖Cn−[εn](1− C)‖ ≤ εn
Kα

n− [εn] + 1
, (4.4)

cf. (2.9). Here εn := nδ+1/2 for δ < 1/2, which makes sense for the estimate (2.8) of tails, and [εn] is the integer part of
εn ≥ |m− n|. Then owing to (4.4) the central part has the estimate:

e−n
∑

|m−n|≤εn

nm

m!
‖(Cn − Cm)x‖ ≤ εn

Kα

n− [εn] + 1
‖x‖ , x ∈ X , n ∈ N . (4.5)

As a consequence, (2.8) and (4.5) yield instead of (2.3) (or (1.1)) the operator-norm estimate:∥∥∥Cn − en(C−1)
∥∥∥ ≤ 2

n2δ
+ εn

Kα

n− [εn] + 1
, n ∈ N . (4.6)
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Let n0 ∈ N satisfies inequality: 2 (εn0
− 1) ≤ n0. Then (4.6) gives∥∥∥Cn − en(C−1)

∥∥∥ ≤ 2

n2δ
+

2Kα

n1/2−δ , n > n0 . (4.7)

The estimate Mα/n
1/3 of the Theorem 4.3 results from the optimal choice of the value: δ = 1/6, in (4.7). �

Similar to ( 3
√
n)-Lemma, the ( 3

√
n)−1-Theorem is the first step in developing the operator-norm approximation

formula à la Chernoff. To this end one needs an operator-norm analogue of Theorem 2.2. Since the last includes the
Trotter-Neveu-Kato strong convergence theorem, we need the operator-norm extension of this assertion for quasi-sectorial
contractions.

Proposition 4.4. [7] Let {X(s)}s>0 be a family of m-sectorial operators in a Hilbert space H such that for some
0 < α < π/2 and any s > 0 the numerical range W (X(s)) ⊆ Sα. Let X0 be an m-sectorial operator defined in a closed
subspace H0 ⊆ H, with W (X0) ⊆ Sα. Then the two following assertions are equivalent:

(a) lim
s→+0

∥∥(ζ1+X(s))−1 − (ζ1+X0)−1P0

∥∥ = 0 , for ζ ∈ Sπ−α ,

(b) lim
s→+0

∥∥∥e−tX(s) − e−tX0P0

∥∥∥ = 0 , for t > 0 .

Here P0 denotes the orthogonal projection from H onto H0 and Sα = {z ∈ C : | arg(z)| ≤ α} is a sector in complex
plane C with semi-angle α and vertex at z = 0.

Now ( 3
√
n)−1-Theorem 4.3 and Proposition 4.4 yield a desired generalisation of the operator-norm approximation

formula:

Proposition 4.5. [7] Let {Φ(s)}s≥0 be a family of uniformly quasi-sectorial contractions on a Hilbert space H, i.e. such
that there exists 0 ≤ α < π/2 and W (Φ(s)) ⊆ Dα, for all s ≥ 0. Let

X(s) := (1− Φ(s))/s , (4.8)

and letX0 be a closed operator with non-empty resolvent set, defined in a subspace H0 ⊆ H. Then, the family {X(s)}s>0

converges, when s→ +0, in the uniform resolvent sense to the operator X0 if and only if

lim
n→∞

∥∥Φ(t/n)n − e−tX0P0

∥∥ = 0 , for t > 0 . (4.9)

Here, P0 denotes the orthogonal projection onto the subspace H0.

Let A be an m-sectorial operator with semi-angle 0 < α < π/2 and with vertex at z = 0, which means that
numerical range W (A) ⊆ Sα = {z ∈ C : | arg(z)| ≤ α}. Then, {Φ(t) := (1 + tA)−1}t≥0 is the family of quasi-
sectorial contractions, i.e., W (Φ(t)) ⊆ Dα. Let X(s) := (1 − Φ(s))/s, s > 0, and X0 := A. Then, X(s) converges
when s→ +0, to X0 in the uniform resolvent sense with the asymptotic

‖(ζ1+X(s))−1 − (ζ1+X0)−1‖ = s

∥∥∥∥ A

ζ1+A+ ζsA
· A

ζ1+A

∥∥∥∥ = O(s),

for any ζ ∈ Sπ−α, since we have the estimate:∥∥∥∥ A

ζ1+A+ ζsA
· A

ζ1+A

∥∥∥∥ ≤ (1 +
|ζ|

dist (ζ(1 + sζ)−1,−Sα)

)(
1 +

|ζ|
dist(ζ,−Sα)

)
.

Therefore, the family {Φ(t)}t≥0 satisfies the conditions of Proposition 4.5. This implies the operator-norm approx-
imation of the exponential function , i.e. the semigroup for m-sectorial generator, by the powers of resolvent (the Euler
approximation formula):

Corollary 4.6. [8,10] IfA is anm-sectorial operator in a Hilbert space H, with semi-angle α ∈ (0, π/2) and with vertex
at 0, then ∥∥(1+ tA/n)−n − e−tA

∥∥ ≤ Lα
n
, t ∈ Sπ/2−α , (4.10)

for n ∈ N.
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5. Conclusion

Summarising we note that for the quasi-sectorial contractions instead of divergent (for n→∞) Chernoff’s estimate
(1.1), we find the estimate (4.7) which converges for n → ∞ to zero in the operator-norm topology. Note that the rate
O(1/n1/3) of this convergence is obtained with help of the Poisson representation and the Tchebychëv inequality in the
spirit of the proof of Lemma 2.1, and which is not optimal.

The estimate M/n1/3 in the ( 3
√
n)−1-Theorem 4.3 can be improved by a more refined lines of reasoning. For

example, by scrutinising our probabilistic arguments one can find a more precise Tchebychëv-type bound for probability
of tails. This improves the estimate (4.7) to the rateO(

√
ln(n)/n), see [11], but again only for quasi-sectorial contractions

providing due to Proposition 4.2 the operator-norm contrôl (4.5) of the central part.
On the other hand, a careful analysis of localisation the numerical range of quasi-sectorial contractions [8, 10],

generated in a Hilbert space H by m-sectorial operators with semi-angle α ∈ (0, π/2), permits one to uplift the operator-
norm estimate in Corollary 4.6 to the ultimate optimal α-dependent rate O(1/n), [10, Theorem 4.1].

We note that with help of the spectral representation, one can easily obtain in (4.7) the optimal rate O(1/n) of the
operator-norm convergence for self-adjoint contractions C. This is a particular case of the quasi-sectorial contraction
for α = 0, cf. [7, Remark 3.2]. This also concerns the optimal rate of convergence O(1/n) for the self-adjoint Euler
approximation formula (4.10) for A = A∗ ≥ 0, which is m(sectorial operator for α = 0.
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