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1. Introduction

For a given sequence of positive numbers {a0, a1, . . . , aN−1} (in what follows we assume a0 = 1) and real numbers
{b1, b2, . . . , bN}, we denote by A the finite Jacobi matrix given by:

A =



b1 a1 0 0 0 . . .

a1 b2 a2 0 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . aN−2 bN−1 aN−1

. . . . . . . . . . . . aN−1 bN


. (1)

Let u = (u1, . . . , uN ) ∈ RN and T > 0 be fixed. With the matrix A we associate the dynamical system:{
utt(t)−Au(t) = F (t), t > 0,

u(0) = ut(0) = 0,
(2)

where the vector function F (t) = (f(t), 0, . . . , 0), f ∈ L2(0, T ) is interpreted as a boundary control. The solution of (2)
is denoted by uf . With the system (2), we associate the response operator acting by the rule:(

RT f
)
(t) = uf1 (t), 0 < t < T. (3)

The forward and inverse problems for the system (2) and for the special case of this system, the finite Krein-Stieltjes
string, were the subjects of [1, 2], where, as a main tool, we used the Boundary control method [3, 4]. In this paper,
we would like to demonstrate one more application of the Boundary control method, namely the construction of the de
Banges space associated with (2).

De Branges spaces play an important role in the inverse spectral theory of first order canonical systems, see for
example [5–7]. In [8, 9], the authors shows how to use the Boundary control method to associate de Branges spaces
with different dynamical systems. Note that our approach differs from the classical one and potentially admits theallows
generalization to multidimensional systems. The algorithm proposed in [8,9] is as follows: fixing some finite time t = T ,
one denotes by FT the set of controls acting on the time interval (0, T ) and introduces the reachable set of the dynamical
system at this time:

UT := {uf (T ) | f ∈ FT }.
Then, one applies the Fourier transform F associated with the operator A to elements from UT and get a linear manifold
FUT . Then. this linear manifold is equipped with the norm defined by the connecting operator, which resulted in the de
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Branges space associated with the initial dynamical system. In the models considered in [8,9], models the dynamical sys-
tems have different properties in with respect to the boundary controllability: the system associated with the Schrödinger
operator is exactly controllable from the boundary,; the system associated with the one-dimensional Dirac operator is
not controllable, but the controllability restores after some trick associated with doubling the state of the system, ; the
discrete system associated with a finite Jacobi matrix is boundary controllable, but the time in the model considered was
discrete, see also [10] for the case of semi-infinite matrix. The peculiarity of the system (2) is the lack of the boundary
controllability, and in opposite to all systems considered in [9, 10], the speed of the wave propagation in (2) is infinite.
Nevertheless we will show that the method from [8,8] works, and using it, one can construct de Branges space associated
with A.

In the second section, we provide the necessary information on for the solution of the forward and inverse problems
for (2) from [2]. In the third section, we remind the reader of some useful definitions and construct the de Branges space
associated with (2).

2. Dynamical system, forward problem, Krein equations

The following Cauchy problem for the difference equation:
a1φ2 + b1φ1 = λφ1,

anφn+1 + an−1φn−1 + bnφn = λφn, n = 2, . . . , N,

φ1 = 1,

(4)

determines the set of polynomials {1, φ2(λ), . . . , φN (λ), φN+1(λ)}. Let λ1, . . . , λN be the roots of the equation φN+1(λ) =
0, it is known [11] that they are real and distinct. We denote by (·, ·) the scalar product in RN and introduce the vectors
and the coefficients by the rules:

ϕ(λ) =


φ1(λ)

·

·

φN (λ)

 , ϕk =


φ1(λk)

·

·

φN (λk)

 , ρk = (ϕk, ϕk) , k = 1, . . . , N.

Thus, ϕk are non-normalized eigenvectors of A, corresponding to eigenvalues λk:

Aϕk = λkϕk, k = 1, . . . , N.

We call by spectral data and the spectral function ρ the following objects:

{λi, ρi}Ni=1 , ρ(λ) =
∑

{k:λk<λ}

1

ρk
.

The standard application of the Fourier method yields:

Lemma 1. The solution to (2) admits the spectral representation:

uf (t) =

N∑
k=1

hk(t)ϕk, uf (t) =

∞∫
−∞

t∫
0

S(t− τ, λ)f(τ) dτϕ(λ) dρ(λ), (5)

where:

hk(t) =
1

ρk

t∫
0

f(τ)Sk(t− τ) dτ,

S(t, λ) =



sin
√
λt√
λ

, λ > 0,

sh
√
|λ|t√
|λ|

, λ < 0,

t, λ = 0,

Sk(t) = S(t, λk).

We introduce the outer space of the system (2), the space of controls: FT := L2(0, T ;C) with the scalar product

f, g ∈ FT , (f, g)FT =

∫ T

0

f(t)g(t) dt. The response operator RT : FT 7→ FT is introduced by the formula (3).
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Making use of (5) implies the representation formula for RT :

(
RT f

)
(t) = uf1 (t) =

N∑
k=1

hk(t) =

t∫
0

r(t− s)f(s) ds,

where:

r(t) =

N∑
k=1

1

ρk
Sk(t),

is called a response function. Note that the operatorRT is a natural analog of a dynamic Dirichlet-to-Neumann operator [4]
in continuous, and [9, 12, 13] in discrete cases.

The inner space of (2), i.e. the space of states is HN := CN , indeed for any T > 0 and f ∈ FT , we have that
uf (T ) ∈ HN . The scalar product inHN is given by:

(a, b)HN =

N∑
k=1

akbk.

The control operator WT : FT 7→ HN is introduced by the rule:

WT f = uf (T ).

Due to (5), we have that WT f =

N∑
k=1

hk(T )ϕk. In [1, 2], the authors used real inner and outer spaces, but in the complex

case all the results are valid as well.
We introduce the subspace:

FT1 = Lin {Sk(T − t)}Nk=1,

where we assume complex coefficients in the span. The following lemma establishes the boundary controllability of (2):

Lemma 2. The operator WT maps FT1 ontoHN isomorphically.

The connecting operator CT : FT 7→ FT is defined by the rule CT :=
(
WT

)∗
WT , so by the definition for

f, g ∈ FT , one has: (
CT f, g

)
FT =

(
uf (T ), ug(T )

)
HN =

(
WT f,WT g

)
HN . (6)

It is crucial in the Boundary control method that CT can be expressed in terms of inverse data:

Theorem 1. The connecting operator admits the representation in terms of dynamic inverse data:

(
CT f

)
(t) =

1

2

T∫
0

2T−s−t∫
|t−s|

r(τ) dτf(s) ds,

and in terms of spectral inverse data:

(
CT f

)
(t) =

T∫
0

N∑
k=1

1

ρk
Sk(T − t)Sk(T − s)f(s) ds. (7)

Remark 1. The formula (7) implies that FT1 = CTFT , so FT1 is completely determined by inverse data.

2.1. Krein equations

By fTk ∈ FT1 , we denote the controls, driving the system (2) to prescribed special states:

dk ∈ HN , dk = (0, . . . , 1, . . . , 0) , k = 1, . . . , N.

It is important that such a controls can be found as the solutions to the Krein equations:

Theorem 2. The control fT1 can be found as the solution to the following equation:(
CT fT1

)
(t) = r(T − t), 0 < t < T. (8)

The controls fTk , k = 2, . . . , N satisfy the system:
−
(
CT fT1

)′′
= b1C

T fT1 + a1C
T fT2 ,

−
(
CT fTk

)′′
= ak−1C

T fTk−1 + bkC
T fTk + akC

T fTk+1, k = 2, . . . , N − 1,

−
(
CT fTN

)′′
= aN−1C

T fTN−1 + bNC
T fTN .

(9)
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3. De Branges space for A

Here, we provide the information on de Branges spaces in accordance with [5, 7]. The entire function E : C 7→ C is
called a Hermite-Biehler function if |E(z)| > |E(z)| for z ∈ C+. We use the notation F#(z) = F (z). The Hardy space

H2 is defined by: f ∈ H2 if f is holomorphic in C+ and sup
y>0

∫ ∞
−∞
|f(x + iy)|2 dx < ∞. Then, the de Branges space

B(E) consists of entire functions such that:

B(E) :=

{
F : C 7→ C, F entire,

F

E
,
F#

E
∈ H2

}
.

The space B(E) with the scalar product:

[F,G]B(E) =
1

π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2
,

is a Hilbert space. For any z ∈ C, the reproducing kernel is introduced by the relation:

Jz(ξ) :=
E(z)E(ξ)− E(z)E(ξ)

2i(z − ξ)
. (10)

Then,

F (z) = [Jz, F ]B(E) =
1

π

∫
R

Jz(λ)F (λ)
dλ

|E(λ)|2
.

We observe that a Hermite–Biehler function E(λ) defines Jz by (10). The converse is also true [5, 6]:

Theorem 3. Let X be a Hilbert space of entire functions with reproducing kernel such that:
1) For any ω ∈ C the point evaluation is a bounded functional, i.e. |f(ω)| 6 Cω‖f‖X ,
2) if f ∈ X then f# ∈ X and ‖f‖X = ‖f#‖X ,

3) if f ∈ X and ω ∈ C such that f(ω) = 0, then
z − ω
z − ω

f(z) ∈ X and
∥∥∥∥z − ωz − ω

f(z)

∥∥∥∥
X

= ‖f‖X ,

then X is a de Branges space based on the function:

E(z) =
√
π(1− iz)Ji(z)‖Ji‖−1X ,

where Jz is a reproducing kernel.

In the space L2, ρ(R) we take the subspace spanned on the first N polynomials generated by (4):

LN := Lin{φ1(λ), . . . , φN (λ)}.

Note that φ1(λ), . . . , φN (λ) are mutually orthogonal in L2, ρ(R), see [11]. By PN : L2, ρ(R) → L2, ρ(R) we denote the
orthogonal projector in L2, ρ(R) onto LN acting by the rule:

PNa =

N∑
k=1

(a, φk)L2, ρ(R) φk(λ), a ∈ L2, ρ(R).

We introduce the Fourier transformation RN 7→ L2, ρ(R) by the formula:

(Fb)(λ) =

N∑
k=1

bkφk(λ), b = (b1, . . . , bN ) ∈ RN .

Note that F is an unitary map between RN and LN , and:

bk = (Fb(λ), φk(λ))L2, ρ(R) .

In accordance with the general approach proposed in [8, 9], we consider the reachable set of the dynamical system
(2):

UT :=WTFT =
{
uf (T ) | f ∈ FT

}
.

By the Lemma 2 we know that:
UT =WTFT1 .

Then, for any f ∈ FT we can evaluate:

(
Fuf (T )

)
(λ) =

N∑
k=1

∫
R

T∫
0

Sk(T − τ, β)f(τ) dτφk(β) dρ(β)φk(λ) = PN

T∫
0

S(T − τ, ·)f(τ) dτ.
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We introduce the linear manifold of Fourier images of the reachable set:

BN := FUT = Lin{φ1, . . . , φN},

thus, BN is a set of polynomials with complex coefficients of the degree not grater than N − 1.

The metric in BN is introduced by the following rule: for H,G ∈ BN , such that H = PN

∫ T

0

S(T − τ, ·)h(τ) dτ,

G = PN

∫ T

0

S(T − τ, ·)g(τ) dτ , where h, g ∈ FT1 we set:

(H,G)BT :=
(
CTh, g

)
FT .

On the other hand, for h, g ∈ FT1 we can evaluate using the definition of CT and Fourier transformation:

(H,G)BT = (CTh, g)FT = (uh(T ), ug(T ))HN =

∫
R

(
Fuh(T )

)
(λ)
(
Fuh(T )

)
(λ) dρ(λ)

=

∫
R

PN T∫
0

S(T − τ, ·)h(τ) dτ

 (λ)

PN T∫
0

S(T − τ, ·)g(τ) dτ

 (λ) dρ(λ)

=

∫
R

H(λ)G(λ) dρ(λ),

We note that for the systems considered in [8,9] it was a certain option in the choosing of the measure dρ(λ) in the above
calculations. Due to the infinite speed of wave propagation in (2), we do not have this option here.

We set the special control problem for the system (2): to find a control jz ∈ FT1 which drives (2) to the prescribed
state:

ujzk (T ) = φk(z), k = 1, . . . , N.,

at time t = T . Due to Theorem 2, such a control exists and is unique in FT1 . Then, for such a control, we can evaluate:

(
CT jz, g

)
FT =

(
ug(T ), ujz (T )

)
HN =

N∑
k=1

ugk(T )φk(z) = (Fug(T )) (z).

Thus, for:
Jz(λ) :=

(
Fujz (T )

)
(λ)

and G(λ) = (Fug(T )) (λ), we have that:

(Jz, G)BN =
(
CT jz, g

)
FT = G(z).

In other words, Jz(λ) is a reproducing kernel in BN .
To show that BN is a de Branges space, we use the Theorem 3, all three conditions of which are trivially satisfied:

indeed, for G ∈ BN such that G = PN

∫ T

0

S(T − τ, ·)g(τ) dτ , where g ∈ FT1 we can evaluate:

|G(z)| = |(Jz, G)BN | =
∣∣(CN jz, g)FN ∣∣

6 ‖
(
CT
) 1

2 jz‖FN ‖
(
CN
) 1

2 g‖FN = ‖
(
CN
) 1

2 jz‖FN ‖G‖BN .

Clearly G#, being a polynomial is entire and:

‖G#‖BN =

 ∞∫
−∞

G(µ)G(µ) dρ(µ)

1/2

= ‖G‖BN .

When ω ∈ C such that F (ω) = 0, then
z − ω
z − ω

F (z) is an entire function and:

∥∥∥∥z − ωz − ω
G(z)

∥∥∥∥
BN

=

 ∞∫
−∞

z − ω
z − ω

G(z)
z − ω
z − ω

G(z) dρ(z)

1/2

= ‖G‖BN .

Thus, BN is a de Branges space.
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