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ABSTRACT The discrete spectrum of the Hamiltonian describing a quantum particle living in three dimensional
straight layer of width d in the presence of a constant electric field of strength F is studied. The Neumann
boundary conditions are imposed on a finite set of bounded domains (windows) posed at one of the boundary
planes and the Dirichlet boundary conditions on the remaining part of the boundary (it is a reduced problem for
two identical coupled layers with symmetric electric field). It is proved that such system has eigenvalues below
the lower bound of the essential spectrum for any F ≥ 0. Then we closer examine a dependence of bound
state energies on F and window’s parameters, using numerical methods.
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1. Introduction

The study of quantum waveguides is an active field of research since 1990th, when replication of nanoelectronic
devices on the scale of nanometres became possible. On these scales, wave nature of an electron becomes vital and
modelling the system by one-particle Schrödinger equation with various boundary conditions, becomes acceptable. In this
context, boundary conditions are imposed on various surfaces in 2D and 3D, restricting the waveguide, such as infinite
planar layers, strips or cylinders, usually, with introducing of a perturbation, which affects the spectrum. There are results
for a number of different types of perturbations, including deformations of geometry [1–8], addition of a potential [5]
or magnetic field [9, 10]. The Laplace operator can be perturbed by differential operator [11], or, for more general case
of operator perturbation, see [12]. A multi-particle problem for such systems was also considered in a number of works
( [13–16]).

In the present work, the perturbation by changing the type of the boundary condition on a part of the boundary is
considered. Let Ej and fj(r), j = 1, 2, ... be eigenvalues and the corresponding eigenfunctions of the Laplacian with the
following conditions: a 3D layer, confined between two planes, with the Dirichlet boundary conditions imposed on them:

fj(r)|∂ΩD
= 0. (1)

One of the planes contains a finite domain, there are a finite number of regions, on which the boundary condition is
replaced by the Neumann one:

n∇fj(r)|∂ΩN
= 0, (2)

where n is a unit vector normal to the surface. The Neumann part of the boundary is referred to as ”window(s)”. The
problems of this type are called Zaremba problems [17].

In this context, we refer to the main results in [12,18–25] and references therein. For the case of 2D strip, where there
is a Neumann condition on a part of boundary, representing a window, existence of bound states was proven in [26, 27],
and in [21], it was shown that with the increase of window width, the number of bound states rises and their energies
fall. For the case of 3D straight strip with circular Neumann windows, see [28,29], where the existence of bound states is
proven and asymptotics of energies for large window radii were given.

An additional magnetic field in a waveguide with the Neumann window is considered in [9, 30]. In [30], for a 3D
waveguide with the Aharonov-Bohm magnetic field, the authors proved existence of threshold window length a0 > 0,
such that for a < a0, the discrete spectrum is empty, and obtained a condition for bound state existence.
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For systems of a type studied in this paper, but with uniform electric field in both layers, there are results in [31],
where dependence on window’s parameters was calculated numerically. Analogous numerical results for similar system
is in [32]. Further results, concerning existence of bound states and their classification, extended to the multi-particle case
were received in [13].

In general, the investigations of the quantum waveguides mostly cover the case of external magnetic field [9, 10, 30,
33], while there are many unanswered questions concerning waveguides in electric field alone. In [34], the case of bent
tubes with non-linear electrostatic potential was investigated. In this case it was shown that Stark effect is non-trivial due
to perturbations. Generally, mixed boundary conditions or curvature, affect propagation of waves, creating a situation
analogous to the shock wave picture.

The paper is organized as follows. In section 2, we define the model of the quantum waveguide, give properly the
functional domain, and study the self-adjointness of the operator. Then we show the stability of the essential spectrum
when we consider perturbation by varying boundary condition from Dirichlet to Neumann. Section 3 is devoted to the
main result and its proof. It deals with the effect of the electric field on our system. Precisely, we prove that such system
exhibits discrete eigenvalues below the essential spectrum for any F ≥ 0. The last section is devoted to numerical results
for specifying the dependence of eigenvalues on system parameters.

2. The model

2.1. Geometry of the system

FIG. 1. The waveguide with a family of windows and two different boundary conditions with orthog-
onal electric field

The system we are going to study is given in Fig. 1. We consider a quantum particle confined inside two parallel
layers coupled through a system of windows. We assume the Dirichlet condition at the layer boundaries. We simulate
windows as regions at the boundary where the Neumann boundary conditions are imposed. This model is appropriate if
the layers have identical widths and the electric field is symmetric in respect to the plane separating the layers. In this
case, it is sufficient to deal with the Hamiltonian H(F ) for one layer between the planes z = 0 and z = d. We shall
denote this configuration space by Ω,

Ω = R2 × [0, d].

We assume that the considered particle is under the influence of a homogeneous electric field of intensity E orthogonal to
the layers. We denote F := Eq, where q is the particle charge. We assume that F ≥ 0. Let (γi)1≤i≤p be a finite family
of bounded and open sets lying on the boundary of Ω at z = 0.

We set Γ = ∂Ω \ (∪pi=1γi). We consider the Dirichlet boundary conditions on Γ and the Neumann boundary
conditions on ∪pi=1γi. The black surface in Fig. 1 corresponds to the Neumann boundary condition, while the grey
surfaces correspond to the Dirichlet condition.

2.2. The Hamiltonian

Let us define the self-adjoint operator on L2(Ω) corresponding to the particle Hamiltonian H(F ). For this purpose
we use quadratic forms. Precisely, let q(F ) be the quadratic form

q(F )[u, v] =

∫
Ω

(
∇u∇v + Fzuv

)
dxdydz, u, v ∈ D(q(F )), (3)

where D(q(F )) :=
{
u ∈ H1(Ω), udΓ = 0

}
, H1(Ω) is the standard Sobolev space and udΓ is the trace of the function u

on Γ. It follows that q(F ) is a densely defined, symmetric, positive and closed quadratic form [35]. We denote the unique
self-adjoint operator associated with q(F ) by H(F ) and its domain byD. It is the Hamiltonian describing our system (we
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will use the atomic units 2m = h = q = 1 to simplify the equation). From [36] (page 276) and [35](page 263), one infers
that the domain D of H(F ) is as follows

D =
{
u ∈ H1(Ω); −∆u ∈ L2(Ω), udΓ = 0,

∂u

∂z
d∪pi=1γi = 0

}
(4)

and
H(F )u = (−∆ + Fz)u, ∀u ∈ D. (5)

2.3. Preliminary: Cylindrical coordinates

As γi are open sets, they contain a small disc of radius a, a > 0. Let us mark this disc on the plane z = 0 as γ(a).
Without loss of generality, we assume that the center of γ(a) is the point (0, 0, 0) and γ(a) ⊂ γi0 for some 1 ≤ i0 ≤ p;

γ(a) =
{

(x, y, 0) ∈ R3; x2 + y2 ≤ a2
}
. (6)

There exists b, 0 < a < b such that for all i, 1 ≤ i ≤ p, one has γi ⊂ γ(b). We denote, respectively, by Hb(F ) and
Ha(F ) the operator (5) with unique disc window with radius b and a, respectively. For i ∈ {a, b}, we denote the domain
of Hi(F ) by

D(i) =
{
u ∈ H1(Ω); −∆u ∈ L2(Ω), udΓ = 0,

∂u

∂z
dγ(i) = 0

}
.

Using the inclusion for the domains;
D(b) ⊆ D ⊆ D(a),

one obtains the following bracketing [35]
Hb(F ) ≤ H(F ) ≤ Ha(F ). (7)

Let us notice that the new domains D(a) and D(b) have a cylindrical symmetry. Therefore, it is natural to consider the
cylindrical coordinates system (r, θ, z). Indeed, we have that

L2(Ω, dxdydz) = L2((0,+∞)× [0, 2π[×[0, d], rdrdθdz).

We denote by 〈·, ·〉r, the scalar product in L2(Ω, dxdydz) = L2((0,+∞)× [0, 2π[×[0, d], rdrdθdz) given by the formula

〈f, g〉r =

∫
(0,+∞)×[0,2π[×[0,d]

fgrdrdθdz.

We denote the gradient in cylindrical coordinates by ∇r. The Laplace operator in cylindrical coordinates is given by the
following expression

∆r,θ,z =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
+

d2

dz2
. (8)

2.4. A few known facts

Let us start this subsection by recalling that in the particular case when a = 0, one has H0(F ), the Dirichlet Stark
operator, and b = +∞ one has H∞(F ), the Dirichlet-Neumann Stark operator. For • ∈ {0,∞}, let

H•(F ) = (−∆R2)⊗ Id ⊕ Id ⊗ (h•(F )), on L2(R2)⊗ L2([0, d]),

where the transverse operator h•(F ) := −∆[0,d] + Fz defined on L2([0, d]) with the Dirichlet boundary conditions at d
and 0 for • = 0 and Neumann boundary at 0 for • =∞. The operator h•(F ) has purely discrete spectrum. We denote by
λ1
• the lowest transverse mode. Using Dirichlet Neumann bracketing, ( see [35]), one obtains that

[λ1
0,+∞) = σ(H0(F )) ⊆ σ(Ha(F )) ⊆ σ(H(F )) ⊆ σ(Hb(F )) ⊆ σ(H∞) = [λ1

∞,+∞). (9)

2.5. Stability of the essential spectrum

Using the property that the essential spectrum is preserved under compact perturbations, we are going to obtain its
stability. We recall that the essential spectrum of an operator A which we denote by σess(A) consists of the point λ at
which R(λI − A), the range of λI − A is not closed and of eigenvalues of infinite multiplicity. The discrete spectrum is
the set of isolated eigenvalues with finite multiplicities. It is denoted by σdis(A).

Theorem 2.1. Let H(F ) be the operator given by (5). Then,

σess
(
H(F )

)
= [λ1

0,+∞[. (10)

Proof.

First, let us note that an equation analogous to (9) also holds for the essential spectrum. Let Ω−,a be the cylinder
γ(a)× [0, d] and Ω+,a the outside part of Ω−,a in Ω. So

L2(Ω) = L2(Ω+,a)⊕ L2(Ω−,a). (11)
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Let H be, formally, the operator analogous to Ha(F ) but with imposing an extra Dirichlet condition on both sides of the
lateral surface of the cylinder Ω−,a. The decomposition (11) yields that H = H1 ⊕ H2. The operator H2 defined on
bounded domain Ω−,a is known to have a discrete spectrum and σess(H2) is empty. So σess(H) = σess(H1).

Using Wolf result [37] for operators of the form

A = −
∑
i

∂2

∂x2
i

+
∑
i

ai(x)
∂

∂xi
+ b(x), (12)

one obtains that for λ < 0, the difference of resolvents,

(λI −Ha(F ))−1 − (λI −H)−1, (13)

is a compact operator. It follows that (λI −H)−1 is a compact perturbation of (λI −Ha(F ))−1. By Weyl Theorem, it
immediately follows that the essential spectrum of (λI − H)−1 and (λI − Ha(F ))−1 are the same and by the spectral
mapping theorem one concludes that

σess(H) = σess(Ha(F )). (14)
As the steps in the previous study are independent of a, we get

σess(H) = σess(H1) = σess(Hb(F )) = σess(H(F )) = σess(Ha(F )). (15)

Using cylindrical symmetry once more, we consider H as acting on

L2((a,+∞)× [0, 2π]× [0, d], rdrdθdz).

One can write
H1 = −∆(a,+∞)×[0,2π] ⊗ Id[0,d] ⊕ Id(a,+∞)×[0,2π] ⊗ h0(F ).

So
σess(H1) = [λ1

0,+∞).

By (15), one ends the proof.
�

3. Existence of eigenvalues for one-particle Hamiltonian

In the last subsection, we have proved that

σess
(
H(F )

)
= [λ1

0,+∞[. (16)

So, by this and the min-max principle [35] we conclude that if the discrete spectrum exists, it lies below λ1
0. The main

result of the paper is the following:

Theorem 3.1. For any F ≥ 0, the operator H(F ) has at least one isolated eigenvalue below λ1
0 i.e

σdis
(
H(F )

)
6= ∅.

As it was already mentioned earlier, the result differs from one, corresponding to two-dimensional waveguides con-
sidered in [34], which shows that the existence of the discrete spectrum depends on the values of F . The absence of
eigenvalues for some F in [34] is due to the fact that the field in the waveguide has a tilt, which gives one two parts of the
operator with different essential spectra. In the present paper we deal with electric field symmetric in respect to the plane
separating the layers.

It is important to notice that electric and magnetic fields have different effects on the spectrum of our system. Indeed,
it was proved in [30] that in the case of magnetic filed, there is some critical values of window radius to get existence of
discrete spectrum.

The proof is based on the Goldstone and Jaffe trick [38], boosting the trial function by a deformation in the Neumann
region. First we note that due to the fact that

σ(H(F )) ⊆ σ(Ha(F )); σess(Ha(F )) = σess(H(F )),

one obtains
σdis(Ha(F )) 6= ∅ ⇒ σdis(H(F )) 6= ∅. (17)

Let us consider the quadratic form Qr

Qr[f, g] =

∫
(0,+∞)×[0,2π[×[0,d]

∇rf∇rg + Fzfgrdrdθdz,

with the domain

Dr =
{
f ∈ L2(Ω, rdrdθdz);∇rf ∈ L2(Ω, rdrdθdz); fdΓ = 0

}
.
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Consider the quadratic function Q defined by

Q[Φ] = Qr[Φ]− λ1
0‖Φ‖2L2(Ω,rdrdθdz). (18)

Since the essential spectrum of Ha(F ) starts at λ1
0, if we construct a trial function Φ ∈ Dr such that Q[Φ] has a negative

value then the task is achieved. Using the quadratic form domain, Φ must be continuous inside, but not necessarily
smooth. Let χ1 be the positive eigenfunction associated to λ1

0 of the operator h0(F ) (ie. − χ′′1 = (λ1
0 − Fz)χ1), with

‖χ1‖ = 1 (see [36]).
For Φ(r, θ, z) = ϕ(r)χ1(z), we compute

Q[Φ] = Qr[Φ]− λ1
0‖Φ‖2L2(Ω,rdrdθdz)

=

∫
(0,+∞)×[0,2π[×[0,d]

(
|χ1(z)|2|ϕ′(r)|2 + |χ′1(z)|2|ϕ(r)|2

+ Fz|χ1(z)|2|ϕ(r)|2
)
rdrdθdz − λ1

0‖ϕχ1‖2L2(Ω,rdrdθdz)

= 2π‖ϕ′‖2L2((0,+∞),rdr) (19)

+

∫
(0,+∞)×[0,2π[×[0,d]

((
λ1

0 − Fz
)
|χ1(z)|2|ϕ(r)|2

)
rdrdθdz

+

∫
(0,+∞)×[0,2π[×[0,d]

Fz|χ1(z)|2|ϕ(r)|2rdrdθdz − λ1
0‖ϕχ1‖2L2(Ω,rdrdθdz)

= 2π‖ϕ′‖2L2((0,+∞),rdr).

Now, let us consider an interval I = [0, b] for a positive b, b > a, and a function ϕ ∈ S([0,+∞[) such that ϕ(r) = 1 for
r ∈ I . We also define a family {ϕτ : τ > 0} by

ϕτ (r) =

 ϕ(r) if r ∈ (0, b)

ϕ(b+ τ(ln r − ln b)) if r ≥ b.
(20)

We have,

‖ϕ′τ‖L2([0,+∞[,rdr) =

∫
(0,+∞)

|ϕ′τ (r)|2rdr

=

∫
[b,+∞[

τ2

r2
|ϕ′(b+ τ(ln r − ln b))|2rdr

= τ

∫
[b,+∞[

τ

r
|ϕ′(b+ τ(ln r − ln b))|2dr

= τ

∫
(0,+∞)

|ϕ′(s)|2ds

= τ‖ϕ′‖2L2([0,+∞[). (21)

We set

Φτ,ε(r, z) = ϕτ (r)[χ1(z) + εχ1(z)φ2(r)]

= ϕτ (r)χ1(z) + εϕτ (r)χ1(z)φ2(r)

= Φ1,τ (r, z) + Φ2,τ,ε(r, z). (22)

Then,

Q[Φτ,ε] = Q[Φ1,τ + Φ2,τ,ε]

= Qr[Φ1,τ + Φ2,τ,ε]− λ1
0‖Φ1,τ + Φ2,τ,ε‖2L2(Ω,rdrdθdz)

= Qr[Φ1,τ ]− λ1
0‖Φ1,τ‖2L2(Ω,rdrdθdz) +Qr[Φ2,τ,ε]− λ1

0‖Φ2,τ,ε‖2L2(Ω,rdrdθdz)

+ 2〈∇rΦ1,τ ,∇rΦ2,τ,ε〉r + 2F 〈zΦ1,τ ,Φ2,τ,ε〉r − 2λ1
0〈Φ1,τ ,Φ2,τ,ε〉r.

Using the properties of χ1 and taking into account (19) and (21), one obtains

Qr[Φ1,τ ]− λ1
0‖Φ1,τ‖2L2(Ω,rdrdθdz) = Q[ϕτχ1]

= 2π‖ϕ′τ‖2L2((0,+∞),rdr)

= 2πτ‖ϕ′‖2L2((0,+∞)).
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As the supports of ϕ and φ are disjoint, one gets

Qr[Φ2,τ,ε]− λ1
0‖Φ2,τ,ε‖2

=

∫
(0,+∞)×[0,2π[×[0,d]

(∣∣∣∇r(εϕτ (r)χ1(z)φ(r)2
)∣∣∣2

+ ε2Fz|ϕτ (r)|2|χ1(z)|2
∣∣φ2(r)

∣∣2)rdrdθdz − ε2λ1
0‖ϕτχ1φ

2‖2L2(Ω,rdrdθdz)

=

∫
(0,+∞)×[0,2π[×[0,d]

4ε2|χ1(z)|2|φ′(r)φ(r)ϕ(r)|2 + ε2|χ′1(z)|2|ϕτ (r)φ2(r)|2

+ ε2Fz|ϕτ (r)χ1(z)φ2(r)|2rdrdθdz − ε2λ1
0‖ϕτχ1φ

2‖2L2(Ω,rdrdθdz)

≤ ε2d2π
(

4‖φφ′ϕτ (r)‖2L2([0,+∞[,rdr) + Fd‖ϕτ (r)φ2‖2L2([0,+∞[,rdr)

+ ‖χ′1(z)ϕτ (r)φ2(r)‖2L2([0,+∞[×[0,d],rdrdz) − λ
1
0‖φ2‖2L2([0,+∞[,rdr)

)
.

As the supports of ϕτ and φ are disjoint, one obtains

〈∇rΦ1,τ ,∇rΦ2,τ,ε〉r = 〈∇r
(
ϕτχ1

)
,∇r

(
εϕτχφ

2
)
〉r = 0.

Using the fact that −χ′′1 = (λ1
0 − Fz)χ1 and properties of ϕτ and φ one gets to the following estimation:

〈(Fz − λ1
0)Φ1,τ ,Φ2,τ,ε〉r = 〈(Fz − λ1

0)ϕτχ1, εϕτχ1φ
2〉r

= ε〈(Fz − λ1
0)χ1, χ1φ

2〉r
= ε〈χ′′1 , χ1φ

2〉r

= −ε
(

2π‖φ‖2L2([0,+∞[,rdr)

∫ d

0

|χ′1(z)|2dz
)
< 0.

Therefore, one has

Q[Φτ,ε] ≤ 2πτ‖ϕ′‖2L2([0,+∞[)

+ε2d2π
(

4‖φφ′‖2L2([0,+∞[,rdr) + Fd‖ϕτ (r)φ2‖2L2([0,+∞[,rdr)

+‖χ′1(z)ϕτ (r)φ2(r)‖2L2([0,+∞[×[0,d],rdrdz) − λ
1
0‖φ2‖2L2(0,+∞),rdr)

)
−ε
(

2π‖φ‖2L2((0,+∞),rdr)

∫ d

0

|χ′1(z)|2dz
)
. (23)

We notice that only the first term of the last equation depends on τ . The linear term in ε is negative and could be chosen
sufficiently small so that it dominates over the quadratic one. Fixing this ε and then choosing τ sufficiently small, one
makes the right hand side of (23) negative. So, σdis(Ha(F )) 6= ∅ by (17). This ends the proof of the Theorem. �

4. Numerical results and conclusion

In this section, we study the dependence of the discrete spectrum on system’s parameters, to build an intuition about a
system and suggest directions for further research. We use a finite element method and consider a case of a single circular
window, with varying area (and elliptical window for the last result). In all calculations, we use atomic system of units,
with ~ = e = 1, m = 0.5 (e,m are the electron charge and mass, correspondingly). The colors of energy levels are
consistent between all plots. Across all plots, the black line represents a lowest boundary of the essential spectrum.

FIG. 2. Energies of bound states as functions of window radius a. Electric field intensity is fixed F = 5
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First, we study dependence of the discrete spectrum on window’s area, shown in Fig. 2. Here a field intensity is fixed,
F = 5(which corresponds to middle value from the second plot). The essential spectrum is independent of window’s
parameters (Th. 2.1). Each bound state as a function of window’s area is monotonically decreasing and a number of
bound states is increasing. In accordance with the main theorem, the first bound state is lower then the boundary for all
positive radii, and merges with the essential spectrum boundary as radius goes to zero.

FIG. 3. Energies of bound states as functions of electric field intensity F . Window radius is fixed a = 4

Now we investigate the dependence of spectrum on the electric field intensity (Fig. 3). The window radius is fixed,
a = 4 (which is the maximum radius from Fig. 2) An electric field isn’t a local perturbation of a system, so it changes the
essential spectrum, as well as discrete. Both spectra are increasing functions of F , but essential spectrum boundary grows
faster, allowing more bound states to emerge, as field intensity increases.

FIG. 4. Energies of bound states as functions of distance between foci of elliptical window. Window’s
area is constant (16π) and electric field intensity is fixed F = 5

Naturally, the question arises, about which parameters of the window are important. Particularly, how the discrete
spectrum depends on window’s area, perimeter and shape. These questions are considered in more detail for a similar
system (same geometry, but homogeneous electrical field), in [13]. Here we consider influence of window’s shape,
particularly, we change an eccentricity of elliptical window, tracking different bound states, see Fig. 4. Area is fixed and
corresponds to area of a circle with a = 4. Field intensity is fixed, F = 5. Here we can see different dynamics for
different types of bound states (see [13] for more details of the classification).

To summarize, we considered a quantum system of parallel 3D layers of the same width, connected through a set
of windows in a bounded region, with symmetrical external electrical field (Fig. 1). For such a system we have proven
existence of at least one discrete eigenvalue below essential spectrum, for any size of windows. Then, numerically, we
more closely examined a number of bound states, and their particular dependence on area of a window, different intensities
of external field and shapes of a window. The results show a monotonic growth of bound states number with the increase
of area or field intensity, for a circular opening. For the case of window shape’s deformation, bound states form several
distinct types, with consistent and predictable behaviour. The latter results suggest a number of directions for further
research, such as getting bounds on number of bound states for certain types of windows and determining vital parameters
of window’s shape, when considering any particular bound state type.
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P. 553–572.
[2] Briet Ph., Kovarik H., Raikov G. and Soccorsi E. Eigenvalue asymptotics in a twisted waveguide, Comm. PDE, 2009, 34(8), P. 818–836.
[3] Bulla W. and Renger W. Existence of bound states in quantum waveguides under weak conditions. Lett. Math. Phys., 1995, 35(1), 1–12.
[4] Chenaud B., Duclos P., Freitas P. and Krejcirik D. Geometrically induced discrete spectrum in curved tubes. Diff. Geom. Appl., 2005, 23(2),

P. 95–105.
[5] Duclos P. and Exner P. Curvature-induced bound state in quantum waveguides in two and three dimensions. Rev. Math. Phys., 1995, 7(1), P. 73–102.
[6] Duclos P., Exner P. and Stovicek P. Curvature-induced resonances in a two-dimensional Dirichlet tube. Annales Henri Poincaré, 1995, 62(1),
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