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2University of Jyväskylä, Seminaarinkatu, Finland

aalex.shorokhov@gmail.com, bmisha29.02.1@gmail.com

Corresponding author: Alexey Vladimirovich Shorokhov, alex.shorokhov@gmail.com

PACS 73.40.Gk, 03.65.Xp

ABSTRACT Effect of tunneling decay for the quasi-stationary A+-state, in an impurity complex A+ + e (a hole,
localized on a neutral acceptor, interacting with an electron, localized in the ground state of a quantum dot)
on the photodielectric effect, associated with the excitation of impurity complexes A+ + e in a quasi-zero-
dimensional structure, has been studied in the zero-radius potential model in the one-instanton approximation.
Calculation of the binding energy of a hole in an impurity complex A+ + e was performed in the zero radius
potential model in the adiabatic approximation. It is shown that as the probability of dissipative tunneling
increases, the binding energy of a hole in a complex A+ + e decreases, which is accompanied by an increase
in the effective localization radius of the impurity complex and, accordingly, an increase in the magnitude of the
photodielectric effect. The spectral dependence of the photodielectric effect has been calculated in the dipole
approximation taking into account the dispersion of the quantum dot radius. A high sensitivity of the magnitude
of the photodielectric effect to such parameters of dissipative tunneling as the frequency of the phonon mode,
temperature, and coupling constant with the contact medium, has been revealed.
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1. Introduction

Dielectric permittivity, as a measure of polarizability, is a fundamental parameter that determines the properties of
various materials. Reversible control of the permittivity of materials in a wide range is an urgent problem. In this
regard, of interest is the photodielectric effect (PDE), associated with a change in the permittivity of a material under
the action of photoirradiation. In recent years, interest in PDE in various materials has increased due to a wide range
of practical applications [1–8]. Thus, in article [1], a photo sensor developed on the basis of PDE in CdS is presented,
which changes its electrical capacitance upon photoirradiation. The significant change in photocapacitance discovered
by the authors of [1] opens up certain prospects for photosensor applications. In [2], PDE was experimentally studied in
the compound LaAl0.99Zn0.01O3−δ . It was found that photoirradiation significantly increases the dielectric permittivity
in the compound under study in a wide frequency range. It is expected that the results of [2] will contribute to the
development of photocapacitors that allow remote control of the dielectric response using photoirradiation. In article [3],
the systematic tuning of the PDE in Ba(Al1−xZnx)2O4−δ was experimentally studied by varying the Zn concentration (x)
and the intensity of the incident light. Results of the study in [3] can form the basis for the development of innovative
phototunable functional devices. From the point of view of the possibility of controlling the PDE in a wide range,
semiconductor nanostructures with impurity centers are promising. The presence of the quantum size effect makes it
possible to control the binding energy of impurity centers, as well as the energy spectrum of the nanostructure, by varying
its characteristic size.

Interest in the photodielectric effect (PDE) associated with the excitation of impurity complexes A+ + e in quantum
dots (QDs) (a hole, localized at the A+-center, forms a quasi-stationary A+-state; an electron is localized in the ground
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state of the QD) is due to the possibility of its usage as a method for spectroscopic studies of impurities in quasi-zero-
dimensional semiconductor structures [9]. Spectral studies of impurities using PDE, in contrast to photothermal ioniza-
tion, do not require thermal ionization of excited states. Therefore, measurements can be carried out at arbitrarily low
temperatures, which eliminates the effect of temperature on the width of the optical absorption line. From a fundamental
point of view, PDE is of interest as a nonlinear optical effect with a lower threshold than conventional nonlinear optical
effects, and in the case of QD, this threshold can be controlled by changing of its (QD’s) characteristic size. The resonant
frequencies ν0, which characterize the PDE dispersion, can be in the submillimeter range, for example, as estimates show,
for InSb QDs with radius R0 ≈ 70 nm, ν0 ∼ 1011 c−1. Consequently, when a semiconductor quasi-zero-dimensional
structure is irradiated with energy quanta hν0, the refractive index of submillimeter waves should change. Therefore, PDE
is an effective mechanism for the influence of IR-radiation on the propagation of submillimeter waves in semiconductor
quasi-zero-dimensional structures with impurity complexes A+ + e. As will be shown below, the presence of tunneling
decay of quasi-stationary A+ - states in a QD provides additional degrees of freedom for controlling of the PDE. The
purpose of this work is to study theoretically influence of the tunnel decay of a quasi-stationary A+-state on the PDE,
associated with the excitation of impurity complexes A+ + e in a quasi-zero-dimensional structure with semiconductor
QDs.

2. The binding energy of a quasi-stationary A+-state in an impurity complex A+ + e in a semiconductor
quantum dot

Figure 1 shows the energy structure of the “quantum dot with an impurity complex A+ + e – external matrix” model
under consideration. Quasi-stationary A+-state can be formed by attaching an additional hole to a neutral acceptor. The
finite lifetime of a hole is associated with the decay of the A+-state.
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FIG. 1. Energy structure of the “quantum dot with an impurity complex A+ + e – external matrix”
model. Electron is localized in the ground state of the quantum dot, the hole is in the quasi-stationary
state of A+-center; ∆E = ~/τ – magnitude of the broadening of the electronic energy level of the
quantum dot, this broadening is associated with the radiative lifetime τ ; ∆E = ~Γ0 is the broadening
of the impurity level, which is associated with the tunneling decay of the A+-state; DT – dissipative
tunneling; the electron optical transition (EOT) is the optical transition of an electron from the ground
state of the QD to the excited state; the dotted line shows the change in the potential profile of the
adiabatic potential of the electron due to the change in its quantum state; R0 is the QD radius.

We will assume that the process of decay of the quasi-stationary A+-state is mainly due to the dissipative tunneling
of the hole. In the one-instanton approximation, the tunnel decay probability Γ0 can be represented as Γ0 = B exp (−S),
where the action S and the pre-exponential factor B are defined as (in the Bohr units) [10]:
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Figure 2 shows dependence of the probability of dissipative tunneling on the parameters ε∗L, ε∗T and ε∗C , which char-
acterize, respectively, frequency of the phonon mode, temperature, and constant of interaction with the contact medium.
As it can be seen from Fig. 2, that, as the parameters ε∗L and ε∗T increase, the probability of dissipative tunneling of a hole
increases too (due to approaching to the top of the potential barrier), and an increase in the parameter ε∗C leads to blocking
of the tunneling decay (due to an increase in the degree of viscosity of the contact medium (or of the heat-bath).
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FIG. 2. Dependence of the probability of dissipative tunneling at R0 = 70 nm, ηi = 3.5 on the next
parameters (in relative units): a – εL and εC , under εT = 1; b –εL and εT , under εC = 3

Let the electron be initially in the s-state (l = m = 0), then the hole is acted upon by a spherically symmetric
potential:

Vn,l,m (~r) = − e2

4πεε0

R0∫
0

|ψn,l,m (~re)|2

|~r − ~re|
d~re, (3)

where e – the electron charge; ε – permittivity of the QD material; ε0 is the electric constant; Ψn,l,m(~re) is the electron
wave function in QD; n is the radial quantum number of an electron; m = 0,±1,±2 . . . – magnetic quantum number;
l = 0, 1, 2 . . . is the orbital quantum number. In the first order of perturbation theory, for the ground state of an electron
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(m = 0, l = 0), potential (3) can be represented as:
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Using, further, the zero-radius potential procedure (see, for example, [11]), we obtain an equation, that determines

dependence of the binding energy of a hole in a complex A+ + e on the QD and dissipative tunneling parameters.
The short-range impurity perturbation potential can be written correctly in the form of a pseudopotential [12] as The

short-range potential can be represented as a boundary condition at the point (xa, ya, za) given by a pseudo-potential of
the form
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where γ = 2π~2/(αm∗h) is the zero-range potential intensity; α is determined by the energy Ei of the bound state of the
same A+-center in the bulk semiconductor; ρa, za are the coordinates of the A+-center in QD.

To determine the binding energy of a hole in the complex A+ + e, it is necessary to construct a one-particle Green’s
function G(r,Ra;Eλn) to the Schrödinger equation with a Hamiltonian, containing potential (8):
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the expression for the Green’s function will take the following form

G
(
~r, ~Ra, ελn

)
= − 1

π3/2a3
n~ωn

e−
r2+R2

a
2an

∞∫
0

dt exp

[
−t
(
−ελn −

e2βsn
εR0~ωn

+
iΓ0

~ωn
+

3

2

)]
×

×
∑
n1

(
e−tn1

2

) Hn1

(
x
an

)
Hn1

(
xa
an

)
n1!

∑
n2

(
e−tn2

2

) Hn2

(
y
an

)
Hn2

(
ya
an

)
n2!

×

×
∑
n3

(
e−tn3

2

) Hn3

(
z
an

)
Hn3

(
za
an

)
n3!

. (12)

The summation in (12) over quantum numbers can be performed using the Moeller formula for the generating function
of Hermite polynomials [13]
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Finally, for the Green’s function we will have
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After separating the divergent part in (14) (see, for example, [11]), we obtain
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Acting on both sides of relation (15) by the operator T̂ , we obtain an equation, that determines dependence of the
binding energyEλn of a hole in a complexA+ +e on the parameters of the QD, as well as on the parameters of dissipative
tunneling and the quantum number n.
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Further, it is necessary to find the explicit form of the potential Vn,l,m(~rh), defined by formula (3) in the case, when
the electron is in the excited p-state (l = 1,m = 0) of QD. Expression (3) can be represented as
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The wave function of an electron, in the p-state with m = 0, is given by the next expression
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Note, that in the case of p-state with m = 0, the minimum of potential (19) is shifted relative to the QD center (see
Fig. 1). Position of the minimum is determined from the solution of the following transcendental equation, which is
obtained from the equality to zero of the derivative of expression (19) with respect to rh:
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Expanding expression (19) into a Taylor series near rhmin
and restricting ourselves to the quadratic term, we obtain

Vn,1,0(rh) = − e2

εR0
βp, 0n − mhω

p,0
n

2
(rh − rhmin)

2

2
, (21)

where the quantities βp,0n and ωp,0n are defined as follows

β p,0n =
Xn,1

30R2
0r

3
h min

(
3Xn,1 cos (Xn,1) +

(
X2
n,1 − 3

)
sin (Xn,1)

)2
[

6r5
h minX

3
n,1 − 3r5

h minXn,1−

− 15r3
h minXn,1R

2
0 + 40r3

h minX
3
n,1R

2
0 + 3r5

h minXn,1 cos (2Xn,1) + 15r3
h minXn,1R

2
0 cos (2Xn,1) +

+ 30rh minXn,1R
4
0 cos

(
2rh minXn,1

R0

)
− 30r3

h minX
3
n,1R

2
0Ci (2Xn,1) + 30r3

h minX
3
n,1R

2
0Ci

(
2rh minXn,1

R0

)
−

− 30r3
h minX

3
n,1R

2
0 ln

(
rh min

R0

)
+ 6r5

h minX
2
n,1 sin (2Xn,1) + 30r3

h minX
2
n,1R

2
0 sin (2Xn,1)−

− 15r2
h minX

2
n,1R

3
0 sin

(
2rh minXn,1

R0

)
− 15R5

0 sin

(
2rh minXn,1

R0

)]
. (22)

The binding energy of a hole localized at the A+ center, in the case when the electron is in the p-state with m = 0, is
determined from the solution of the transcendental equation

ηi =

√
−ηp2n −

2βp,0n
R∗0

+ 4 iΓ∗0 + 3γp
−1

n +

+
2√
γp,0n π

∞∫
0

dt exp

[
− γpnt

2

(
− (ηpn)

2
+ 4iΓ∗0 −−

2βpn
R∗0

+
3

γpn

)][
1

2t
√

2t
−

exp

(
−R

∗2
0 R∗

2

a

γpn

(
1−e−t
1+e−t

))
(1− e−2t)

3/2

]
, (23)
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where

γp,0n =

[
5r∗5h minR

∗3
0

(
3Xn,1 cos (Xn,1) +

(
X3
n,1 − 3

)
sin (Xn,1)

)2
Xn,1

(
r∗5h minXn,1 + 2r∗5h minX

3
n,1−

− 5r∗3h minX
3
n,1R

∗2
0 − r∗5h minXn,1 cos (2Xn,1) + 15r∗h minXn,1R

∗2
0

(
r∗2h minX

2
n,1 − 4R∗20

)
cos

(
2r∗h minXn,1

R∗0

)
−

− 2r∗5h minX
2
n,1 sin (2Xn,1)− 15R∗30 sin

(
2r∗h minXn,1

R∗0

)(
3r∗2h minX

2
n,1 + 2R∗20

))−1]1/2

(24)

and correspondingly r∗hmin/rhmin/ah, ηp,0n =
√
|Ep,0,λn |/Eh.

The wave function of a hole localized at the A+-center in the p-state is defined as:

Ψ p
λ;n (~rh) =

√√√√√ Γ
(

3
4 +

εpλn
2

)
Γ
(

1
4 +

εpλn
2

)
2π2a3

p,n

(
ψ
(

3
4 +

εpλn
2

)
− ψ

(
3
4 +

εpλn
2

)) ( rh2

a2
p,n

)−3/4

W
−
ε
p
λn
2 ; 14

(
r2
h

a2
p,n

)
, (25)

where

ε pλn =

[
5r∗5h minR

∗
0

(
3Xn,1 cos (Xn,1) +

(
X3
n,1 − 3

)
sin (Xn,1)

)2
Xn,1

×

×

(
r∗5h minXn,1 + 2r∗5h minX

3
n,1 − 5r∗3h minX

3
n,1R

∗2
0 − r∗5h minXn,1 cos (2Xn,1) +

+ 15r∗h minXn,1R
∗2
0

(
r∗2h minX

2
n,1 − 4R∗20

)
cos

(
2r∗h minXn,1

R∗0

)
− 2r∗5h minX

2
n,1 sin (2Xn,1)−

− 45r∗2h minX
2
n,1R

∗3
0 sin

(
2r∗h minXn,1

R∗0

)
+ 30R∗50 sin

(
2r∗h minXn,1

R∗0

))−1]1/2(
R∗0 η

2
i − 2βp,0n

2

)
, (26)

where a2
p,n = a2

hγ
p
n.

Thus, the wave function of the excited state of the electron-hole pair will have the following form:

Φ out (re, rh) = ψpn,1 (re) Ψ p
λ;n (rh) . (27)

Figures 3(a) and 3(b) show dependence of the binding energy of the quasi-stationaryA+-state in the impurity complex
A+ + e on the dissipative tunneling parameters εL, εc and εT for InSb-based QDs at R0 = 70 nm, calculated using
formula (23).

It can be seen, that with an increase in the parameters εL and εT , which characterize the frequency of the phonon
mode and temperature, respectively, the binding energy of the quasi-stationary A+-state decreases (see Fig. 3(b)) due
to an increase in the probability of dissipative tunneling (see Fig. 2(a,b)), as a result, the wave function of the quasi-
stationary A+-state “spreads”, which leads to an increase in the effective radius of the localized A+-state. An increase
in the parameter εC , which characterizes the constant of interaction with the contact medium (with the heat-bath), is
accompanied by the blocking of tunnel decay and a corresponding increase in the binding energy of the quasi-stationary
A+-state (Fig. 3(a)).

The obtained relations (16), (23), and (25) will be used in the next section to calculate the process of photoexcitation
of impurity complexes A+ + e in a quasi-zero-dimensional structure.

3. Photodielectric effect in a quasi-zero-dimensional structure with impurity complexes A+ + e in the presence
of dissipative tunneling

Let us consider the process of photoexcitation for complexesA++e in QDs under conditions of dissipative tunneling.
We will assume that theA+-center is localized at the point ~Ra = (0, 0, 0), (see Fig. 1). The energy spectrum of an electron
in a size-quantized band will be determined by an expression of the next form

En,l =
X̃2
n, lEh

R∗20

. (28)

Here X̃n,l = Xn,l/
√
Eh; Xn,l is the root of the l-th order Bessel function.

The effective Hamiltonian Hint of interaction with the field of a light wave can be written as

Hint = −i ~λ0

√
2π~2α∗

m∗2ω
I0 exp (i ~qs ~r) (~eλs∇~r) , (29)
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FIG. 3. Dependence of the binding energy of the quasi-stationary A+ - state in the impurity complex
A+ + e in InSb-based QDs on the parameters of dissipative tunneling at R0 = 70 nm and ηi = 3.5: a –
on the parameters εL and εC , at εT = 1; b -– from parameters εL and εT , at εc = 3.
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where λ0 is the local field coefficient; α∗ is the fine structure constant, taking into account the static relative permittivity
ε; I0 is the intensity of light with frequency ω, wave vector ~qs and the unit polarization vector ~eλs; ∇~r is the Hamilton
operator.

The matrix element Mf,λ, which determines the magnitude of the oscillator strength of the dipole optical transitions
of an electron and a hole from the ground state Φin(~re, ~rh) to the excited states Φout(~re, ~rh) of the QD, is written as

Mf, λ = i

√
2πα∗I0
ω

(
E
n,1,

{
0
±1

} − E1,1,0 −

(
E
p,
{

0
±1

}
λn − Esλ1

))
×

× 〈 Ψ p
λn (~rh)|Ψs

λ1 (~rh)〉 〈ψn,1 (~re) | (~eλ s, ~re) |ψ1,0 (~re)〉 . (30)

Taking into account the explicit form of the wave functions (18) and (25), the matrix element (30) can be written in
the form

Mf,λ = i

√
2πα∗I0
ω

(En,1, 0 − E1,1,0 − (Epλn − E
s
λ1))× 8π

R0
2J3/2 (X0,1) J5/2 (Xn,1)

×

×

√√√√√ Γ
(

3
4 +

εsλ;1
2

)
Γ
(

1
4 +

εsλ;1
2

)
2π2a3

s,n

(
ψ
(

3
4 +

εsλ;1
2

)
− ψ

(
3
4 +

εsλ;1
2

))
√√√√√ Γ

(
3
4 +

εpλ;n
2

)
Γ
(

1
4 +

εpλ;n
2

)
2π2a3

p,n

(
ψ
(

3
4 +

εpλ;n
2

)
− ψ

(
3
4 +

εpλ;n
2

))×
×

R0∫
0

W
−
εs
λ;1
2 ; 14

(
r2
h

a2
s;n

)
W
−
ε
p,
λ;n
2 ; 14

(
r2
h

a2
p;n

)
drh
rh
×

R0∫
0

drere
2J1/2

(
re
R0

X1,0

)
J 3

2

(
re
R0

Xn,1

)
×

×
π∫

0

dθ sin θ

2π∫
0

dϕY 0,0 (θ, ϕ) Y 1,m (θ, ϕ) cos θ. (31)

After calculating the integrals in (31) and taking into account the expression for the energy spectrum of charge
carriers (23) for the matrix element (31), we obtain (in the Bohr units)

Mf, λ (X) = i ahEh
(
25π
)1/2

Xn,1

√
α∗I0Eh
X

(
k(X2

n,1−π
2)

R∗20
−
(
ηpn
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))
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×

×

√√√√√ Γ
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3
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1
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(
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3
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3
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2
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(

3
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2
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(
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(
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3
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2

)
− ψ

(
3
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εpλn
2
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)

+ sinXn,1

(
3Xn,1

2 − π2
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(γsnγ
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∞∑
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∞∑
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j (
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(
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2

) (
1
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i
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1
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3
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)
i
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∗ 2 ( 3
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0 Γ

(
− 1

2

)(
3
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(

1
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2
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(
3

2
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3

4
+
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2

;
5

2
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2
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)
+

√
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0 Γ
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1
2
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3
2 + i+ j

)
Γ
(

3
4 +
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+
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0 Γ
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2
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+

+

√
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0 Γ
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)(
1
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(

3
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1

2
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1

4
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1

2
,

3

2
+ i+ j;

R∗20

γpn

)])
, (32)

where R∗0 = R0/ah; k = mh/me; ηs1 =
√
Esλ1/Eh; ηpn =

√
Epλn/Eh; pFq(a1, . . . ap; b1 . . . bq; z) is the generalized

hypergeometric function.
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Let us further assume that the dispersion u of QD sizes arises during the phase decomposition of a supersaturated
solid solution and is satisfactorily described by the Lifshitz–Slezov formula [14]

P (u) =


34e u2 exp [−1/ (1− 2u/3)]

2
5
3 (u+ 3)

7
3 (3/2− u)

11
3

, u <
3

2
;

0, u >
3

2
,

(33)

where u = R0/R̄0, R0 and R̄0 – the QD radius and its average value, respectively; e is the base of the natural logarithm.
With relatively small changes in the permittivity ε(∆ε ≤ 3ε), change in the value ε during photoexcitation in the

dipole approximation, taking into account the dispersion of the QD radius, is determined from the following formula
(see [15–17]):

∆ε (ω) =
4πN0I0

~ω
∑
n

3/2∫
0

σn (ω) τnαnP (u) du, (34)

where I0 is the radiation intensity; ω is the incident light frequency; αn is the polarizability of excited states of an electron
in QD; τn is the lifetime of excited electronic states; σn(ω) is the partial photon absorption cross section for QD with the
complex A+ + e.

Since the value 1/τn determines the total probability, per unit time, for spontaneous emission of photons during
quantum transitions of an electron from the p-state (with different quantum numbers n) to the ground state, then, assuming
that the system is characterized only by the radiative lifetime, the expression for τn will be written as

1

τn
= $, (35)

where the total transition probability is given by an expression of the next form

$ =
2π

~

∫ ∑
σ

|〈Φ out (~re, ~rh) |V| Φin (~re, ~rh)〉|2 dρ (Eout) , (36)

the quantity dρ(Eout) characterizes density of the final states number for the system and is defined as

dρ (Eout) =
V (ω̃)

2
dΩ

(2π)
3 ~c3

, (37)

where ω̃ = (Ein − Eout)/~ =
(
~2(X2

n,1 − π2)/2m∗ea
2
hR
∗2
0 − (Epλn − E

s
λ1)
)
/~; dΩ is an infinitesimal element of the

solid angle, and the interaction operator of a particle with an electromagnetic field (in the one-photon approximation) has
the next form

V = − e

mec
A (~r)p. (38)

Here A(~r) is the vector potential operator defined by the formula (in the Coulomb gauge)

A (~r) =
∑
k,σ

(
2π~c2

V ωk

)1/2

~ek,σ

(
ak,σei

~k~r + a†k,σe
−i~k~r

)
. (39)

Respectively, ak,σ and a†k,σ are the operators of annihilation and creation of a photon with a wave vector ~k and polarization
σ, respectively. In the case of the dipole approximation, the expression for the total probability, in the Bohr units, taking
into account the QD size dispersion, will be determined as follows

$ =
4e2E3

h

3~4c3

(
k
(
X2
n,1 − π2

)(
R̄∗0u

)2 −
(
ηp2λn − η

s2
λh

))3

|Pn,1,0|2 , (40)

where the value Pn,1,0 is determined by the next expression

P pn = 〈 Ψp
λh (~rh)|Ψλh (~rh)〉 〈Ψn,1,0 (~re) | (~esλ, ~re) |Ψ1,0 (~re)〉 . (41)
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Taking into account the previously obtained expression for the matrix element (32), the expression for (41) can be
written as

P pn
(
R̄∗0u

)
=

4Xn,1

(
Xn,1

2 cosXn,1
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)
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×
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+
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)
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,
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a2
p,n

) . (42)

Accordingly, for the lifetime of an electron at an excited level, taking into account the dispersion of the QD sizes, we
obtain the following expression

τpn
(
R̄∗0u

)
=

3~4c3

4e2E3
h

(
k(X2

n,1−π2)
(R̄∗0u)

2 − (ηpλn
2 − ηsλ1

2)

)3 ∣∣P pn (R̄∗0u)∣∣2 . (43)

The polarizability αpn(R̄∗0u) of electronic states in a QD with a complex A+ + e in the Bohr units is determined by
an expression of the next form

αpn
(
R̄∗0u

)
=

4ah
3

Eh

|P pn |
2

k(X2
n,1−π2)

(R̄∗0u)
2 −

(
ηp2λn − ηs2λ1

) . (44)

The partial photons absorption cross sections for QDs with the complex A+ + e are determined by the following
formula

σpn (ω,R0) =
2π

~I0
|Mf, λ (ω,R0)|2 Γ0

~2Γ2
0

4 +

(
~2(X2

n,1−π2)
2me∗R0

2 − (Epλn − Esλ1)− ~ω
)2 , (45)

Where Mf,λ(ω) is determined by formula (32). Rewriting (45) in the Bohr units, we obtain

σpn
(
X, R̄0u

)
=

2π

~2I0Eh

|Mf, λ (X)|2 Γ∗0

Γ∗20
4 +

(
k(X2

n,1−π2)
(R̄∗0u)

2 − (ηpλn
2 − ηsλ1

2)−X
)2 . (46)

Thus, expression (34) takes the form

∆ε (X) =
N0I012π2~4c3ah

5α∗

e2Eh5X2

N∑
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3/2∫
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P (u) du
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2 − (ηpλn
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2)

)2×

× Γ∗0

Γ∗20
4 +

(
k(X2

n,1−π2)
(R̄∗0u)

2 − (ηpλn
2 − ηsλ1

2)−X
)2 , (47)
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or, taking into account (32), for (47) we finally obtain

∆ε (X) =
N0I012π2~4c3ah
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Figure 4(a,b,c) shows the spectral dependence of the relative change in permittivity ∆ε/ε for the quasi-zero-dimensional
structure with InSb QDs for various dissipative tunneling parameters ε∗L, ε∗C and ε∗T , calculated by formula (48). As can
be seen from Fig. 4(a,b), an increase in the phonon mode value and temperature (respectively, parameters ε∗L and ε∗T ) also
leads to a significant increase in ∆ε/ε, which is associated with an increase in the effective radius of the excited states of
the impurity complex A+ + e under conditions of tunneling decay of the quasistationary A+ state.

An increase in the degree of ”viscosity” of the contact medium or of the heat-bath (parameter ε∗C ) leads to the
suppression of the PDE due to an increase in the localization of the wave function of the quasi-stationary A+-state (see
Fig. 4(c)). From Fig. 4(a,b,c) it is also seen that the PDE spectral dependence curves contain a peak that appears when
the photon energy becomes comparable with the average energy of the optical transition. In this case, position of the peak
depends on the parameters of dissipative tunneling, which, as shown above, have a significant influence on the effective
localization radius of the quasi-stationary A+ state.

4. Conclusion

Influence of dissipative tunneling on the PDE, associated with the excitation of impurity complexes A+ + e during
intraband optical transitions of an electron in a QD, has been theoretically studied, taking into account change in the
profile of the adiabatic potential of an electron.

In contrast to [15], where the case of a localized A+-state is considered, in this paper we consider the case of a quasi-
stationary A+-state (the impurity level is located between the bottom of the adiabatic potential and the energy level of the
ground state of the hole, see Fig. 1). In this case, the width of the potential barrier is finite, and the influence of the tunnel
decay of the quasi-stationary-state should be taken into account. As a result, new possibilities appear for controlling
the PDE in a quasi-zero-dimensional structure by varying such parameters of dissipative tunneling as temperature, the
frequency of the phonon mode, and the constant of interaction with the contact medium, which differs significantly from
the case of a localized A+-state [15], when the PDE is controlled only by changing the average quantum dot radius.

In the dipole approximation, an analytical formula is obtained for the spectral dependence of the change in the
permittivity of a quasi-zero-dimensional structure upon photoexcitation of impurity complexes A+ + e under conditions
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FIG. 4. Spectral dependence of the relative change in the permittivity of a quasi-zero-dimensional
structure with InSb QDs at Ei = 3.5 meV; R̄0 = 70 nm, for different values of the dissipative tunneling
parameters:
a) 1− ε∗L = 1, ε∗T = 1, ε∗C = 3; 2− εL = 2, ε∗T = 1, ε∗C = 3;
b) 1− ε∗L = 1, ε∗T = 1, ε∗C = 3; 2− εL = 2, ε∗T = 3, ε∗C = 3;
c) 1− ε∗L = 1, ε∗T = 1, ε∗C = 3; 2− εL = 1, ε∗T = 1, ε∗C = 4.
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of tunnel decay of a quasi-stationaryA+-state, taking into account the dispersion of the QD radius. It is found that varying
the dissipative tunneling parameters leads to a change in the effective localization radius of the quasi-stationary A+-state
in the QD and, as a consequence, to a noticeable change in the permittivity of the quasi-zero-dimensional structure. It is
shown that the spectral dependence of the PDE is characterized by a peak that appears when the photon energy becomes
comparable with the average energy of the optical transition. The position of the peak depends on the parameters of
dissipative tunneling. It is revealed that an increase in the degree of “viscosity” of the contact medium is accompanied
by the suppression of the PDE due to the strengthening of the localization of the wave function of the quasi-stationary
A+-state. Thus, the controllability of the PDE in a quasi-zero-dimensional structure with impurity complexes A+ + e in
the presence of dissipative tunneling has been demonstrated.
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