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1. Introduction

The study of dynamics of some quantum systems can be reduced to the study of the dynamic group of the Hamil-
tonian. Generators of the dynamical group form an algebra. The structures of invariant spaces of the algebra and the
group are similar. Eigenvalues of self-adjoint operators of the complete commuting set are used to the state classification.
The ladder operator approach used to build the complete set and obtain eigenbasis. In articles [1–4], ladder operators
are constructed for different algebras, which are obtained in consequence of modification of quantum harmonic oscillator
model. In our work, we have formulated a general approach to the analysis of such systems.

The Lie algebra of the dynamic group of the Hamiltonian of the quantum harmonic oscillator model is the
Heisenberg–Weyl algebra [5, 6] – w(1). Generators of this algebra are Hermitian-conjugate boson creation/annihilation
operators – a and a† which obey the following commutation relations[

a, a†
]

= Î , [a, Î] = 0 = [a†, Î]. (1)

Here Î is the identity operator of algebra w(1). By introducing a particle number operator N̂ = a†a, the mentioned
Hamiltonian can be expressed as

Ĥ = ~ω(N̂ +
1

2
). (2)

The complete commuting set of operators for this Hamiltonian contains only one operator N̂ , which spectrum determines
the observed energy levels. Operators a and a† are ladder operators for the operator N̂ . They satisfy the commutation
relations [

N̂ , a†
]

= a†,
[
N̂ , a

]
= −a. (3)

Action of ladder operators a and a† transforms an eigenvector of operator N̂ into another eigenvector

N̂ |n〉 = n |n〉 , N̂(a† |n〉) = a†(N̂ + Î) |n〉 = (n+ 1)(a† |n〉),

N̂(a |n〉) = a(N̂ − Î) |n〉 = (n− 1)(a |n〉), a |0〉 = 0 = N̂ |0〉 ,
(4)

The annihilation operator a (unlike the creation operator a†) has a non-trivial kernel corresponding to the vacuum state
of the quantum oscillator. The corresponding eigenvector |0〉 is called vacuum vector. Thus, the spectrum of operator N̂
consists of integer non-negative numbers N ∪ {0}, and an arbitrary eigenvector can be obtained by the action of ladder
operators on any particular eigenvector, e.g. the vacuum vector. In the canonical basis of the eigenvectors {|n〉} the
operators a and a† have the form

a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n+ 1〉 =

√
n+ 1 |n〉 , a |0〉 = 0, (5)

and vector |n〉 is expressed as

|n〉 =
1√
n!

(a†)n |0〉 . (6)
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In this way, dynamics of multidimensional harmonic oscillator can be described by an algebra which generators are
represented through the bosonic polynomials resulting from Jordan–Schwinger mapping [7, 8] of generator matrices into
w(1)⊗m for certain m:

X = (xij) 7→ X̆ =

m∑
i,j=1

xi,ja
†
iaj , [X̆, Y̆ ] = ˘[X, Y ]. (7)

The image of the identity matrix is the total particle number operator

Ĭ = N =

m∑
µ=1

a†µaµ =

m∑
µ=1

Nµ. (8)

In our paper [10], we consider the image of the algebra su(2) [9] represented by the operators N, Jz, J+, J−, which
are expressed using bosonic operators ai, a

†
i by the Jordan–Schwinger mapping of generator matrices of the irreducible

representation of dimension (2s+ 1) of su(2) algebra [8]:

Jz =

s∑
µ=−s

µa†µaµ, J+ =

µ=s−1∑
µ=−s

√
(s+ µ+ 1)(s− µ)a†µ+1aµ = (J−)†. (9)

We denote this algebra as suj(2) Bosonic operators for each degree of freedom obey the following commutation relations:

[ai, aj ] = [a†i , a
†
j ] = 0, [ai, a

†
j ] = δij . (10)

The Fock basis, defined by eigenvalues of particle number operators of each degree of freedom, is complete and consists
of vectors of the form |n−s, n−s+1, . . . , ns〉.

The Jordan–Schwinger mapping is a Lie algebras homomorphism, thus the matrix images obey the same commu-
tation relations as their pre-images. The operators Jz, J+, J− are generators of the algebra su(2) . They satisfy the
corresponding commutative relations

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (11)

In su(2) algebra, the Casimir operator commuting with all generators exists and by Schur’s lemma, in the space of
irreducible representation, such an operator is proportional to the identity operator. Recall that the image of the unit
matrix in the Jordan–Schwinger mapping is operator N . Hence,

[N, Jz] = 0, [N, J±] = 0. (12)

The Casimir operator J2 for generators Jz, J+, J− is defined as follows

J2 = J2
z +

1

2
(J+J− + J−J+). (13)

The image of the canonical basis of an irreducible representation has standard form

Jz |j, jz〉 = jz |j, jz〉 , J2 |j, jz〉 = j(j + 1) |j, jz〉 ,

J+ |j, jz = j〉 = 0, J− |j, jz = −j〉 = 0,

J+ |j, jz〉 =
√

(j − jz)(j + jz + 1) |j, jz + 1〉 ,

J− |j, jz + 1〉 =
√

(j − jz)(j + jz + 1) |j, jz〉 .

The commuting set of operators
{
N ; J2, Jz

}
is complete in the cases s =

1

2
and s = 1. In these cases, the eigenvalues

of operators N, J2, Jz uniquely determine the basis vectors |n; j, jz〉. In other cases within a fixed eigenvalue n of the
operatorN , the eigenvalues j(j+1) of the operator J2 are nontrivially degenerate. Note that if s is a non-negative integer,
then j is also a non-negative integer. The arbitrary Fock vector will be an eigenvector for the operators

{
N ; J2, Jz

}
, but

not for the operator J2.
The aim of our work is to augment the existing commutative set N ; J2, Jz to a complete one. In our paper, we

propose a method for constructing generalized ladder operators, which are used for classification and construction of the
canonical basis.

2. Generalized ladder operators

Let us consider the self-adjoint operator H = H†. We will call an operator p† a right ladder operator (hereafter,
RLO) if there exists a nonzero selfadjoint operator P = P † 6= 0 commuting with H , such that one of the following
commutation relations is satisfied

[H, p†] = p†P or Hp† = p†(P +H). (14)
The expression conjugated to (14) is the definition of the left ladder operator (LLO)

[p, H] = Pp. (15)
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For RLO p†, we will call the operator P a right function in the case when the operator P is represented as a function of
P (H,H1, . . . ,Hn) of the commuting set of self-adjoint operators H, H1, , . . . ,Hn.

For an arbitrary polynomial of the operator H the operator p is a ladder operator. In view of the bilinearity of the
commutator it suffices to show that for any degree of H the following property holds

[Hn, p†] = p†((H + P )n −Hn) or Hnp† = p†(H + P )n. (16)

Proof. To prove this statement it is enough to use the recurrent property

[Hn, p†] = [H, p†]Hn−1 +H[Hn−1, p†] = p†PHn−1 + [Hn−1, p†](H + P ), (17)

which can be proved by applying the method of mathematical induction, where the base of induction is the definition of
the ladder operator.

Also, one can show that the result of multiplying the RLO by the self-adjoint operator A which commutes with
operators H and P is again the RLO of operator H:

[H, pA] = pAP. (18)

2.1. Ladder operators construction

Let the system of the self-adjoint operator H and the set of operators {Tµ}nµ=1 have the following properties

[H, Tη] =

n∑
µ=1

Tµαµη, α†µη = αµη, [αµη, H] = 0. (19)

We are looking for a nontrivial set of self-adjoint operators ση = ση
† which commute with H and {αµη} and the operator

n∑
η=1

Tηση is the RLO for H again:

[H,

n∑
η=1

Tηση] =

n∑
η=1

TησηP, [P, ση] = 0.

Substituting (19) into the previous expression, we obtain the following equation
n∑
µ=1

Tµ(

n∑
η=1

αµηση − σµP ) = 0, (20)

which can be represented in matrix form

(
T1 T2 . . . Tn

)
(A− P )


σ1

σ2

. . .

σn

 = 0, (21)

where we use (A− P ) instead of matrix

(A− P ) =


α11 − P, α12, . . . , α1n

α21, α22 − P, . . . , α2n

...
...

. . .
...

αn1, αn2, . . . , αnn − P

 .

One of many solutions (21) is the solution to the equation

(A− P )


σ1

σ2

. . .

σn

 = 0. (22)

Since all elements of the matrix (A−P ) commute with each other, we can consider the determinant of the matrix (A−P ),
which must be equal to zero, since the coefficients {ση} are in the nontrivial kernel of the matrix (A − P ). Hence, the
equation for the right functions of RLO arises

det (A− P ) ≡ 0. (23)
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The determinant is a polynomial of the operator P of degree n, and its roots are various right-hand functions of
RLO. Then, by substituting the obtained roots into equation (21), we can find their corresponding coefficients {ση} of the
RLO’s.

3. Irreducible representations of the suJ(2) algebra

3.1. Ladder operators of the Casimir operator

In this section, we construct ladder operators for the Casimir operator in the case of integer s. If s is integer, then
irreducible representations with integer weights only are implemented, and the kernel of operator Jz is always nontrivial
for any number of particles. Thus, any irreducible representation can be recovered by ladder operators of the algebra su(2)
from its state lying in the kernel of operator Jz , Thus, it suffices to solve the classification problem within the kernel of
Jz . When s is half-integer, the irreducible representations of all possible weights are realized. However, the proposed
approach can be easily applied to this case: the only difference is that the resulting ladder operators will not commute
with the operator Jz but its ladder operators will be .

Let s be a non-negative integer. Consider the set of operators {p†k}
s
k=0 and {m†k}

s
k=1 commuting with operator Jz

p†0 = 2a†0,

p†k =
1∏k

i=1

√
(s+ i)(s− i+ 1)

(
a†−kJ

k
+ + a†kJ

k
−

)
,

m†k =
1∏k

i=1

√
(s+ i)(s− i+ 1)

(
a†−kJ

k
+ − a

†
kJ

k
−

)
.

(24)

All operators from the sets {p†k} and {m†k} are ladder operators of operator N

[N, p†k] = p†k, [N,m†k] = m†k.

The operators p†k and m†k are closed with respect to the action of the Casimir operator J2 in the sense of definition (19)

[J2, p†0] = s(s+ 1)p†0 + 2s(s+ 1)p†1,

[J2, p†k] = ((s+ k + 1)(s− k)− k(k − 1))p†k + (s+ k + 1)(s− k)p†k+1+

+p†k−1((ĵ + Jz + 1)(ĵ − Jz)− k(k − 1)) + 2k(m†k +m†k−1)Jz,

[J2, m†k] = ((s+ k + 1)(s− k)− k(k − 1))m†k + (s+ k + 1)(s− k)m†k+1+

+m†k−1((ĵ + Jz + 1)(ĵ − Jz)− k(k − 1)) + 2k(p†k + p†k−1)Jz,

(25)

where the operator ĵ is defined as

ĵ =
1

2

(√
Î + 4J2 − Î

)
. (26)

Let us find the right-hand functions of the ladder operators from equation (21). We will construct ladder operators
for the kernel Jz since the whole basis of the irreducible representation can be restored by the action of operators J±. For
this reason, we can replace the operator Jz in equation (25) by zero Jz = 0

[J2, p†0] = s(s+ 1)p†0 + 2s(s+ 1)p†1,

[J2, p†k] = ((s+ k + 1)(s− k)− k(k − 1))p†k + (s+ k + 1)(s− k)p†k+1 + p†k−1((ĵ + 1)ĵ − k(k − 1)),

[J2, m†k] = ((s+ k + 1)(s− k)− k(k − 1))m†k + (s+ k + 1)(s− k)m†k+1 +m†k−1((ĵ + 1)ĵ − k(k − 1)).

(27)

Let us construct matrix (A− P ). The matrix A is a block-diagonal one

A =

P 0

0 M

 ,

consisting of two tridiagonal matrices P and M of dimensions dimP = s+ 1 and dimM = s, respectively,

P =



s(s+ 1) ĵ(ĵ + 1), 0, . . . 0 0

2s(s+ 1) s(s+ 1)− 4 (ĵ − 1)(ĵ + 2) . . . 0 0

0 (s− 1)(s+ 2) s(s+ 1)− 8 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −s2 + 5s− 2 ĵ(ĵ + 1)− s2 + s

0 0 0 . . . 2s −s2 + s


.
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Matrix M is obtained from matrix P by crossing out the first row and column.
The choice of coefficients at {p†k}

s
k=0 and {m†k}

s
k=1 makes it symmetric, hence, the matrices P and M have different

eigenvalues, which are expressed using the operator ĵ. The traces of matrices P and M are equal to the sum of their
eigenvalues. The matrix A corresponds to the following set of eigenvalues{

θ(θ + 2ĵ + 1)Î
}s
θ=−s

,

and the matrix P is matched by θ of the same parity as s, and the matrix M by all others.
We will look for the coefficients recurrently, starting with σs. For matrices P and M , the equations on the ladder

operator will be almost identical. It allows us to obtain a common result for them. Let us find the solution of the following
equation

(
P − θ(θ + 2ĵ + 1)Î

)


σθ0

σθ1
...

σθs = Î

 = 0.

The coefficient σθs−1 is found at σθs = Î:

σθs−1 = ĵ
θ

s
+
θ2 + θ + s2 − s

2s
. (28)

Consider the k-th string:

(s − k)(s + k + 1)σθk−1 + ((s − k)(s + k + 1) − k(k − 1) − θ(θ + 2ĵ + 1))σθk + (ĵ − k)(ĵ + k + 1)σθk+1 = 0

and express σθk−1 through σθk and σθk+1:

σθk−1 =
θ2 + θ + k2 + k

(s+ k)(s− k + 1)
σθk + ĵ

2θσθk
(s+ k)(s− k + 1)

− σθk −
(ĵ + k + 1)(ĵ − k)

(s+ k)(s− k + 1)
σθk+1, (29)

where σθk is a polynomial of the operator ĵ of degree (s− k).
Denote the obtained ladder operators as {τ †θ}

s
θ=−s

τ †θ =


s∑

k=0

p†kσ
θ
k, for θ of the same parity as s,

s∑
k=1

m†kσ
θ
k, otherwise.

(30)

Ladder operators have the following commutative relations with the J2 operator

[J2, τ †θ ] = τ †θ θ(θ + 2ĵ + 1). (31)

Since the Casimir operator J2 is represented as a polynomial J2 = ĵ(ĵ + 1) of operator ĵ, we obtain commutation
relations between ĵ and {τ †θ} from the solution of the following equation

[ĵ2 + ĵ, τ †θ ] = τ †θ X(X + 2ĵ + 1) = τ †θ θ(θ + 2ĵ + 1).

Hence, X = θÎ and
[j, τ †θ ] = θτ †θ . (32)

Operators {τ †θ} are also ladder operators for operators
1

2ĵ + (2k + 1)Î
, where k is non-negative:[

1

2ĵ + (2k + 1)Î
, τ †θ

]
= τ †θ

(
1

2ĵ + (2k + 1)Î
− 1

2ĵ + (2(k − θ) + 1)Î

)
. (33)

There is similar expression with the left-hand function:[
1

2ĵ + (2k + 1)Î
, τ †θ

]
=

(
1

2ĵ + (2k + 1)Î
− 1

2ĵ + (2(k − θ) + 1)Î

)
τ †θ . (34)

For an arbitrary polynomial of functions {ĵk}nk=0 and


(

1

2ĵ + (1 + 2k)Î

)k
n

k=0

commutative relations with {τθ} or

{τ †θ} can be obtained.
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Single-particle Fock states belongs to the irreducible representation of the algebra su(2) corresponding to the eigen-
value s(s+ 1) of the Casimir operator J2

J2 |0, 0, . . . , nk = 1, . . . , 0〉 = s(s+ 1) |0, 0, . . . , nk = 1, . . . , 0〉 ,
and the kernel Jz is one-dimensional and consists of the following vector

Jz |0, 0, . . . , n0 = 1, . . . , 0〉 = 0.

The action of the ladder operators {τ †θ} allows us to construct the canonical basis of the kernel Jz . At these, it is easy to
show that

[τ †θ τθ, J
2] = 0 = [τ †θ τθ, Jz] = [τ †θ τθ, N ].

Thus, the commuting set
{
N ; J2, jz

}
can be augmented to complete set of commuting operators by some self-adjoint

polynomials of ladder operators.

3.2. The annihilated states of the ladder operators of the Casimir operator

The geometry of the Fock space allows us to find annihilated states of ladder operators
{
τ †θ , τθ

}s
θ=−s

. Consider the

vectors of the operators ĵ and N lying in the kernel of the operator Jz

|n, j, , jz = 0〉 ,

Given n the eigenvalues of the operator ĵ are in the range 0 6 j 6 ns. The action of operators within the Jz kernel can
be represented by the following scheme for ω = 1 . . . s:

τ †ω |n, j〉 ⇒ |n+ 1, j + ω〉 ,

τω |n+ 1, j + ω, 〉 ⇒ |n, j〉 ,
è

τ †−ω |n, j + ω, 〉 ⇒ |n+ 1, j〉 ,

τ−ω |n+ 1, j, 〉 ⇒ |n, j + ω〉 .
(35)

Operators τ †ω have a trivial kernel if ω is the same parity, as s. If ω differs in parity from s, then all one-particle state
lies in the kernel of τ †ω . This is due to the antisymmetric definition of the operator τ †ω for ω other than s parity.

The operators τω transforms all states j < ω and the vacuum state n = 0 into zero, Thus, implementing ω of different
representations of the algebra. The algebra of the pair of operators τ †ω and τω itself is a deformation of the Weyl algebra
w(1). Its different representations are defined by the number rθ = j mod ω and the eigenvalues of the self-adjoint
operators τ †ωτω.

The operators τ †−ω annihilate all states j < ω, and the operators τ−ω annihilate all states j > ns − ω and vacuum
state n = 0. Thus, we can say that the operators τ †−ω and τ−ω represent a deformation of the algebra su(2), where the
representations differ by the number rθ = j mod ω and the eigenvalues of the self-adjoint operators

Lωz = [τ †−ω, τ−ω], L2
ω = (Lωz )2 +

1

2

(
τ †−ωτ−ω + τ−ωτ

†
−ω

)
.

The operators τ †0 and τ0 do not change the eigenvalues of the Casimir operator J2

τ †0 |n, j〉 ⇒ |n+ 1, j〉 , τ0 |n+ 1, j, 〉 ⇒ |n, j〉 . (36)

4. Case s = 1

In this case, the classification problem is of small interest because of all subspaces of kernel Jz are one-dimensional
and the set of commuting operatorsN ; J2, Jz is complete. However, the use of ladder operators can be well demonstrated
by the following example. For the case of s = 1, the generators of the su(2) algebra are represented as follows

Jz =

1∑
µ=−1

µa†µaµ, J+ = (J−)† =

µ=0∑
µ=−1

√
(µ+ 2)(1− µ)a†µ+1aµ. (37)

Consider the following operators
p†0 = 2a†0,

√
2p†1 = a†1J− + a†−1J+, (38)

with the following commutation relations

[p0, p
†
0] = 4, [p1, p

†
1] = 2ĵ(ĵ + 1)− Jz(2Jz + 1) + (N −N0)(Jz − 2),

[p1, p
†
0] = 2(N −N0), [p0, p

†
1] = 2(N −N0),

(39)

where N0 = a†0a0.
The m†1 operator annihilates the Jz kernel (this is trivially checked) if we consider the action of the m†1 operator

on arbitrary Fock state |n−1 = m, n0 = k, n1 = m〉. However, outside the kernel Jz the operator m†1 acts nontrivially,
which is important in the construction of ladder operators on the whole Fock space. In our case it is important to obtain
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canonical basis inside the kernel of Jz , because the whole basis can be reconstructed by the action of the operators J+
and J−.

Consider commutative relations of operators p†i with operator J2

[J2, p†0] = 2p†0 + 4p†1, [J2, p†1] = p†0J−J+ = p†0(ĵ − Jz)(ĵ + Jz + 1).

Assume Jz ≡ 0 and rewrite the commutation relations

[J2, p†0] = 2p†0 + 4p†1, [J2, p†1] = p†0ĵ(ĵ + 1). (40)

The solution of the equation for the right functions of the ladder operators is given by the operators −2ĵ and 2(ĵ + 1).
Denote the ladder operators τ †−1 and τ †1 . They have the following commutative relations with the operator J2

[J2, τ †−1] = −τ †−12ĵ, [J2, τ †1 ] = τ †12(ĵ + 1). (41)

They are expressed using the operators p†0 and p†1 as follows

τ †−1 = p†0ĵ − 2p†1, τ †1 = p†0(ĵ + 1) + 2p†1. (42)

Commutative relations for the operator ĵ ĵ:

[ĵ, τ †−1] = −τ †−1, [ĵ, τ †1 ] = τ †1 . (43)

From the Jacobi relation we also obtain that the commutator [τ †1 , τ
†
−1] is a ladder operator ĵ:

[ĵ, [τ †1 , τ
†
−1]] = 2[τ †1 , τ

†
−1].

Any vector of the canonical basis can be obtained by the joint action of the ladder operators

|n, j, jz〉su2 = α(n, j, jz)


Jjz+ (τ †−1)

n−j
2 (τ †1 )

n+j
2 |000〉F , jz > 0

(τ †−1)
n−j
2 (τ †1 )

n+j
2 |000〉F , jz = 0

Jjz− (τ †−1)
n−j
2 (τ †1 )

n+j
2 |000〉F , jz < 0.

The action of ladder operators and the structure of irreducible representations of the algebra su(2) can be visualized by
the following scheme for jz = 0:

↖τ†−1
↗τ†1

↖τ†−1
↗τ†1

n = 3 • •

↗τ†1
↖τ†−1

↗τ†1

n = 2 • •

↖τ†−1
↗τ†1

n = 1 •

↗τ†1

n = 0 •

j = 0 1 2 3 . . .

dim 1 3 5 7 . . .

Now, consider again the operators p†0 and p†1 which can be expressed using the operators τ †−1 and τ †1

p†0 =
(
τ †1 + τ †−1

) 1

2ĵ + 1
, p†1 =

1

4

(
(τ †1 − τ

†
−1)− (τ †1 + τ †−1)

1

2ĵ + 1

)
,

where we find commutative relations with the operator ĵ. We obtain

[ĵ, p†0] = (p†0 + 4p†1)
1

2ĵ + 1
, [ĵ, p†1] = (p†0J

2 − p†1)
1

2ĵ + 1
. (44)
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Define new operators, which will also be RLOs of the operator K̂

A† = τ †1
1

2

√
ĵ + 1

1√
(N + 1) + ĵ + 1 + 1

√
2(ĵ + 1) + 1√
2(ĵ + 1)− 1

, (45)

L+ = τ †−1
1

2
√

2

√
ĵ + 1

√
2(ĵ + 1)− 1√
2(ĵ + 1) + 1

. (46)

The operators A and A†, defined above, satisfy the commutation relations of the Weyl algebra w(1)

[A, A†] = Î .

Self-adjoint operator A†A has the same eigenvalues as the operator ĵ. The action of the operator on the state |n, j jz〉 is
defined by the formula

A†A |n, j jz〉 = j |n, j jz〉 .
Using the operators L± as self-adjoint polynomials, the operators Lz and L2 are defined as follows

Lz =
1

2
[L+, L−], L2 = L2

z + Lz + L−L+.

They satisfy the commutation relations of the algebra su(2). Their action on the eigenstates is given by the following
expression

Lz |n, j jz〉 =

(
n− j

2
− n+ j

4

)
|n, j jz〉 ,

L2 |n, j jz〉 =
n+ j

4

(
n+ j

4
+ 1

)
|n, j jz〉 .

The operators A†A, Lz and L2 form a complete commutative set and can be used to classify the states of such a
system on a par with the sets N−1, N0, N1 and K, Jz , N .

By constructing left-hand ladder operators for J2, we obtain another form of ladder operators

τ̄1 = [a0, ĵ] + a0, τ̄−1 = −[a0, ĵ] + a0,

τ̄ †1 = [ĵ, a†0] + a†0, τ̄−1 = −[ĵ, a†0] + a†0.
(47)

From which, in particular, an interesting expression emerges

[ĵ[ĵ, a†0]] = a†0.

5. Conclusion

A method of classification and construction of invariant spaces corresponding to various irreducible representations
of the su(2) algebra is proposed for suj(2) algebra. We obtained a set of the ladder operators for the Casimir operator
of the suj(2) algebra, which is used to find the canonical basis of the algebra. Algebras formed by ladder operators
are deformations of known algebras, which eigenvalues determine persistent states of the Hamiltonian. In this paper we
considered the simplest case for the algebra suj(2) and applied the ladder operator approach to demonstrate the method.
The ladder operator approach is based on commutative algebra relations and can be applied to the analysis of irreducible
representations of various Lie algebras. In this paper, we obtained an infinite basis of a complex structure which can be
recovered from any chosen element of basis by the action of the ladder operators.
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