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ABSTRACT At present, free-space QKD systems are being actively researched and developed. The main
limitation of these systems remains the strong influence of atmospheric turbulence and weather conditions on
the propagating Gaussian beam. In turn, a number of works have shown that vortex beams are more stable
in a turbulent atmosphere. Thus, in this work, the use of vortex beams in the free-space QKD system with
phase encoding under the condition of a turbulent atmosphere and their comparison with Gaussian beams are
studied. The possibility of phase modulation preservation with additional modulation and demodulation of the
vortex beam is also investigated.
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1. Introduction

Quantum key distribution (QKD) is a new direction in communication technology. QKD establishes the secure
connection between two parties (usually called Alice and Bob), where the reliability of purposed channel is provided by
the laws of quantum mechanics, the most important of which is no-cloning theorem [1]. In the long run, QKD provides
safer connection than common cryptosystems based on the complexity of calculating mathematical functions.

The first proposed protocol was BB84 [2], where the secret key was generated by using two orthogonal photon
polarization bases. Since that time, many protocols and experimental schemes were investigated to improve the parameters
of QKD systems and expand the possibilities of their applications [3]. In particular, free-space QKD has been actively
developed due to its flexibility and mobility which can be used in mobile devices [4], satellite communication [5] and
Internet of Things (IoT) [6]. Despite its advantages, free-space QKD has not been widely used in commercial systems
compared to optical fiber ones. The main limitation of these systems is the deviation of the Gaussian beam from the
original direction of propagation resulting from atmosphere turbulence and weather conditions. To solve this problem,
telescopic systems with a large entrance aperture or special correction systems are currently used, which increase the
complexity, weight and cost of QKD systems.

As an alternative method of beam deviation compensation, optical vortices can be used, which, according to a number
of studies [7, 8], are more stable in a turbulent atmosphere. Optical vortices, or optical radiation with orbital angular
momentum (OAM), have a spatial singularity at their center, where the phase remains indeterminate, and along the inner
edges of the beam varies from 0 to 2π [9]. The number of these transitions corresponds to the topological charge of
the vortex. At present, vortex beams have already been studied in QKD systems, in particular, as bases for encoding
information [10] and for multiplexing a channel with respect to the orbital momentum [11]. However, no comparison
has been made between the propagation of Gaussian and vortex beams in a free-space QKD with turbulent atmosphere
and their influence on the parameters of such systems. Also, no experimental studies have been carried out on the phase
modulation preservation with additional modulation and demodulation of the vortex beam, which is necessary for the
effective integration of the atmospheric channel with the optical fiber. These questions will be explored in this article.
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2. Theory

2.1. Beam Propagation

Analytical expression for the electric field of Laguerre-Gaussian modes, well-known example of vortex beams shown
in Fig. 1, is given in the form [12]:
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where Llp is the Laguerre polynomial corresponding to the given mode, q(z) is the complex beam parameter, w(z) is the
beam radius, w0 is the waist radius, ϕpl(z) = (2p + l + 1) tan−1 (z/z0)) is the Gouy phase shift, z0 = πw2

0/λ is the
Rayleigh length, k = 2π/λ is the wave number, λ is the radiation wavelength, r is the radial coordinate of the cylindrical
coordinate system. Indices p and l denote radial and azimuth numbers of the mode respectively (the latter is also called the
topological charge). Using expression (1), one can obtain the desired distributions, as well as the beam intensity profiles.
Since the Gaussian beam is the Laguerre - Gaussian zero mode, one can obtain an analytical expression for the Gaussian
beam by setting l = 0, p = 0 in (1).

FIG. 1. Laguerre-Gaussian modes. Columns show intensity distributions, phase fronts and beam pro-
files of Gaussian beam (Top) and Laguerre-Gaussian first mode (Bottom)

Modeling of free space vortex beams propagation is made by using multiple random phase screens method [13],
general scheme of which is shown in Fig. 2. In this method, the simulation of turbulence is carried out by placing on
the propagation path many thin phase screens, dividing this path into a certain number of segments, on each of which
the medium can be considered homogeneous. Thickness is a key point, since in the phase screen approximation, its
effect extends only to the radiation phase, the amplitude does not change. The propagation of radiation in a segment of a
homogeneous medium can be described by using the calculation of diffraction by the Rayleigh-Sommerfeld method:
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where z is the distance between the centers of the source and receiver planes, r12 is the distance between the source and
the observation points, ξ, η are the integration variables, Σ is the source area.

Expression (2), in the general case, is a superposition integral, but for planar geometry, in which the source and
receiver planes are parallel, it becomes a convolution-type integral

U2(x, y) =

∫∫
U1(ξ, η)h(x− ξ, y − η)dξdη (3)

Applying the convolution theorem, we obtain from (3):
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where the transfer function H is as follows:
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FIG. 2. Scheme of the method of many phase screens for modeling the propagation of radiation in a
randomly inhomogeneous medium

2.2. Turbulence and scattering effects

After passing through the homogeneous section of the channel, the beam passes through the phase screen. The effect
of the phase screen on the radiation is reduced to the usual multiplication by the exponential term:

Uin (x, y, z+) = Uin (x, y, z−) · exp[i · ϕ(x, y).] (6)
The z+ and z− coordinates correspond to the field after and before passing through the screen, respectively. Here ϕ(x, y)
is the spatial distribution of the random phase, which is a characteristic of some spectrum of the random phase. In this
work, the von Karman-type power spectrum of the random phase was used [14]:
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,

where κ0 = 2π/L0, κm = 2π/l0, 1 < α < 2, Γ(1 ± α/2) is the Euler Gamma-function, L0 is the outer scale of
turbulence, l0 is the inner scale of turbulence, rC is the atmosphere coherence length.

The radiation power loss in the communication channel can be described by the Bouguer - Lambert - Beer law:

I(λ, z) = I0(a) exp (−zαext(λ)) , (8)

where αext(λ) is the extinction coefficient. This coefficient consists of two components - the attenuation coefficients due
to absorption and scattering:

αext(λ) = αabs(λ) + αscatt(λ)

Taking into account the wavelength range in which the system is modeled (the telecommunications range (λ = 1500
nm)), the atmospheric absorption coefficient can be neglected, since its contribution to the total attenuation coefficient is
insignificantly small [15].

As for the scattering coefficient, it is the sum of the coefficients of the Rayleigh scattering and the Mie scattering. It
is known from theory that the energy loss due to Rayleigh scattering is inversely proportional to the fourth power of the
wavelength:
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where d is the diameter of the molecule, n is the refractive index of the medium, and λ is the radiation wavelength. Given
this fact, for the telecommunications wavelength range, the molecular scattering coefficient can be neglected.

Mie scattering occurs on particles whose size is of the order of the radiation wavelength. Typical size of the com-
ponents of atmospheric aerosols varies greatly and ranges from 10−9 m to 10−5 m. Since the estimation of the Mie
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scattering coefficient requires knowledge of the concentration and distribution of particles, which is an experimentally
difficult problem. There are models that describe aerosol conditions depending on the meteorological or local character-
istics of the environment. Thus, the signal attenuation caused by Mie scattering can be estimated using the dependence of
the attenuation coefficient on the visibility range of objects through the atmosphere [15, 16].
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λ
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, (10)
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
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1.3, 6 km < V < 50 km;

0.585 V 1/3, V < 6 km.
(11)

2.3. Random phase screen generation procedure

We use trigonometric representation of random phase simulation algorithm:

ψ(r) =

N∑
n=1

an exp (ikn · r) , ϕ1(r) = Re[ψ(r)], ϕ2(r) = Im[ψ(r)], (12)

where ψ(r) is the complex phase, r(x, y) is the point at which the phase is calculated, an are the random complex
spectral amplitudes, kn(pn, qn) are the wave vectors of the individual spectral components, N is the number of spectral
components used to represent the complex phase. The method for generating phase screens is based on the discrete Fourier
transform of the phase [14]:
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where ∆x = L/NDFT , ∆k = 2π/L. The structural function of such phase has the form:
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where Φ(m∆k, n∆k) is the spatial phase spectrum corresponding to the chosen von Karman turbulence model. An
example of a generated phase screen is shown in Fig. 3.

FIG. 3. An example of a generated random phase screen according to the selected turbulence spectrum
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2.4. QKD system parameters estimation

As the object of study the subcarrier wave quantum key distribution (SCW QKD) system were chosen [17], the
free-space implementation of which is described in [15]. The study of the parameters of this system, as well as their
description, are detailed in [18].

It is worth noting that the propagation of quantum signals from the sender to the receiver is considered in the approx-
imation of the classical description. In this article we do not consider the quantum effects such as quantum entanglement,
quadrature and photon number squeezing, precisely described in [19, 20]. This approximation was made on the basis of
the fact that the protocol used in the SCW QKD system is based on the use of attenuated laser pulses - coherent states
(obeying Poisson statistics), which are not strictly single-photon states (constituting the Fock basis).

One of the main values, characterizing a QKD system is the secret key generation rate:
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h(Q) = −Q log2Q− (1−Q) log2(1−Q), (18)
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m =
√
m2
A +m2

B + 2mAmB cos (ϕA − ϕB) is the modulation index of the system, where mA, mB are modulation
indices in Alice’s and Bob’s modules respectively, h(Q) is the binary Shannon entropy, T is the pulse duration, µ0 is the
average number of photons at the input of Alice’s modulator, L is the length of the communication channel, Pin is the
power at the source plane, Pout is the power at the detector plane. The value Pdet(0, π+ ∆φ) or Pdet(0,∆φ) in (16), (17)
represents the probability of detecting a photon in the recipient block

Pdet (ϕA, ϕB) =

(
ηD

nph (ϕA, ϕB)

T
+ γdark

)
∆t, (20)

where ϕA, ϕB are the phase delays introduced in the modulators of Alice and Bob, respectively, ηD is the quantum
efficiency of the detector used, γdark is the frequency of dark counts, ∆t is the detector gating time. The average number
of photons arriving at Bob’s detector in time T :

nph (ϕA, ϕB) = µ0η(L)ηB

(
1− (1− ϑ) |J0 (m)|2

)
, (21)

where ηB is the loss in the Bob’s module, ϑ is the coefficient that takes into account the imperfection of spectral filtering
in the recipient block, J0 is the Bessel function of the first kind.

Another equally important characteristic is the quantum bit error rate (QBER):

Q(L) =
E

1−G
. (22)

QBER represents the ratio of a negative outcome probability - an error of detection, to the probability of obtaining any
outcome.

3. Numerical results

3.1. Beam propagation

Modeling the process of radiation propagation in a turbulent atmosphere contains several stages. At the initial stage,
it is necessary to obtain intensity distributions, phases, as well as intensity profiles of both beams in the source plane - at
the exit from the Alice’s module. In this work, the process of generation of vortex radiation is not considered, and the
simulation of its direct propagation begins after the vortex beam has already been obtained. Modeling of Gaussian beam
is carried out with the use of the following parameters: λ = 1500 nm; ω0 =1 cm ; z0 = 20 m; l = 0, p = 0. Parameters for
vortex beam are λ = 1500 nm; ω0 =1 cm ; z0 = 20 m; l = 1, p = 0. Results of the first stage are shown in Fig. 1.

Further, having the input characteristics of the beams, it is necessary to carry out the procedure for their propagation
over a given distance. At the input of the propagation channel, just behind the input plane, a random phase screen is placed,
generated by an algorithm based on the discrete Fourier transform of a random phase, mentioned above and described
in detail in [14]. A random phase screen affects the phase front of the original beam, distorting it. We numerically
investigated two cases: rC = 1 m; rC = 0.1 m. The shorter coherence length corresponds to a stronger turbulence.

Other chosen parameters of the atmosphere are: l0 = 1 cm; L0 = 10 m; α =
5

3
; V = 20 km. Total channel length on

this stage was L = 1000 m, the propagation results of which are shown in Fig. 4. Distance between the phase screens
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∆L is chosen to be 100 m, (i.e. 11 phase screens are used), as it is typical distance for this kind of simulation [21].
Aperture of the receiving telescope is DG

det = 0.17 m for the Gaussian beam and DV
det = 0.20 m for the vortex beam.

Aperture diameters remain constant for all the propagation distances. The difference between aperture diameters of the
receiving telescopes is dictated by the fact that the studied beams have different cross-sectional areas for equal waist radii.
Since the purpose of this study is to compare the considered beams under the same conditions, we chose apertures of
the receiving telescopes that would provide the same ratio of the cross-sectional areas of the beams and the areas of the
detectors (receiving telescopes). Fig. 4 shows the case, where the beam, propagating through a turbulent atmosphere,
undergoes shape distortions, as well as phase front distortions. This distortion is the stronger, the shorter the atmosphere
coherence length is. Also, it can be seen that with an increase of turbulence strength, the shift of the beam center relative
to the given axis of its propagation becomes more obvious, this phenomenon is called beam wandering. These ”wanders”,
depicted in Fig. 5, lead to geometric losses of radiation, since the beam goes beyond the boundaries of the aperture of the
receiving telescopic device. Table 1 shows the average values of the shifts and root-mean-square deviations of the shifts
of both beams as they propagate through the turbulent channel at distance L = 1000 m. To perform this assessment, 30
independent simulations were carried out.

FIG. 4. Intensity distribution, phase distribution and intensity profile in the detector plane of Gaussian
beam and vortex beam at the distance L = 1000 m from the source plane in case of a) rC = 1 m;
b) rC = 0.1 m

The achieved values can serve as a measure of beam stability during propagation in a turbulent atmosphere. It is
shown that the vortex beam experiences a smaller average deviation compared to the Gaussian beam under turbulence
conditions, and the values of the standard deviation of the shift indicate that the area of the region within which the
vortex beam will be located is less than for the Gaussian beam. The loss of optical radiation power that beams experience
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FIG. 5. Shift of beams’ centers due to turbulence

TABLE 1. The results of the study of the shift of the centers of the Gaussian and the vortex beams
during propagation through a turbulent atmosphere at distance L = 1000 m

rC , m Average shift, mm RMS shift deviation, mm

Gaussian Beam 1 8.5 ±6.5

Vortex Beam 1 3.3 ±1.2

Gaussian Beam 0.1 47.5 ±25.6

Vortex Beam 0.1 19.2 ±12.0

when propagating in a turbulent communication channel can be calculated from the knowledge of the beam intensity
distributions in the source and detector planes. In this paper, the power is calculated using the Simpson’s method. Optical
loss in dB can be calculated using formula (19). The obtained value of losses contains the contribution caused by the
influence of Mie scattering, this contribution can be calculated using formulas (11), (12). When calculating losses due
to Mie scattering, the parameters for atmospheric visibility V = 20 km were used. A comparison of the radiation loss in
the communication channel for Gaussian and vortex beams is shown in Fig. 6. The graphs show that the vortex beams
experience lower losses in the communication channel for given values of the atmospheric coherence length. The average
loss at the distance L = 1000 m with rC = 0.1 m for the vortex beam is by 0.2 dB less than for the Gaussian beam.

FIG. 6. Dependence of radiation losses in an atmospheric communication channel on its length for
rC = 1 m (Left) and rC = 0.1 m (Right)

3.2. QKD parameters

Using the obtained values of losses in the communication channel, we can calculate the average number of photons
arriving at Bob’s detector (21), the probability of detecting a photon in the receiver unit (20), as well as the key generation
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rate (15) - (18) and QBER (22). When calculating the characteristics of the QKD system, the following parameters were
used [18]: T = 10 ns ,vS = 100 MHz, m = 0.319, µ0 = 4, ∆φ = 5◦, ηB = 10−0.64, ϑ = 10−3, γdark = 20 Hz, ηD = 0.2. The
results of numerical calculation of the key generation rate and the quantum bit error rate for rC = 1 m and rC = 0.1 m are
shown in Fig. 7, 8, respectively.

FIG. 7. Dependence of key generation rate in an atmospheric communication channel on its length for
rC = 1 m (Left), rC = 0.1 m (Right)

FIG. 8. Dependence of QBER in an atmospheric communication channel on its length for rC = 1 m
(Left), rC = 0.1 m (Right)

These results are in good agreement with the beam wandering and the channel losses estimates. Since the key
generation rate and QBER are related to the losses in the communication channel, it is natural that there is a slight
advantage with respect to these parameters as well. For rC = 1 m, the numerical curves for the key generation rate and
QBER are almost indistinguishable: the difference of mean values for given beams is small and the standard deviation
values are nearly equal, despite the fact that the vortex beam shows slightly better results. However, more significant
advantage can be seen for rC = 0.1 m. The average key generation rate for the vortex beam is about 5% higher than for
the Gaussian beam at L = 1000 m and its standard deviation is noticeably less. Numerical results for QBER, however,
shows less difference between the Gaussian and the vortex beams, but may be more significant at longer distances, which
requires further studies.

4. Experiment

To study the possibility of phase modulation preservation during the transition from the Gaussian to the vortex beam
and vice versa in the QKD system with phase coding, an experimental setup was implemented. The purposed scheme is a
classic Mach-Zehnder interferometer, in one of the arms of which modulation and demodulation of the vortex beam were
performed. It is important to clarify that the proposed scheme is not a full-fledged QKD system, but it only imitates the
process of phase coding in the classical approximation, however, the results obtained in this work will also be valid for a
full-fledged quantum communications system.
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Currently, to generate vortex beams, the following methods are used: spiral phase plate [22], fork-grating [23] and
spatial light modulators (SLM) [24]. In this work, the method of fork-grating was used as the most accessible and inex-
pensive one. Fork-grating is a diffraction grating in the middle of which a spatial dislocation is located. Mathematically
it can be obtained as an interference pattern of a vortex beam and an inclined plane wave. In order to use such gratings in
an experimental setup, the pictures with required fork-gratings obtained by mathematical modeling were printed in high
resolution and then transferred to a 35 mm film using the reprography method. As a result of the interaction of a Gaussian
beam with such fork-gratings, vortex beams are generated in side diffraction orders, the topological charge of which co-
incides with the order number. Demodulation of the vortex beam in this case is provided by using a second symmetrical
fork-grating rotated by 180 degrees, which makes it possible to obtain a Gaussian beam in the same diffraction order as
the vortex beam on the first fork-grating. The profiles of the obtained beams is illustrated in Fig. 9. The results obtained
confirm the modulation and demodulation of the vortex beam; nevertheless, the resulting demodulated Gaussian beam has
residual vortex components, which can be explained by the non-ideal alignment and broadening of the singularity of the
vortex beam during propagation, which leads to its incomplete compensation on the second fork-grating.

FIG. 9. (a) Profile of a vortex beam modulated on the fork-grating; (b) cross section of the modulated
vortex beam; (c) profile of the Gaussian beam demodulated on the fork-grating; (d) cross section of the
demodulated Gaussian beam

In the purposed scheme shown in Fig. 10, the He-Ne laser module (LM) with the wavelength of 633 nm were used.
This wavelength has already been used in several works on free-space QKD [4, 25, 26] due to the simplification of the
alignment process. The optical radiation was directed to the beamsplitter (BS1), after which the first laser beam entered
the phase modulator (PM), where it acquired a delay of 0 or π radians, and the second laser beam by the mirror (M1) was
directed to beamsplitter (BS2) on the exit of interferometer. Next, the first beam went through the described above process
of modulation and demodulation of the optical vortex on two fork-gratings (FG1 and FG2). The distance between these
gratings was 42 cm and the first-order diffraction angle was 1.8 degrees. As a result, the obtained demodulated Gaussian
beam by the mirror (M2) was directed to beamsplitter (BS2) on the exit of interferometer, where it interfered with the
second beam. The interference pattern was recorded using camera (C) placed at one of the outputs of the beamsplitter
(BS2). The intensity profiles of the obtained interference patterns at different values of the phase delay, which were
additionally averaged over 60 frames to compensate the phase fluctuations in the interferometer, are shown in Fig. 11.
From the obtained results, it can be seen that the value of the introduced phase delay is equivalently reflected in the
recorded interference pattern. As a result, it can be concluded that the process of modulation and demodulation of the
optical vortex does not affect the process of phase encoding and can be used in the QKD systems with phase encoding.

It is necessary to make important remarks on the obtained experimental results. Firstly, in this work there is a certain
discrepancy between the theoretical model and the experimental scheme. It lies in the fact that Laguerre-Gaussian modes
were used to describe the vortex field in the mathematical model, while in the experimental scheme the vortex beams
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FIG. 10. Mach-Zehnder interferometer on demodulated vortex beam; (in the dotted frame) selection of
the first order diffraction on fork-grating

FIG. 11. Cross section of the interference pattern at a phase delay of 0 and π radians, averaged over 60 frames

were modulated on fork-gratings, which, in fact, is described by the Kummer beams [27]. However, this discrepancy
is not crucial and does not affect the obtained results, since the theoretical model considers the parameters of the SCW
QKD system, and the experimental scheme considers the possibility of the phase encoding preservation, which does not
correlate with each other. Secondly, by using a fork-grating in the SCW QKD, the diffraction angles of the carrier and
subcarrier waves will differ by 10−4 degrees. This will result in their spatial displacement by 1.7 mm at a distance of 1
km, which is comparable to the atmospheric turbulences deviation in the theoretical model. This problem, like the first
one, can be solved by using SLM as a method of generating vortex beams, which will allow one to compensate diffraction
angle deviation of the carrier and subcarrier waves, as well as to implement Laguerre-Gaussian modes in the experimental
scheme to correlate the theoretical model and experiment.

5. Conclusion

Thus, in this work the possibility of using vortex beams in the free-space QKD system and its comparison with the
Gaussian beam were studied as well as the phase encoding preservation possibility. The authors of this paper would like to
once again emphasize the theoretical nature of the research and the presented results. For further practical use, additional
researches are needed.

A mathematical model of radiation propagation in the form of Gaussian and vortex beams in a turbulent atmosphere is
demonstrated and a comparative estimate of the amount of beam wandering is carried out. The radiation power losses were
also calculated, including the geometric losses arising due to the deviation of beams from given propagation axis, as well
as the losses introduced by the Mie scattering. In addition, based on the calculated values of radiation power losses in the
atmospheric communication channel, the parameters of SCW QKD system were estimated using the considered beams.
Taking into consideration the obtained values of the average shift and standard deviation of the shift for both beams, we
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can conclude that the vortex beam is, indeed, less prone to turbulence wandering in the communication channel. Obtained
results also show that the vortex beam is a more favorable information carrier due to lower losses in the communication
channel in comparison with the Gaussian beam. Finally, SCW QKD system parameters estimate points that using of
vortex beams gives one better results compared to Gaussian beams as well.

In turn, the experimental results confirm the possibility of the phase encoding preservation in the process of modu-
lation and demodulation of the vortex beam. It was shown that the fork-grating method has a number of limitations for
its application in the SCW QKD system, in particular, the discrepancy between the theoretical model and experiment,
diffraction angle deviation of carrier and subcarrier waves, and large additional losses on the receiver side due to the
fork-grating method low efficiency. As an alternative, the use of the SLM method has been proposed.

Despite the approximations that were mentioned in Section 2, it can be argued that the use of vortex modulation
in SCW QKD system is reasonable, since the comparison of the behavior of the studied beams during propagation in
a turbulent atmosphere was carried out under the same conditions. However, the model presented in this paper needs
further development. In the future, it is planned to move to a dynamic turbulence model that takes into account the
temporal variability of atmospheric parameters, as well as modeling the direct process of vortex modulation. Also, the
usage of the vortex beam in practical SCW QKD system is planned.
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