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1. Problem statement

The differential and integro-differential equations have applications in biological, chemical and physical sciences,
ecology, biotechnology, industrial robotics, pharmacokinetics, biophysics at micro- and nano-scales [1–13]. Today, for
ordinary integro-differential equations, new problems are posed and a large number of papers, devoting to study of integro-
differential equations, are published. Problems with nonlocal conditions for differential and integro-differential equations
were considered in [14–35]. Integro-differential equations with degenerate kernel were considered in [36–40].

In this paper, we study the solvability of the inverse problem for second-order ordinary Fredholm integro-differential
equation with degenerate kernel, two parameters, and final conditions at the end of the interval. This paper differs from
papers mentioned above in requirement of finding two unknown redefinition data. This inverse problem has features
related with the corresponding direct problem. Let us describe the latter one. We consider on the segment [0;T ] integro-
differential equation of the form

u′′(t) +
(
λ 2 − α(t)

)
u(t) = ν

T∫
0

K(t, s)u(s) ds, (1)

where T, T > 0, is given real number, λ, λ > 0, is real parameter, ν is real nonzero parameter, α(t) ∈ C [0;T ] is positive

function, K(t, s) =

k∑
i=1

a i(t) b i(s), a i(t), b i(s) ∈ C [0;T ]. It is assumed that the systems of functions {a i(t)} and

{b i(s)}, i = 1, k are linear independent.
We consider equation (1) with the following conditions

u (T ) = ϕ1, u′(T ) = ϕ2, (2)

u(t1) = ψ1, u′(t1) = ψ2, (3)
where 0 < t1 < T < ∞, ϕj = const, ϕj are constant quantities of redefinition, ψj = const, j = 1, 2. The choice of
conditions (2) with the final data is related to the fact that in many practical applications, it is not possible to determine
the initial conditions. For example, when studying the technological process of aluminum production, before the start
of the production cycle, the raw material passes through firing and the state of the raw material at the beginning of the
production cycle is not known. However, the final expected state of the output will be known or we can find it from known
intermediate state.

Formulation of the problem. It is required to find a triple of unknowns{
u(t) ∈ C 2[0;T ], ϕi ∈ R, i = 1, 2

}
,

where the first one is a function satisfying equation (1), the second and the third are values from conditions (2) and (3).
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Note that the problem is formulated in such a way that the direct problem (1), (2) has a unique solution for all values
of the parameter λ, and the inverse problem (1)–(3) has a unique solution only for certain values of this parameter λ. In
addition, the second parameter ν also plays an important role in the issue of solvability.

2. Solution of the direct problem (1), (2)

Taking into account the degeneracy of the kernel, we rewrite equation (1) in the following form

u′′(t) + λ 2u(t) = ν

k∑
i=1

a i(t) τ i + α(t)u(t), (4)

where

τ i =

T∫
0

b i(s)u(s) ds. (5)

Solving the inhomogeneous differential equation (4) by the method of variation of arbitrary constants, we obtain the
representation

u(t) = A 1 cos λ t+A 2 sin λ t+
ν

λ

k∑
i=1

τ i

t∫
0

sin λ (t− s) a i(s) ds+
1

λ

t∫
0

sin λ (t− s)α(s)u(s) ds, (6)

where A 1, A 2 are yet arbitrary constants. By differentiating (6) one time, we obtain

u′(t) = −λA 1 sin λ t+ λA 2 cos λ t+
ν

λ

k∑
i=1

τ i

t∫
0

λ cos λ (t− s) a i(s) ds+
1

λ

t∫
0

λ cos λ (t− s)α(s)u(s) ds. (7)

To find the unknown coefficients, we use the final conditions (2). Then, from representations (6) and (7) we arrive at a
system of algebraic equations (SAE)  A 1 cos λT +A 2 sin λT = γ1,

−A 1 sin λT +A 2 cos λT = γ2,
(8)

where

γ1 = ϕ1 −
ν

λ

k∑
i=1

τ iβ 1i −
1

λ

T∫
0

sin λ (T − s)α(s)u(s) ds, (9)

γ2 = ϕ2 −
ν

λ

k∑
i=1

τ iβ 2i −
1

λ

T∫
0

cos λ (T − s)α(s)u(s) ds, (10)

β 1i =

T∫
0

sin λ (T − s) ai(s) ds, β 2i =

T∫
0

cos λ (T − s) ai(s) ds.

For the unique solvability of SAE (8), the condition

δ0 =

∣∣∣∣∣∣ cos λT sin λT

− sin λT cos λT

∣∣∣∣∣∣ 6= 0

should be fulfilled. Since δ0 = 1, this condition is fulfilled for all values of the parameter λ. Consequently, SAE (8) has
the unique solution

A1 = δ1 =

∣∣∣∣∣∣ γ1 sin λT

γ2 cos λT

∣∣∣∣∣∣ = ϕ1 cos λT − ϕ2 sin λT+

+
ν

λ

k∑
i=1

τ i

T∫
0

sin λ s ai(s) ds+
1

λ

T∫
0

sin λ sα(s)u(s) ds, (11)
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A2 = δ2 =

∣∣∣∣∣∣ cos λT γ1

− sin λT γ2

∣∣∣∣∣∣ = ϕ1 sin λT + ϕ2 cos λT+

+
ν

λ

k∑
i=1

τ i

T∫
0

cos λ s ai(s) d s+
1

λ

T∫
0

cos λ sα(s)u(s) ds. (12)

Substituting (11) and (12) into representation (6), we obtain

u (t) = ϕ 1 χ 1(t) + ϕ 2 χ 2(t) +
ν

λ

k∑
i=1

τ i χ 3i(t) +
1

λ

t∫
0

H(t, s, λ)α(s)u(s) ds, (13)

where
χ 1(t) = cos λ (T − t)− sin λ (T − t), χ 2(t) = cos λ (T + t)− sin λ (T − t),

χ 3i(t) =

T∫
0

H(t, s, λ) ai(s) ds,

H(t, s, λ) =

 sin λ (t+ s), t < s ≤ T,

sin λ (t− s) + cos λ t sin λ s+ λ sin λ t sin λ s, 0 ≤ s < t.

Although function (13) is a solution to the direct problem (1), (2), it contains quantities that are still unknown. To
find these quantities τ i, we substitute representation (13) into (5) and arrive at a new SAE:

τ i −
ν

λ

k∑
j=1

τj σ 3ij(t) = ϕ1 σ 1i + ϕ2 σ 2i + σ 4i, (14)

where

σ 1i =

T∫
0

bi(s) cos λ (T − s) ds, σ 2i = −
T∫

0

bi(s) sin λ (T − s) ds,

σ 3ij =

T∫
0

bi(s)

T∫
0

H(s, θ, λ) aj(θ) d θ ds, σ 4i =
1

λ

T∫
0

bi(s)

T∫
0

H(s, θ, λ)α(θ)u(θ) dθ ds.

To establish the unique solvability of SAE (14), we introduce the following matrix

Θ0 (ν, λ) =


1− ν

λ
σ 31 1

ν

λ
σ 31 2 . . .

ν

λ
σ 31 k

ν

λ
σ 32 1 1− ν

λ
σ 32 2 . . .

ν

λ
σ 32 k

. . . . . . . . . . . .
ν

λ
σ 3k 1

ν

λ
σ 3k 2 . . . 1− ν

λ
σ3 k k


and consider the values of the parameter ν, for which the Fredholm determinant differs from zero:

∆0(ν, λ) = det Θ0 (ν, λ) 6= 0. (15)

Determinant ∆ 0(ν, λ) in (15) is a polynomial with respect to
ν

λ
of the degree not higher than k. The algebraic

equation ∆0(ν, λ) = 0 has no more than k different real roots. We denote them by µ l (l = 1, p, 1 ≤ p ≤ k). Then
ν = ν l = λµ l are called the characteristic (irregular) values of the kernel of the integro-differential equation (1). So, we
introduce the following two designations

Ω 1 = {(ν, λ) : ν = λµ l, λ ∈ (0,∞)} , Ω 2 = {(ν, λ) : ν 6= λµ l, λ ∈ (0,∞)} .
The set Ω 1 is the set of irregular values of the kernel of the integro-differential equation (1). While the set Ω 2 is the set
of regular values of the kernel.

On the number set Ω 2 we consider a matrix

Θim(ν, λ) =


1− ν

λ
σ 31 1 . . .

ν

λ
σ 31 (i−1) σm 1

ν

λ
σ 31 (i+1) . . .

ν

λ
σ 31 k

ν

λ
σ 32 1 . . .

ν

λ
σ 32 (i−1) σm 2

ν

λ
σ 32 (i+1) . . .

ν

λ
σ 332 k

. . . . . . . . . . . . . . . . . . . . .
ν

λ
σ 3k 1 . . .

ν

λ
σ 3k (i−1) σmk

ν

λ
σ 3k (i+1) . . . 1− ν

λ
σ 3k k

 ,
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m = 1, 2, 4. Taking into account the known properties of the matrix Θim (ν , λ), we apply the Cramer method on the
spectral set Ω 2 and obtain solutions of SAE (14) in the form

τ i = ϕ1
∆ 1 i(ν, λ)

∆ 0 (ν, λ)
+ ϕ2

∆ 2 i (ν, λ)

∆0(ν, λ)
+

∆ 4 i(ν, λ, u)

∆0(ν, λ)
, i = 1, k, (ν, λ) ∈ Ω 2, (16)

where ∆ im(ν, λ) = det Θim (ν, λ), m = 1, 2, 4. Substituting solutions (16) into function (13), we obtain

u(t, ν, λ) = ϕ1 h 1(t, ν, λ) + ϕ2 h 2(t, ν, λ)+

+
ν

λ

k∑
i=1

∆ 4 i(ν, λ, u)

∆0(ν, λ)
χ 3 i(t) +

T∫
0

H̄(t, s, λ)u(s, ν, λ) ds, (ν, λ) ∈ Ω2, (17)

where

h j(t, ν, λ) = χj(t) +
ν

λ

k∑
i=1

∆j(ν, λ)

∆0(ν, λ)
χ 3 i(t), j = 1, 2,

χ 3i(t) =

T∫
0

H(t, s, λ) ai(s) ds, H̄(t, s, λ) =
1

λ
H(t, s, λ)α(s).

Note that representation (17) is equivalent to the direct problem (1), (2) for regular values of the parameter ν. However,
ϕ1 and ϕ2 have not been determined yet.

3. Solution of the inverse problem (1)–(3)

For convenience, representation (17) can be written in the following form

u (t, ν, λ) = ϕ1

[
cos λ (T − t)− sin λ (T − t) +

ν

λ

k∑
i=1

∆1 (ν, λ)

∆0 (ν, λ)
χ 3 i (t)

]
+

+ ϕ2

[
cos λ (T + t)− sin λ (T − t) +

ν

λ

k∑
i=1

∆2 (ν, λ)

∆0 (ν, λ)
χ 3 i (t)

]
+

+
ν

λ

k∑
i=1

∆ 4 i (ν, λ, u)

∆0 (ν, λ)
χ 3 i (t) +

T∫
0

H̄(t, s, λ)u(s, ν, λ) ds, (ν, λ) ∈ Ω2. (18)

We differentiate (18) one time:

u′(t, ν, λ) = ϕ1

[
λ sin λ(T − t) + λ cos λ(T − t) +

ν

λ

k∑
i=1

∆1 (ν, λ)

∆0 (ν, λ)
χ′3 i (t)

]
+

+ ϕ2

[
−λ sin λ(T + t) + λ cos λ(T − t) +

ν

λ

k∑
i=1

∆2 (ν, λ)

∆0 (ν, λ)
χ′3 i (t)

]
+

+
ν

λ

k∑
i=1

∆ 4 i (ν, λ, u)

∆0 (ν, λ)
χ′3 i (t) +

T∫
0

H̄ ′(t, s, λ)u(s, ν, λ) ds, (ν, λ) ∈ Ω2, (19)

where

χ′3i (t) =

T∫
0

H ′(t, s, λ) ai(s) d s,

H ′(t, s, ω) =

 λ cos λ (t+ s), t < s ≤ T,

λ cos λ (t− s)− λ sin λ t sin λ s+ λ2 cos λ t sin λ s, 0 ≤ s < t.

H̄ ′(t, s, λ) =
1

λ
H ′(t, s, λ)α(s).

Then, applying intermediate conditions (3) to functions (18) and (19), we arrive at the solution of the following SAE: ϕ1 [χ 1(t1, λ) + ε11] + ϕ2 [χ 2(t1, λ) + ε12] = ψ̄1,

ϕ1 [χ′1(t1, λ) + ε21] + ϕ2 [χ′2n(t1, λ) + ε22] = ψ̄2,
(20)
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where

ε1j =
ν

λ

k∑
i=1

∆j(ν, λ)

∆0(ν, λ)
χ 3 i(t1), ε2j =

ν

λ

k∑
i=1

∆j(ν, λ)

∆0(ν, λ)
χ′3 i(t1), j = 1, 2,

ψ̄1 = ψ1 −
ν

λ

k∑
i=1

∆ 4 i(ν, λ, u)

∆0(ν, λ)
χ 3 i(t1) +

T∫
0

H̄(t1, s, λ)u(s, ν, λ) ds, (21)

ψ̄2 = ψ2 −
ν

λ

k∑
i=1

∆ 4 i(ν, λ, u)

∆0(ν, λ)
χ′3 i(t1) +

T∫
0

H̄ ′(t1, s, λ)u(s, ν, λ) ds. (22)

The fulfillment of the following condition ensures the unique solvability of SAE (20):

V0(λ) =

∣∣∣∣∣∣ χ 1(t1, λ) + ε11 χ 2(t1, λ) + ε12

χ′1(t1, λ) + ε21 χ′2(t1, λ) + ε22

∣∣∣∣∣∣ =

= −λ sin 2λT − λ cos 2λT + 2λ sin λ(T − t1) cos λ(T − t1)− λ cos 2λ(T − t1)−
− λ ε11[sin λ(T + t1) + cos λ(T − t1)]− λε12[sin λ(T − t1) + cos λ(T − t1)]−
− ε21[cos λ(T + t1)− λ sin λ(T − t1)]− ε22[sin λ(T − t1)− λ cos λ(T − t1)]+

+ ε11ε22 − ε21ε12 6= 0. (23)

Before proceeding to the solution of SAE (20), we consider condition (23) for the general case. To do this, suppose
the opposite:

− λ sin 2λT − λ cos 2λT + 2λ sin λ(T − t1) cos λ(T − t1)− λ cos 2λ(T − t1)−
− λ ε11[sin λ(T + t1) + cos λ(T − t1)]− λε12[sin λ(T − t1) + cos λ(T − t1)]−
− ε21[cos λ(T + t1)− λ sin λ(T − t1)]− ε22[sin λ(T − t1)− λ cos λ(T − t1)]+

+ ε11ε22 − ε21ε12 = 0. (24)

Condition (24) is a transcendental equation and the set of its solutions with respect to λ denote by =. So, on the set

Ω 3 = {(νn, λ) : |∆0 (ν, λ) | > 0, νn 6= λµ l, λ ∈ =}
SAE (20) is not one valued solvable. But, on the other set

Ω 4 = {(νn, λ) : |∆0 (ν, λ) | > 0, |V0(λ) | > 0, νn 6= λµ l, λ ∈ (0;∞) \ =}
SAE (20) is one valued solvable. Taking into account notations (21) and (22), we obtain

ϕj = ψ1wj1 + ψ2wj2 +
ν

λ

k∑
i=1

∆ 4 i(ν, λ, u)

∆0 (ν, λ)
w j3 i +

T∫
0

Wj(s, λ)u(s, ν, λ) ds, j = 1, 2, (25)

where
w11 = V −10 (χ′2(t1) + ε22) , w12 = V −10 (−χ2(t1) + ε12) ,

w21 = V −10 (χ′1(t1) + ε21) , w22 = V −10 (χ1(t1) + ε11) ,

w13(λ) = − [χ3i(t1, λ)w11(λ) + χ′3i(t1, λ)w12(λ)] ,

w23(λ) = − [χ3i(t1, λ)w21(λ) + χ′3i(t1, λ)w22(λ)] ,

W1(s, λ) = H(t1, s)w11(λ) +H ′(t1, s)w12(λ),

W2(s, λ) = H(t1, s)w21(λ) +H ′(t1, s)w22(λ).

Representations in (25) are expressions of unknown quantities ϕ1 and ϕ2 in terms of an unknown function u(t, ν, λ).
Therefore, we need to uniquely define the function u(t, ν, λ). Substituting representations (25) into equation (17), we
obtain in the final form the following functional-integral equation

u(t, ν, λ) = W (t, ν, λ, u) ≡ ψ1g 1(t, ν, λ) + ψ2g 2(t, ν, λ)+

+
ν

λ

k∑
i=1

∆ 4 i(ν, λ, u)

∆0(ν, λ)
g 3 i(t) +

T∫
0

G(t, s, ν, λ)u(s, ν, λ) ds, (ν, λ) ∈ Ω5, (26)

where
g1 (t, ν, λ) = w11(λ)h 1 (t, ν, λ) + w21(λ)h 2 (t, ν, λ),

g2 (t, ν, λ) = w12(λ)h 1 (t, ν, λ) + w22(λ)h 2 (t, ν, λ),

g 3 i (t) = g 1 (t, ν, λ)χ3i(t1) + g2 (t, ν, λ)χ′3i(t1) + χ3i(t),
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G (t, s, ν, λ) = g 1 (t, ν, λ) H̄(t1, s) + g2 (t, ν, λ) H̄ ′(t1, s) + H̄(t, s).

Note that this functional-integral equation makes sense only for values of parameters ν, λ from the set Ω4. In addition,
in the functional-integral equation (26), the unknown function u(t, ν, λ) is under the sign of the determinant and under the
sign of the integral. Let us investigate this equation in the question of unique solvability. To this end, consider the space
of functions continuous on the interval [0;T ]. In this space, we introduce the norm as follows: ‖u(t) ‖ = max

0≤t≤T
|u(t) | .

Theorem. Let be fulfilled the following condition

ρ =
| ν |
λ

k∑
i=1

∣∣∣∣ ∆̄ 4 i(ν, λ)

∆0(ν, λ)

∣∣∣∣ ‖ g 3 i(t) ‖+

T∫
0

‖G(t, s, ν, λ) ‖ ds < 1,

where
∣∣ ∆̄ 4 i(ν, λ)

∣∣ is defined from (30). Then the functional-integral equation (26) has the unique solution for values
of parameters ν, λ from the set Ω 4 and for all t ∈ [0;T ]. This solution can be found from the following iterative Picard
process  u0(t, ν, λ) = ψ1 g 1(t, ν, λ) + ψ2 g 2(t, ν, λ),

uk(t, ν, λ) = W (t, ν, λ, uk−1), k = 1, 2, 3, ...

Proof. Since ψj and gj(t, ν, λ), j = 1, 2, are bounded, then for zero approximation we obtain the estimate

|u0(t, ν, λ) | = |ψ1 | | g 1(t, ν, λ) |+ |ψ2 | | g2(t, ν, λ) | ≤M (|ψ1 |+ |ψ2 |) <∞, (27)

where M = max {‖ g 1(t, ν, λ) ‖ , ‖ g 2(t, ν, λ) ‖}.
Similarly to (27), taking into account the property of the determinant, we obtain an estimate for the first difference of

the approximation
|u 1(t, ν, λ)− u 0(t, ν, λ) | ≤

+
| ν |
λ

k∑
i=1

∣∣∣∣ ∆ 4 i(ν, λ, u 0)

∆0(ν, λ)

∣∣∣∣ ‖ g 3 i(t) ‖+M (|ψ1 |+ |ψ2 |)
T∫

0

‖G(t, s, ν, λ) ‖ ds. (28)

where |∆i4(ν, λ, u 0) | = |det Θi4 (ν, λ, u 0) |,

Θi4(ν, λ, u 0) =


1− ν

λ
σ 31 1 . . .

ν

λ
σ 31 (i−1) σ 4 1(u 0)

ν

λ
σ 31 (i+1) . . .

ν

λ
σ 31 k

ν

λ
σ 32 1 . . .

ν

λ
σ 32 (i−1) σ 4 2(u 0)

ν

λ
σ 32 (i+1) . . .

ν

λ
σ 332 k

. . . . . . . . . . . . . . . . . . . . .
ν

λ
σ 3k 1 . . .

ν

λ
σ 3k (i−1) σ 4 k(u 0)

ν

λ
σ 3k (i+1) . . . 1− ν

λ
σ 3k k

 ,

σ 4i(u 0) = M (|ψ1 |+ |ψ2 |)
T∫

0

| bi(s) |
T∫

0

∣∣ H̄(s, θ, λ)
∣∣ dθ ds.

Continuing this process, we obtain by induction that

|u k(t, ν, λ)− u k−1(t, ν, λ) | ≤

+
| ν |
λ

k∑
i=1

∣∣∣∣ ∆ 4 i(ν, λ, u k−1)−∆ 4 i(ν, λ, u k−2)

∆0(ν, λ)

∣∣∣∣ ‖ g 3 i(t) ‖+

+

T∫
0

‖G(t, s, ν, λ) ‖ |u k−1(s, ν, λ)− u k−2(s, ν, λ) | ds.

This implies the estimate

‖u k(t, ν, λ)− u k−1(t, ν, λ) ‖ ≤ ρ ‖u k−1(t, ν, λ)− u k−2(t, ν, λ) ‖ , (29)

where

ρ =
| ν |
λ

k∑
i=1

∣∣∣∣ ∆̄ 4 i(ν, λ)

∆0(ν, λ)

∣∣∣∣ ‖ g 3 i(t) ‖+

T∫
0

‖G(t, s, ν, λ) ‖ ds,

∣∣ ∆̄ 4 i(ν, λ)
∣∣ =

∣∣ det Θ̄ 4 i(ν, λ)
∣∣ , (30)
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Θ̄ 4 i(ν, λ) =


1− ν

λ
σ 31 1 . . .

ν

λ
σ 31 (i−1) σ̄ 4 1

ν

λ
σ 31 (i+1) . . .

ν

λ
σ 31 k

ν

λ
σ 32 1 . . .

ν

λ
σ 32 (i−1) σ̄ 4 2

ν

λ
σ 32 (i+1) . . .

ν

λ
σ 332 k

. . . . . . . . . . . . . . . . . . . . .
ν

λ
σ 3k 1 . . .

ν

λ
σ 3k (i−1) σ̄ 4 k

ν

λ
σ 3k (i+1) . . . 1− ν

λ
σ 3k k

 ,

σ̄ 4i =

T∫
0

| bi(s) |
T∫

0

∣∣ H̄(s, θ, λ)
∣∣ dθ ds.

According to the theorem, ρ < 1. Estimates (27), (28) and (29) imply that the operator on the right side of (26) is
contractive. This implies the existence of a single fixed point. Consequently, the functional-integral equation (26) has the
unique solution on the set Ω 4 of values of parameters ν, λ for all t ∈ [0;T ]. The theorem is proved.

Now, the function u(t, ν, λ) ∈ C 2[0;T ] is already known. In order to determine the unknown quantities ϕ1 and ϕ2,
we will substitute the solution u(t, ν, λ) ∈ C 2[0;T ] of equation (26) into representations (25). Then, the quantities ϕ1

and ϕ2, are uniquely determined.

4. Conclusion

We have considered questions of the unique solvability of the inverse problem for the second-order Fredholm integro-
differential equation (1) with a degenerate kernel, final conditions (2) at the end of the interval, two parameters, and two
redefinition data. Sets of regular parameter values are defined. The features that arise when solving the inverse problem
(1)–(3) are studied. Criteria for the unique solvability of the posed inverse problem are established.

Remark 1. For values of parameters (ν, λ) from the set Ω3, the uniqueness of the set of solutions to the inverse
problem (1)–(3) is violated. Because in this case condition (23) is not satisfied.

Remark 2. For values of parameters (ν, λ) from the set Ω1, the inverse problem (1)–(3) does not make sense. Because
in this case condition (15) is not satisfied. But, the direct problem (1), (2) has an infinite set of solutions, if ϕ1 = ϕ2 = 0
and α(t) ≡ 0 for all t ∈ [0;T ].
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