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1. Introduction

In quantum modeling of interacting many-body systems for the manipulation of ultracold atoms and unique setting,
coherent optical fields provide a strong tool because of their high-degree controllable parameters such as optical lattice
geometry, dimension, particle mass, two-body potentials, temperature etc. (See [1–4]). The recent experimental and
theoretical results show that integrating plasmonic systems with cold atoms, using optical potential fields formed from
the near field scattering of light by an array of plasmonic nanoparticles, allows one to considerably increase the energy
scales in the realization of Hubbard models and engineer effective long-range interaction in many body dynamics [5–7].
A several of numerical results for the bound state energies of one and two-particle systems in two adjacent 3D layers,
connected through a window were presented in [8] and investigated the relation between the shape of a window and
energy levels, as well as the number of eigenfunction’s nodal domains. In papers [9] and [10], some spectral properties of
the discrete Schrödinger operator with zero-range and short range attractive potentials, respectively, were studied.

In general, the Schrödinger operator h(k), k ∈ Td, associated with the lattice Hamiltonian h of two arbitrary particles
with some dispersion relation and short range potential interaction acts in L2(Td) as [11]

h(k) = h0(k)− v, k ∈ Td,

where h0(k) is a multiplication operator by Ek(p) =
1

m1
ε(p) +

1

m2
ε(p − k) and v is the integral operator with kernel

v(p, s) = v(p − s). In [8], several numerical results for the bound state energies of one and two-particle systems were
presented in two adjacent 3D layers, connected through a window. The authors investigated the relation between the shape
of the window and the energy levels, as well as the number of eigenfunction’s nodal domains.

In [12], the existence conditions and positiveness of eigenvalues of the Schrödinger operator h(k), k ∈ Td, were
studied with respect to the quasi-momentum k and the virtual level at the lower edge of the essential spectrum.

The existence and absence of eigenvalues of the family h(k) depending on the energy of interaction and quasi-

momentum k were investigated in [13] and [14] for the cases ε(p) =

3∑
i=1

(1− cos 2pi), v(p− s) =

3∑
α=1

µα cos(pα − sα)

and ε(p) =

3∑
i=1

(1− cos 2npi), v(p− q) =

N∑
l=1

3∑
i=1

µli cos l(pi− qi), respectively. The spectral properties of this operator

h(k) for the one dimensional case were studied in [15] and more general case in [16]. For general case ε(p) satisfying

some conditions and v(p − s) = µ0 +

d∑
α=1

µα cos(pα − qα) was investigated in [17]. Detailed spectral properties of the
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Hamiltonian ĥµλ, µ, λ > 0, describing the motion of one quantum particle on a three-dimensional lattice in an external
field and more general case were investigated in the papers [18] and [19], respectively. In [20] a class of potentials is
found for which the discrete spectrum of the two-particle Schrödinger operator h(k) is preserved when h(k) is perturbed
by a potential from this class.

In the recent paper [21], a two particle Schrödinger operator hµ(k), k ∈ T3, µ > 0, associated to the Hamiltonian
h on the three-dimensional lattice is considered. The authors investigated existence conditions of eigenvalues and bound
states of hµ(k). The investigation is based on the construction of invariant subspaces for the operator hµ(k) which allow
one to study the compact perturbations of rank one.

This paper is a continuation of the work [21]. We consider a two particle Schrödinger operator hµ(k), k ∈ T3,
µ > 0, associated with the Hamiltonian h for a system of two particles on the d-dimensional lattice Zd interacting
through attractive short-range potential V. We investigate the existence conditions of eigenvalues and virtual levels of the
two-particle Schrödinger operator hµ(k), where hµ(k) is considered as a perturbation of free Hamiltonian h0(k) by the
certain potential operator µv with rank 3d. The main idea of the investigation is to represent µv via the sum of one rank
orthogonal projectors µvl. This allows one to represent the corresponding Birman–Schwinger operator T(µ, k; z) via the
sum of the one rank projectors Tl(µ, k; z), l = 1, 2, . . . , 3d. Moreover, the study of spectral properties of hµ(k) reduces
to the investigation of 3d one rank operators Tl(µ, k; z). The virtual level of hµ(k) is studied as k = 0.

2. Statement of the main result

A two-particle Schrödinger operator hµ(k), k ∈ Td, µ > 0, associated to the Hamiltonian h for a system of two
particles on the lattice Zd interacting via attractive short-range potential, is a self-adjoint operator and acts in L2(Td) as

hµ(k) = h0(k)− µv, k = (k1, k2, . . . , kd) ∈ Td, µ > 0,

where h0(k) is a multiplication operator by

Ek(p) =
1

m1
ε(p) +

1

m2
ε(p− k), ε(p) =

d∑
i=1

(1− cos 2pi),

with v being an integral operator with kernel

v(p− s) = 1 +

d∑
α=1

cos(pα − sα) +

d∑
γ=1

cos(pα − sα) cos(pβ − sβ) + · · ·+
d∏

α=1

cos(pα − sα),

α, β, γ ∈ {1, 2, . . . , d}, α < β < γ < α.
Note that by the Weyl theorem [22] the essential spectrum σess(hµ(k)) of the operator hµ(k) coincides with the

spectrum of the unperturbed operator h0(k)

σess(hµ(k)) = σ(h0(k)) = [m(k),M(k)],

where m(k) = min
p∈Td

Ek(p),M(k) = max
p∈Td

Ek(p).

Since v > 0 for µ > 0,

sup
‖f‖=1

(hµ(k)f, f) 6 sup
‖f‖=1

(h0(k)f, f) = M(k)(f, f), f ∈ L2(Td).

Hence, hµ(k) does not have eigenvalues lying to the right of the essential spectrum, i.e.,

σ(hµ(k)) ∩ (M(k),+∞) = ∅.

Let {ϕl} be the orthogonal system in L2(Td), where ϕl is defined as

ϕl(p) =

d∏
α=1

ηl(pα), {ηl(pα)} ∈ {1, cos p1, . . . , cos pd, sin p1, . . . , sin pd}.

The number of these orthogonal functions is 3d.

We numerate the elements of the system
{
ϕl
}3d
l=1

to the following rule.
Consider a set of d-tuples (α1, . . . , αd) consisting of 3 digital system. Corresponding for the number zero to 1, 1 to

cosine and 2 to sine we construct the following one to one mapping

(α1, . . . , αd)↔ ηl(pα1)ηl(pα2) · · · ηl(pαd
).
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For example, for d = 4 the tuples (0, 0, 0, 0), (0, 0, 1, 2) and (1, 2, 2, 1) correspond to the functions 1, cos p3 sin p4 and
cos p1 sin p2 sin p3 cos p4, respectively. We order and numerate the set of d tuples as

(00 · · · 00), (00 · · · 01), (00 · · · 10), · · · (11 · · · 11),

l l l
... l

ϕ1 ϕ2 ϕ3 · · · ϕ2d

(00 · · · 02), (00 · · · 12), (00 · · · 20), · · · (22 · · · 22),

l l l
... l

ϕ2d+1 ϕ2d+2 ϕ2d+3 · · · ϕ3d

By construction ϕl(0) = 1 for l = 1, . . . , 2d and ϕl(0) = 0 for l = 2d + 1, . . . , 3d.
The operator v is expressed via the orthogonal functions ϕl, l = 1, . . . , 3d in the form

(vf)(p) =

3d∑
l=1

(vlf)(p), (vlf)(p) = (ϕl, f)ϕl(p),

where (·, ·) is the inner product in L2(Td).
It follows from the nonnegativity of the operator v > 0 that the square root v

1
2 > 0 exists. The operator v

1
2 acts in

L2(Td) as

(v
1
2 f)(p) =

3d∑
l=1

1

‖ϕl‖
(vlf)(p).

Let C be the complex plane, and let r0(k; z), z ∈ C\[m(k),M(k)] be the resolvent of h0(k).
Consider the operator h̃µ(k) acting in L2(Td) in accordance with the formula

h̃µ(k) = h̃0(k)− µv,

where h̃0(k) is the operator of multiplication by the function Ẽk(·),

Ẽk(p) =

d∑
i=1

( 1

m1
+

1

m2
−

√
1

m2
1

+
2

m1m2
cos 2ki +

1

m2
2

cos 2pi

)
.

The operator hµ(k) is unitary equivalent to the operator h̃µ(k) (See Lemma 2 in [14]). The equivalence is performed
by the unitary operator U : L2(Td)→ L2(Td) as h̃µ(k) = U−1hµ(k)U, where

(Uf)(p) = f(p− 1

2
θ(k)),

θ(k) = (θ1(k1), . . . , θd(kd)), θi(ki) = arccos
1
m1

+ 1
m2

cos 2ki√
1
m2

1
+ 2

m1m2
cos 2ki + 1

m2
2

, i = 1, 2, . . . , d.

For any z ∈ C\[m(k),M(k)], we define a Birman–Schwinger integral operator T(µ, k; z) = µv
1
2 r0(k; z)v

1
2 . The

rank of T(µ, k; z) is equal to 3d and it represents via one rank orthogonal projectors Tl(µ, k; z) as

T(µ, k; z)ψ =

3d∑
l=1

Tl(µ, k; z)ψ,

Tl(µ, k; z)ψ =
µ

‖ϕl‖2
(
ϕl, r0(k; z)ϕl

)
(ϕl, ψ)ϕl,

where (
ϕl, r0(k; z)ϕl

)
=

∫
Td

ϕ2
l (s)ds

Ẽk(s)− z
, l = 1, 2, . . . , 3d, z ∈ C\[m(k),M(k)]. (1)

A nonzero eigenvalue of the operator Tl(µ, k; z) is λl(z) = µ
(
ϕl, r0(k; z)ϕl

)
, l = 1, . . . , 3d and ϕl is an eigenfunc-

tion corresponding to λl(z). Moreover,

σ(T(µ, k; z)) = {0 ∪ λ1(z) ∪ · · · ∪ λ3d(z)}.
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For each z ∈ C \ [m(k),M(k)] and k ∈ Td, denote by ∆l(µ, k; z) and ∆(µ, k; z) the Fredholm determinants of the
operators I −Tl(µ, k; z) and I −T(µ, k; z), respectively. Then

∆l(µ, k; z) = 1− µ
∫
Td

ϕ2
l (s)ds

Ẽk(s)− z
, l = 1, 2, . . . , 3d

and the equality

∆(µ, k; z) =

3d∏
l=1

∆l(µ, k; z).

holds.
The following lemma is a consequence of the Fredholm theorem.

Lemma 2.1. A number z, z ∈ C \ [m(k),M(k)], is an eigenvalue of hµ(k) if and only if ∆(µ, k; z) = 0. Moreover,
the multiplicity of a zero of the function ∆(µ, k; ·) then coincides with the multiplicity of an eigenvalue of the operator
hµ(k).

Remark 2.1. Clearly, the operator hµ(k) has an eigenvalue z < m(k), i.e., Ker(hµ(k) − zI) 6= 0 if and only if the
compact operator T(µ, k; z) in L2(Td) has an eigenvalue equal to 1 and there is a function ψ ∈ Ker

(
T(µ, k; z)− I

)
such

that

f(·) =
µv

1
2ψ(·)

Ẽk(·)− z
∈ L2(Td).

In this case, f ∈ Ker(hµ(k)− zI). Moreover, if z < m(k), then

dim Ker(hµ(k)− zI) = dim Ker(T(µ, k; z)− I),

Ker(hµ(k)− zI) =
{
f : f(·) =

µv
1
2ψ(·)

Ẽk(·)− z
, ψ ∈ Ker

(
T(µ, k; z)− I

)}
.

Since the minimum points of Ẽk(·) are non-degenerate, the operator Tl(µ, k; z) in L2(Td) is well defined as z =
m(k) for any d > 3 and l = 1, . . . , 3d. The equality ϕl(0) = 0, l = 2d + 1, . . . , 3d provides well defined of Tl(µ, k; z)
in L2(Td) as z = m(k) for any d = 1, 2 and l = 2d + 1, . . . , 3d. According to (1), the following limits(

ϕl, r0(k;m(k))ϕl
)

:= lim
z↗m(k)

(
ϕl, r0(k; z)ϕl

)
, l = 1, 2, . . . , 3d,

exist (finite or infinite). We set

µl(k) :=
1(

ϕl, r0(k;m(k))ϕl
) , l = 1, 2, . . . , 3d.

Assumption 2.1. Assume that m = m1 = m2 and k ∈ Π, where

Π =
{
k = (k1, k2, . . . , kd) ∈ Td : at least d− 2 (d > 3) coordinates are equal to − π

2
or
π

2

}
.

If the Assumption 2.1 is not fulfilled, then µl(k) = 0 for d = 1, 2, l = 1, . . . , 2d and 0 < µl(k) < ∞ for d > 3,
l = 1, . . . , 2d or for d > 1, l = 2d + 1, . . . , 3d.

Definition 2.1. Let d = 3, 4
(
d = 1, 2

)
. We say that the operator hµ(0) has a virtual level at z = 0 (lower edge

of the essential spectrum) if 1 is an eigenvalue of T(µ,0; 0)
(

of Tl(µ,0; 0) for some l > 2d
)

with some associated
eigenfunction ψ satisfying the condition

v
1
2ψ(·)
Ẽ0(·)

/∈ L2(Td).

The number of such linearly independent eigenvectors ψ of the operator T(µ,0; 0), d > 3
(

of all operators Tl(µ,0; 0)

for d = 2
)

, is called the multiplicity of the virtual level of the operator hµ(0).

Note that, if the number 1 is an eigenvalue of the operator T(µ, k;m(k)), and the corresponding eigenfunction ψ
with

v
1
2ψ(·)

Ẽk(·)−m(k)
∈ L2(Td), d > 3,

then the function
v

1
2ψ(·)

Ẽk(·)−m(k)
is the eigenfunction of hµ(k) corresponding to the eigenvalue z = m(k).
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Theorem 2.1. Suppose that the Assumption 2.1 are not fulfilled. Then for any k ∈ Td, the following statements are true
1. Let d = 1, 2 and µ ∈ (0, µ∗(k)), µ∗(k) = min

2d<l63d
µl(k). Then the operator hµ(k) has 2d eigenvalues (taking

into account the multiplicity) lying to the left of the essential spectrum.
2. Let d > 3 and µ ∈ (0, µ∗(k)), µ∗(k) = min

16l63d
µl(k). Then the operator hµ(k) has no eigenvalues lying to the

left of the essential spectrum.
3. Let d > 1 and µ ∈ (µ∗(k),+∞), µ∗(k) = max

16l63d
µl(k). Then the operator hµ(k) has 3d eigenvalues (taking into

account the multiplicity) lying to the left of the essential spectrum.

We split the set Π into three subsets Πn, n = 0, 1, 2, of k ∈ Π, whose d− n coordinates are only equal to −π
2

or
π

2
.

Theorem 2.2. Let the Assumption 2.1 be fulfilled and let d > 3. Then for any µ > 0 and k ∈ Πn, n = 0, 1, 2 the operator
hµ(k) has at least

sn = 2d +

d−n∑
i=1

2d−i · 3i−1

eigenvalues (taking into account the multiplicity) lying to the left of the essential spectrum. Moreover, if n = 0, then
hµ(k) has s0 = 3d eigenvalues (taking into account the multiplicity) lying to the left of the essential spectrum.

Let rs be a positive integer number defined as

rs = C0
d + C1

d + · · ·+ Csd, s = 0, 1, . . . , d. (2)

We split the numbers {1, 2, . . . , 2d} into d+ 1 as

{1, 2, . . . , 2d} = D0 ∪ · · · ∪Dd,

where Ds = {1 + rs − Csd, . . . , rs}.
Remark that for any d > 3 the following assertions

µrs(0) = µr(0), r ∈ Ds, s = 0, 1, . . . , d,

µr0(0) < µr1(0) < µr2(0) < · · · < µrd(0),

µrd(0) < µl(0), rd = 2d, l = 2d + 1, . . . , 3d

hold (see Lemma 4.2 below).

Theorem 2.3. Suppose that the Assumption 2.1 are not fulfilled. Then the following statements are true
1. If d = 1 and µ = µ3(0), then hµ(0) has a virtual level at z = 0 and two simple negative eigenvalues.
2. If d = 2 and µ = µ∗(0) = min

4<l69
µl(0), then hµ(0) has three negative eigenvalues, two of them simple and one of

them two-fold, and a two-fold virtual level at z = 0.
3. Let d = 3, 4

(
d > 4

)
and µ = µrs(0) for some s ∈ {0, 1, . . . , d}. Then the operator hµ(0) has s eigenvalues λl,

l = 0, 1, . . . , s − 1, with multiplicity Cld and λ0 < · · · < λs−1 < 0. Additionally, the operator hµ(0) has a virtual level(
an eigenvalue

)
at z = 0 with multiplicity Csd .

Moreover, if d > 3 and µrd(0) < µ < min
l>2d

µl(0), then the operator hµ(0) has d+ 1 eigenvalues λl, l = 0, 1, . . . , d,

lying to the left of the essential spectrum, with λ0 < · · · < λd < 0 and C0
d + C1

d + · · · + Cdd = 2d, where Crd is the
multiplicity of λr.

4. Let d > 3 and µ = µl(0) for some l ∈ {2d + 1, . . . , 3d}. Then the number z = 0 is an eigenvalue of the operator
hµ(0) and this operator has 2d + q eigenvalues (taking into account the multiplicity) lying to the left of the essential
spectrum, where q is the number of elements of the set {µn : µn > µl(0), n > 2d}.

Remark 2.2. A similar Theorems 2.1, 2.2 and 2.3 describe the dependence of the number of eigenvalues and their
arrangement on the parameter µ for all µ ∈ R. In this case, the eigenvalues of hµ(k) are located both to the left and to the
right of the essential spectrum. In the case µ < 0, the eigenvalues of hµ(k) are only to the right of the essential spectrum.

3. The eigenvalues of hµ(k)

In this section, we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Remark that the integral ∫
Td

ϕ2
l (s)ds

Ẽk(s)−m(k)

converges for any ϕl ∈ Hl for l = 1, . . . , 3d, d > 3 and for l = 2d + 1, . . . , 3d, d = 1, 2. The function ∆l(µ, k; ·) is
continuous and monotonically decreasing on z ∈ (−∞,m(k)) for any fixed µ > 0 and k ∈ Td.
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1. Let d = 1, 2. The following equalities

lim
z→−∞

∆l(µ, k; z) = 1,

lim
z↗m(k)

∆l(µ, k; z) = −∞ for l = 1, 2, . . . , 2d

hold. Then there is a unique number zl(µ, k) < m(k), l = 1, 2, . . . , 2d such that ∆l(µ, k; zl(µ, k)) = 0. According to
Lemma 2.1, the operator hµ(k) has 2d eigenvalues (taking into account the multiplicity) lying to the left of the essential
spectrum.

Since
lim

z↗m(k)
∆l(µ, k; z) = ∆l(µ, k;m(k)) <∞, for l = 2d + 1, . . . , 3d

and the function ∆l(µ, k; ·)
(

∆l(·, k; z)
)

is monotonically decreasing on z ∈ (−∞,m(k))
(

on µ ∈ (0,∞)
)

for any

fixed µ > 0
(
z ∈ (−∞,m(k))

)
, the inequalities

∆l(µ, k; z) > ∆l(µ, k;m(k)) > ∆l(µ∗(k), k;m(k)) = 0 for all µ ∈ (0, µ∗(k))

hold. Then by the Lemma 2.1 the operator hµ(k) has only 2d eigenvalues (taking into account the multiplicity) lying to
the left of the essential spectrum.

2. For the case when d > 3 by similar way we can show that ∆l(µ, k; z) > 0 for all µ ∈ (0, µ∗(k)). This proves the
required assertion.

3. Note that for the case d = 1, 2 and l = 1, 2, . . . , 2d

lim
z↗m(k)

∆l(µ, k; z) = −∞ for all µ > 0 (3)

holds. Let µ ∈ (µ∗(k),+∞), µ∗(k) = max
16l63d

µl(k). Then for the cases l = 2d+1, . . . , 3d, d = 1, 2 and l = 1, 2, . . . , 3d,

d > 3 we have
lim

z↗m(k)
∆l(µ, k; z) = ∆l(µ, k;m(k)) = 1− µ

µl(k)
< 0. (4)

Since ∆l(µ, k; ·) is a continuous monotonic function on (−∞,m(k)) and

lim
z→−∞

∆l(µ, k; z) = 1,

according to (3), (4), there exists a unique zl(µ, k) ∈ (−∞,m(k)) such that

∆l(µ, k; zl(µ, k)) = 0 for all l = 1, 2, . . . , 3d.

Hence by Lemma 2.1 the operator hµ(k) has 3d eigenvalues (taking into account the multiplicity) lying to the left m(k).
�

Proof of Theorem 2.2. The case n = 0. Let k ∈ Π0, i.e. ki = ±π
2

, i = 1, 2, . . . , d. The function Ẽk(·) is a constant
function. Therefore, we obtain

lim
z↗m(k)

(
ϕl, r0(k; z)ϕl

)
= lim
z↗m(k)

∫
Td

ϕ2
l (s)ds

Ẽk(s)− z
= +∞, l = 1, 2, . . . , 3d,

which implies
lim

z↗m(k)
∆l(µ, k; z) = −∞

for any µ > 0. Since
lim

z→−∞
∆l(µ, k; z) = 1,

there exists unique zl(µ, k) ∈ (−∞,m(k)) such that ∆(µ, k; zl(µ, k)) = 0 for any µ > 0 and l = 1, 2, . . . , 3d. Hence by
the Lemma 2.1 the operator hµ(k) has 3d eigenvalues (taking into account the multiplicity) lying to the leftm(k), k ∈ Π0.

The case n = 1. We prove theorem for the case k ∈ Π1 with ki = ±π
2

, i = 1, 2, . . . , d− 1. The function Ẽk(·) does
not depend on p1, p2, · · · pd−1 and is expressed as

Ẽk(p) =
2d

m
− 1

m

√
2 + 2 cos 2kd cos 2pd.

Then there exist n1 functions ξm(k; ·) := (ϕlmr0(k; ·), ϕlm) with ϕlm(p1, · · · , pd−1, 0) 6= 0, m = 1, 2, . . . , n1, where

n1 = 2d +

d−1∑
i=1

2d−i · 3i−1. Since (Ẽk(p)−m(k)) = O(p2d) as pd → 0 and Ẽk(·) does not depend on p1, p2, · · · pd−1, we

have
lim

z↗m(k)
ξlr (k; z) = +∞.
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This gives one
lim

z↗m(k)
∆lr (µ, k; z) = −∞, lr = 1, 2, . . . , n1.

Hence there exists unique zlr (µ, k) ∈ (−∞,m(k)) such that

∆l(µ, k; zlr (µ, k)) = 0, lr = 1, 2, . . . , n1.

According to Lemma 2.1, we obtain the required assertion for the case k ∈ Π1 with ki = ±π
2

, i = 1, 2, . . . , d− 1.
The proofs for the remaining cases with k ∈ Π1 can be constructed in a similar way.
The case n = 2 can be proven analogously. �

4. Virtual level and eigenvalues of the operator hµ(0)

In this section, we prove Theorem 2.3. According to the definition of a virtual level of hµ(0), we study the equation

T(µ,0; 0)ψ = ψ.

We note that ∆l(µ,0; ·) is well defined at z = 0 for the cases l = 2d + 1, . . . , 3d, d = 1, 2 and l = 1, 2, . . . , 3d,
d > 3. According to Lemma 2.1, we can prove the following assertion.

Lemma 4.1. Let l = 1, 2, . . . , 3d for d > 3
(
l = 2d + 1, . . . , 3d for d = 1, 2

)
. Then the number λ = 1 is an eigenvalue

of the operator T(µ,0; 0)
(
Tl(µ,0; 0)

)
if and only if

3d∏
l=1

∆l(µ,0; 0) = 0,
(

∆l(µ,0; 0) = 0
)
.

Lemma 4.2. For any d > 3, the following assertions are true

µrs(0) = µr(0), r ∈ Ds, s = 0, 1, . . . , d,

µr0(0) < µr1(0) < µr2(0) < · · · < µrd(0),

µrd(0) < µl(0), rd = 2d, l = 2d + 1, . . . , 3d,

where r0, . . . , rd are defined by (2).

Proof of lemma 4.2. Since Ẽ0(p) =
m1 +m2

m1m2

d∑
i=1

(1 − cos 2pi) is symmetric under permutations of pα and pβ , the

equality ∫
Td

cos2 s1 · · · cos2 srds

Ẽ0(s)
=

∫
Td

cos2 sj1 · · · cos2 sjrds

Ẽ0(s)
, r 6 d

holds.
Hence, the following inequalities∫

Td

ϕ2
1(s)ds

Ẽ0(s)
>

∫
Td

ϕ2
j1

(s)ds

Ẽ0(s)
>

∫
Td

ϕ2
j2

(s)ds

Ẽ0(s)
> · · · >

∫
Td

ϕ2
jd

(s)ds

Ẽ0(s)
,

hold, where js ∈ Ds, Ds = {1 + rs − Csd, . . . , rs}, rs = C0
d + C1

d + · · ·+ Csd , s = 0, 1, 2, . . . , d.
Therefore, the following inequalities

µr0(0) < µr1(0) < µr2(0) < · · · < µrd(0)

hold, where

µr(0) =

∫
Td

ϕ2
r(s)ds

Ẽ0(s)

−1 , r = 1, 2, . . . , d+ 1.

Note that
µrs(0) = µr(0), r ∈ Ds, s = 0, 1, 2, . . . , d. (5)

We can easily verify the equality (see Lemma 1, [13])
π∫
−π

cos 2sds

a− b cos 2s
=

2π

b

a−
√
a2 − b2√

a2 − b2

for 0 < b < a. Therefore,
π∫
−π

cos2 sds

a− b cos 2s
−

π∫
−π

sin2 sds

a− b cos 2s
> 0
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for all 0 < b < a. Applying this inequality, we obtain∫
Td

ϕ2
m(s)ds

Ẽ0(s)
>

∫
Td

ϕ2
l (s)ds

Ẽ0(s)
for m 6 2d < l.

This gives one µrs(0) < µl(0), l = 2d + 1, . . . , 3d, where rd = 2d. �

Proof of Theorem 2.3. Let d = 1 and µ = µ3(0). Then according to assertion 1 of Theorem 2.1, for any µ > 0, the
operator hµ(0) has two simple eigenvalues z1(µ,0) < z2(µ,0) < 0 and the corresponding eigenfunctions have the form

f1(p) =
1

Ẽ0(p)− z1(µ,0)
and f2(p) =

cos p

Ẽ0(p)− z2(µ,0)

respectively.
Since µ = µ3(0), it follows from Lemma 4.1 that λ = 1 is an eigenvalue of T3(µ,0; 0) and ϕ3(p) = sin p is the

corresponding eigenfunction of T3(µ,0; 0). One can see that f3 /∈ L2(T), where f3(p) = sin p/Ẽ0(p), i.e., z = 0 is a
virtual level of the operator hµ(0).

2. Let d = 2 and µ = min
4<l69

µl(0). According to statement 1 of Theorem 2.1, for any µ > 0, the operator hµ(0)

has four eigenvalues (taking into account the multiplicity) z1(µ,0) < z2(µ,0) = z3(µ,0) < z4(µ,0) < 0 and the
corresponding eigenfunctions have the form

f1(p) =
1

Ẽ0(p)− z1(µ,0)
, fi(p) =

cos pi

Ẽ0(p)− z2(µ,0)
, i = 2, 3, f4(p) =

cos p1 cos p2

Ẽ0(p)− z4(µ,0)
,

respectively.
Observe that the inequalities∫

T2

sin2 sids

Ẽk(s)− z
>

∫
T2

cos2 si sin2 sjds

Ẽk(s)− z
>

∫
T2

sin2 si sin2 sjds

Ẽk(s)− z
, i, j = 1, 2

show that

min
4<l69

µl(k) = min
r

∫
T2

sin2 srds

Ẽk(s)−m(k)

−1 .
For the case when k = 0 the equalities ∫

T2

sin2 s1ds

Ẽ0(s)
=

∫
T2

sin2 s2ds

Ẽ0(s)

holds.
This gives one

µ =

∫
T2

sin2 s1ds

Ẽ0(s)

−1 =

∫
T2

sin2 s2ds

Ẽ0(s)

−1 .
Hence, by Lemma 4.1, the number λ = 1 is an eigenvalue of Tl(µ,0; 0), l = 5, 6 and ϕ5(p) = sin p1, ϕ6(p) = sin p2 are

the corresponding eigenfunctions. Since f5, f6 /∈ L2(T2), where f5(p) =
sin p1

Ẽ0(p)
, f6(p) =

sin p2

Ẽ0(p)
, the number z = 0 is a

two-fold virtual level of hµ(0).
3. Let d = 3, 4, and µ = µrs(0) for some s ∈ {0, 1, . . . , d}. Then, as shown in items 1) and 2) of Theorem 2.3,

and by lemma 4.2, the operator hµ(0) has s eigenvalues zl(µ,0) < 0, l ∈ {0, 1, . . . , s − 1} with multiplicity Csd and
z0(µ,0) < · · · < zs−1(µ,0) < 0.

Since µ = µrs(0), according to the equality (5) and Lemma 4.1 the number λ = 1 is an eigenvalue of T(µ,0; 0)
with multiplicity Csd , where ϕl(p), l ∈ {1 + rs − Csd, . . . , rs} are the corresponding eigenfunctions. Since fl /∈ L2(Td),
where fl(p) =

ϕl

Ẽ0(p)
, the number z = 0 is virtual level with multiplicity Csd of hµ(0).

Let µrd(0) < µ < min
l>2d

µl(0). Then, according to Lemma 4.1, the operator hµ(0) has d + 1 eigenvalues λl with

multiplicity Cld, l = 0, 1, . . . , d, lying to the left of the essential spectrum, with λ0 < · · · < λd < 0. Therefore hµ(0) has
2d = C0

d + C1
d + · · ·+ Cdd eigenvalues (taking into account the multiplicity).

The prove of the part 4 can be proven similarly. �
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5. Conclusion

We investigate the existence conditions for eigenvalues and virtual levels of the two-particle Schrödinger operator
hµ(k), k ∈ Td, µ > 0 corresponding to the Hamiltonian of the two-particle system on the d-dimensional lattice, where
hµ(k) is considered as a perturbation of free Hamiltonian h0(k) by the certain potential operator µv with rank 3d. The
main idea of the study was to represent µv via the sum of one-rank orthogonal projectors µvl. This allowed us to represent
the corresponding Birman–Schwinger operator T(µ, k; z) via the sum of one-rank projectors Tl(µ, k; z), l = 1, 2, . . . , 3d.
Moreover, the study of the spectral properties of hµ(k) is reduced to the study of 3d one-rank projectors Tl(µ, k; z). The
existence conditions of a virtual level of hµ(k) is studied at k = 0. The study of the virtual levels of hµ(k) for the case
when k 6= 0 is omitted, since analogous results and existence conditions can be described with respect to k.
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