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1. Introduction and statement of the problem

The spin-boson model is a well-known quantum-mechanical model which describes the interaction between two-
level atom and photon field. We refer to [1] and [2] for excellent reviews respectively from physical and mathematical
perspectives. Despite the formal simplicity of the spin-boson model (from the physics viewpoint), its dynamics is rather
complicated and rigorous spectral and scattering results are usually very difficult to obtain, especially in the case when
the number of photons is unbounded. In this connection, it is natural to consider truncated models [3–6] with at most m
(m ∈ N) photons.

The truncated model in Rd with m = 1, 2 was completely studied in [4] for small values of the parameter α and the
case m = 3 is considered in [6]. The existence of wave operators and their asymptotic completeness are proven there.
In [3,5], the case of arbitrary m are investigated. It should be mentioned that in these papers the smallness of the coupling
constant α is important, in our analysis (in the lattice case) this constant can be arbitrary. A lattice spin-boson model Am
with m = 1, 2 is considered in [7, 8]. In particular, in [7] the location of the essential spectrum of A2 is described; for
any coupling constant the finiteness of the number of eigenvalues below the bottom of the essential spectrum of A2 is
established (with a sketch of the proof). The paper [8] is devoted to the study of the geometrical structure of the branches
of the essential spectrum of A2.

Let us introduce a lattice spin-boson model with at most two photons. Let Td be the d–dimensional torus, L2((Td)
be the Hilbert space of square integrable (complex) functions defined on Td, C2 be the state of the two-level atom and
Fb(L2(Td)) be the symmetric Fock space for bosons, that is,

Fb(L2(Td)) := C⊕ L2(Td)⊕ Lsym
2 ((Td)2)⊕ . . . .

Here Lsym
2 ((Td)n) is the Hilbert space of symmetric functions of n ≥ 2 variables. For m = 1, 2 we denote Lm :=

C2 ⊗F (m)
b (L2(Td)), where

F (1)
b (L2(Td)) := C⊕ L2(Td), F (2)

b (L2(Td)) := C⊕ L2(Td)⊕ Lsym
2 ((Td)2).

We write elements F of the space L2 in the form F = {f (s)0 , f
(s)
1 (k1), f

(s)
2 (k1, k2); s = ±}. Then the norm in L2 is

given by

‖F‖2 :=
∑
s=±

|f (s)0 |2 +

∫
Td

|f (s)1 (k1)|2dk1 +
1

2

∫
(Td)2

|f (s)2 (k1, k2)|2dk1dk2

 . (1.1)
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We recall that the lattice spin-boson model with at most two photonsA2 is acting in L2 as the 3× 3 tridiagonal block
operator matrix

A2 :=


A00 A01 0

A∗01 A11 A12

0 A∗12 A22

 ,

where matrix elements Aij are defined by

A00f
(s)
0 = sεf

(s)
0 , A01f

(s)
1 = α

∫
Td

v(t)f
(−s)
1 (t)dt,

(A11f
(s)
1 )(k1) = (sε+ w(k1))f

(s)
1 (k1), (A12f

(s)
2 )(k1) = α

∫
Td

v(t)f
(−s)
2 (k1, t)dt,

(A22f
(s)
2 )(k1, k2) = (sε+ w(k1) + w(k2))f

(s)
2 (k1, k2), f = {f (s)0 , f

(s)
1 , f

(s)
2 ; s = ±} ∈ L2.

Here A∗ij denotes the adjoint operator to Aij for i < j with i, j = 0, 1, 2; w(k) is the dispersion of the free field, αv(k) is
the coupling between the atoms and the field modes, α > 0 is a real number, so-called the coupling constant. We assume
that v(·) and w(·) are the real-valued continuous functions on Td. Under these assumptions the lattice spin-boson model
with at most two photons A2 is bounded and self-adjoint in the complex Hilbert space L2.

A main goal of the paper is the study of the main spectral properties of A2 related to the number of eigenvalues.
More precisely, the following results are obtained: using a unitary dilation the lattice model A2 of radiative decay with
a fixed atom and at most two photons is reduced to the diagonal operator and it’s spectrum is described; the first Schur
complement corresponding to the both diagonal entries of A2 is constructed; the relation between the eigenvalues of A2

and the first Schur complement (Birman–Schwinger principle) is established.
Throughout the paper, we use the notation σ(·), σess(·), σp(·) and σdisc(·), respectively, for the spectrum, the essential

spectrum, the point spectrum and the discrete spectrum of bounded self-adjoint operator.

2. The first Schur complement corresponding to A2

To study the spectral properties of A2, we introduce the following two bounded self-adjoint operators A(s)
2 , s = ±,

which act in F (2)
b (L2(Td)) as

A(s)
2 :=


Â

(s)
00 Â01 0

Â∗01 Â
(s)
11 Â12

0 Â∗12 Â
(s)
22


with the entries

Â
(s)
00 f0 = sεf0, Â01f1 = α

∫
Td

v(t)f1(t)dt,

(Â
(s)
11 f1)(k1) = (−sε+ w(k1))f1(k1), (Â12f2)(k1) = α

∫
Td

v(t)f2(k1, t)dt,

(Â
(s)
22 f2)(k1, k2) = (sε+ w(k1) + w(k2))f2(k1, k2), (f0, f1, f2) ∈ F (2)

b (L2(Td)).

It is easy to check that

(Â∗01f0)(k1) = αv(k1)f0;

(Â∗12f1)(k1, k2) = α (v(k1)f1(k2) + v(k2)f1(k1)) , (f0, f1) ∈ F (1)
b (L2(Td)).

In order to describe the essential spectrum of A2, we define an analytic function ∆(s)(·) in C \ [sε+m; sε+M ] by

∆(s)(λ) := −sε− λ− α2

∫
Td

v2(t)dt

sε+ w(t)− λ
,

where the numbers m and M are defined by

m := min
p∈Td

w(p), M := max
p∈Td

w(p).

Let σ(s) be the set of all complex numbers λ ∈ C such that the equality ∆(s)(λ − w(k1)) = 0 holds for some k1 ∈ Td.

Then (see [9]) for the essential spectrum of A(s)
2 , we have

σess(A(s)
2 ) = σ(s) ∪ [sε+ 2m; sε+ 2M ].
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Consider the permutation operator Φ : L2 → F (2)
b (L2(Td))⊕F (2)

b (L2(Td)) defined as

Φ : (f
(+)
0 , f

(−)
0 , f

(+)
1 , f

(−)
1 , f

(+)
2 , f

(−)
2 )→ (f

(+)
0 , f

(−)
1 , f

(+)
2 , f

(−)
0 , f

(+)
1 , f

(−)
2 ).

One can trivially verify that the operator Φ is unitary. From the construction ofA2,A(s)
2 and Φ, it follows that the following

equality takes place ΦA2Φ−1 = diag{A(+)
2 ,A(−)

2 }. The latter facts mean that the operators A2 and diag{A(+)
2 ,A(−)

2 }
are unitarily equivalent. Therefore, σ(A2) = σ(A(+)

2 ) ∪ σ(A(−)
2 ). Moreover,

σess(A2) = σess(A(+)
2 ) ∪ σess(A(−)

2 ); σp(A2) = σp(A(+)
2 ) ∪ σp(A(−)

2 ).

Since the part of σdisc(A(s)
2 ) can be located in σess(A(−s)

2 ), we have

σdisc(A2) ⊆ σdisc(A(+)
2 ) ∪ σdisc(A(−)

2 ).

If we set E(s)
min := minσess(A(s)

2 ) for s = ± and Emin := minσess(A2) = min{E(+)
min, E

(−)
min}, then

σdisc(A2) ∩ (−∞;Emin) = {σdisc(A(+)
2 ) ∪ σdisc(A(−)

2 )} ∩ (−∞;Emin). (2.1)

Next, we represent the space F (2)
b (L2(Td)) as a direct sum of two Hilbert spaces F (1)

b (L2(Td)) and Lsym
2 ((Td)2),

that is, F (2)
b (L2(Td)) = F (1)

b (L2(Td))⊕Lsym
2 ((Td)2). Then the first Schur complement of the operatorA(s)

2 with respect
to this decomposition (see [10]) is defined as

S
(s)
1 (λ) : F (1)

b (L2(Td))→ F (1)
b (L2(Td)), λ ∈ ρ(Â

(s)
22 );

S
(s)
1 (λ) :=

 Â
(s)
00 Â01

Â∗01 Â
(s)
11

− λ−
 0

Â12

 (Â
(s)
22 − λ)−1(0 Â∗12).

Define

S
(s)
00 (λ) := Â

(s)
00 − λ, S

(s)
01 (λ) := Â01;

S
(s)
10 (λ) := Â∗01, S

(s)
11 (λ) := Â

(s)
11 − λ− Â12(Â

(s)
22 − λ)−1Â∗12.

Then the operator S(s)
1 (λ) has the form

S
(s)
1 (λ) =

 S
(s)
00 (λ) S

(s)
01 (λ)

S
(s)
10 (λ) S

(s)
11 (λ)

 .

For convenience, we represent the operator S(s)
11 (λ) as a difference of two operators

S
(s)
11 (λ) := D(s)(λ)−K(s)(λ),

where the operators D(s)(λ), K(s)(λ) : L2(Td)→ L2(Td) are defined by

(D(s)(λ)f)(k1) = ∆(s)(λ− w(k1))f(k1);

(K(s)(λ)f)(k1) = α2v(k1)

∫
Td

v(t)f(t)dt

sε+ w(k1) + w(t)− λ
.

For a fixed λ = λ0 ∈ ρ(Â
(s)
22 ) and s ∈ {−1, 1}, we define

a := sε− λ0, u(k1) := ∆(s)(λ0 − w(k1)), K(k1, k2) :=
α2v(k1)v(k2)

sε+ w(k1) + w(k2)− λ0
.

Then the operator matrix S(s)
1 (λ0) can be written as

S
(s)
1 (λ0) =

 H00 H01

H∗01 H0
11 −K

 (2.2)

with

H00f0 = af0, H01 := Â01, (H0
11f1)(k1) = u(k1)f1(k1), (Kf1)(k1) =

∫
Td

K(k1, t)f1(t)dt.

The operator matrix of the form (2.2) is appeared in a series of problems in analysis, mathematical physics, and prob-
ability theory and known as generalized Friedrichs model. This model operator itself was introduced in [11], where its
eigenvalues and “resonances” (i.e., the singularities of the analytic continuation of the resolvent) were studied. Note that,
the number and location of the eigenvalues of the generalized Friedrichs model in the case where the kernel function
K(·, ·) is degenerate of rank 1, was studied in [12, 13].
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The Schur complement is named after Issai Schur who used it to prove Schur’s lemma, although it had been used
previously [14]. Haynsworth was the first to call it the Schur complement [15]. The Schur complement is a key tool
in the fields of numerical analysis, statistics, and matrix analysis. The general properties of the Shur complement have
been studied in many works, for detailed information see [10]. Construction of Schur’s complement for exactly solvable
models of mathematical physics and proof of important properties that have not been properly studied in general for such
special cases, can be considered as one of the actual problems of the operator theory.

3. Main properties of the first Schur complement

In this Section, we will study some important properties of the first Schur complement

S1(λ) := diag{S(+)
1 (λ), S

(−)
1 (λ)}

for the lattice spin-boson model with at most two photons A2.

Proposition 3.1. The number λ ∈ C \ σess(A2) is an eigenvalue of the operator A2 if and only if the operator S1(λ) has
an eigenvalue equal to zero. Moreover, the eigenvalues λ and 0 have the same multiplicities.

Proof. Since σp(A2) = σp(A(+)
2 ) ∪ σp(A(−)

2 ), it is enough to prove the assertion of the Proposition for the operators
A(s)

2 and S(s)
1 (λ).

Let the number λ ∈ C \ σess(A2) be an eigenvalue of the operator A(s)
2 and f = (f0, f1, f2) ∈ F (2)

b (L2(Td)) be the
corresponding eigenvector. Then elements f0, f1 and f2 satisfy the system of equations

(Â
(s)
00 − λ)f0 + Â01f1 = 0;

Â∗01f0 + (Â
(s)
11 − λ)f1 + Â12f2 = 0;

Â∗12f1 + (Â
(s)
22 − λ)f2 = 0.

(3.1)

Since λ ∈ C \ σess(A2), from the third equation of system (3.1) for f2 we have

f2 = −(Â
(s)
22 − λ)−1Â∗12f1. (3.2)

Substituting the expression (3.2) for f2 into the second equation of system (3.1), we obtain the following system of
equations  (Â

(s)
00 − λ)f0 + Â01f1 = 0;

Â∗01f0 + (Â
(s)
11 − λ− Â12(Â

(s)
22 − λ)−1Â∗12)f1 = 0.

(3.3)

System of equations (3.3) has nontrivial solution if and only if the equation

S
(s)
1 (λ)

 f0

f1

 =

 0

0


has nontrivial solution (f0, f1) ∈ F (1)

b (L2(Td)).

Let now the number λ ∈ C \ σess(A(s)
2 ) be an eigenvalue of A(s)

2 with multiplicity n and number 0 be an eigenvalue
of S(s)

1 (λ) with multiplicity m. We will prove that n = m.
Assume that n < m. Then there exist linearly independent eigenvectors f̃ (i) = (f

(i)
0 , f

(i)
1 ) ∈ F (1)

b (L2(Td)), i =

1,m, corresponding to the eigenvalue 0 of the operator S(s)
1 (λ). For each i ∈ {1, . . . ,m} we put f (i) := (f

(i)
0 , f

(i)
1 , f

(i)
2 ),

where the function f (i)2 is determined by formula (3.2), with f (i)1 taken instead of f1. Then the vector f (i) satisfies the
equationA(s)

2 f (i) = λf (i) for i = 1, . . . ,m and hence it is an eigenvector ofA(s)
2 corresponding to the eigenvalue λ. Since

n < m, the eigenvectors f (i), i = 1,m are linearly dependent. Therefore, there is a non-zero vector (α1, ..., αm) ∈ Cm

such that
m∑
i=1

αif
(i) = (0, 0, 0)t, but at the same time, it satisfies the inequality

(
m∑
i=1

αif
(i)
0 ,

m∑
i=1

αif
(i)
1

)
6= (0, 0)t (since

(f
(i)
0 , f

(i)
1 ), i = 1,m are linearly independent). From the last two assertions and the construction of f (i), we have


0

0

0

 =

m∑
i=1

αif
(i) =



m∑
i=1

αif
(i)
0

m∑
i=1

αif
(i)
1

−R(s)
22 (λ)Â∗12

(
m∑
i=1

αif
(i)
1

)


6=


0

0

0


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where R(s)
22 (λ) := (Â

(s)
22 − λ)−1. This contradiction shows that the inequality n < m is not true.

Let now n > m. In this case, there exist linearly independent eigenvectors f (i) = (f
(i)
0 , f

(i)
1 , f

(i)
2 ), i = 1, n corre-

sponding to the eigenvalue λ of the operator A(s)
2 . One can easily show that f̃ (i) = (f

(i)
0 , f

(i)
1 ), i = 1, n is an eigenvector

corresponding to the eigenvalue 0 of the operator S(s)
1 (λ). Arguing similarly, from the inequality n > m, we obtain that

there exists nonzero vector (β1, · · · , βn) ∈ Cn so that
n∑
i=1

βif̃
(i) = (0, 0)t. At the same time

n∑
i=1

βif
(i) 6= (0, 0, 0)t.

From the last two assertions and the construction of f (i), and also linearity of the operators Â∗12 and R(s)
22 (λ), we have


0

0

0

 6=
n∑
i=1

βif
(i) =



n∑
i=1

βif
(i)
0

n∑
i=1

βif
(i)
1

−R(s)
22 (λ)Â∗12

(
n∑
i=1

βif
(i)
1

)


=


0

0

0

 .

This contradiction shows that the inequality n > m is not valid. Therefore, n = m. Proposition 3.1 is proved. �

Proposition 3.2. λ ∈ σess(A2) \ σ(A22) if and only if 0 ∈ σess(S1(λ)).

Proof. We prove that λ ∈ σess(A(s)
2 ) \ σ(Â

(s)
22 ) if and only if 0 ∈ σess(S(s)

1 (λ)). Let Ran(u) be the range of the function
u(·). Since for any fixed λ ∈ R \ σ(Â

(s)
22 ), the kernel of the integral operator K(s)(λ) is continuous in (Td)2, it is the

Hilbert-Schmidt operator. By the Weyl theorem on the invariance of the essential spectrum under compact perturbations
and by the continuity of the function ∆(s)(λ− w(·)) as λ ∈ R \ σ(Â

(s)
22 ) on the compact set Td, we obtain

σess(S
(s)
1 (λ)) = Ran(∆(s)(λ− w(·))). (3.4)

Let λ0 ∈ σess(A(s)
2 )\σ(Â

(s)
22 ). Then λ0 ∈ σ(s) \σ(Â

(s)
22 ). From the definition of σ(s), it follows that there exists point

p0 ∈ Td such that ∆(s)(λ0 − w(k0)) = 0. Taking into account equality (3.4), we have 0 ∈ σess(S(s)
1 (λ0)).

Let now 0 ∈ σess(S(s)
1 (λ1)) for some λ1 ∈ R \σ(A(s)

22 ). Then by virtue of equality (3.4), there exists a point p1 ∈ Td

such that ∆(s)(λ1 − w(p1)) = 0. Using the construction of σ(s), we obtain λ1 ∈ σ(s) ⊂ σess(A(s)
2 ). �

From Propositions 3.1 and 3.2, we obtain the following two corollaries.

Corollary 3.3. Let λ ∈ C \ σess(A2). Then λ ∈ ρ(A2)⇐⇒ 0 ∈ ρ(S1(λ)).

Corollary 3.4. Let λ0 ∈ R \ σess(A2). If (λ0;λ0 + γ) ∈ ρ(A2) (resp. (λ0− γ;λ0) ∈ ρ(A2)) for some γ > 0, then there
exists a number δ = δ(γ) > 0 such that (0; δ) ∈ ρ(S1(λ0)) (resp. (−δ; 0) ∈ ρ(S1(λ0))).

The definition of the set σ(s) implies that the inequality ∆(s)(λ − w(k1)) > 0 holds for all k1 ∈ Td and λ < E
(s)
min.

Therefore, for such λ, the inclusion σess(S
(s)
1 (λ)) ⊂ (0; +∞) holds.

For a bounded self-adjoint operator A acting in a Hilbert space H we denote by N(−∞;λ)(A) the number of eigen-
values of A to the left of λ, λ ≤ minσess(A).

Theorem 3.5. For any λ < E
(s)
min, the equality

N(−∞;λ)(A
(s)
2 ) = N(−∞;0)(S

(s)
1 (λ))

holds.

Proof. For any λ < E
(s)
min, the operator Â(s)

22 − λ is positive and invertible and hence the square root (R
(s)
22 (λ))1/2 of the

resolvent R(s)
22 (λ) of Â(s)

22 exists.
Let V (s)(λ), λ < E

(s)
min be the 3× 3 block operator matrix in F (2)

b (L2(Td)) with entries

V
(s)
00 (λ) := Â

(s)
00 − λI0, V

(s)
01 (λ) := Â

(s)
01 , V

(s)
02 (λ) := 0;

V
(s)
10 (λ) := Â

(s)
10 , V

(s)
11 (λ) := Â

(s)
11 − λI1, V12(λ) := Â

(s)
12 (R

(s)
22 (λ))1/2;

V
(s)
20 (λ) := 0, V21(λ) := (R

(s)
22 (λ))1/2Â∗12, V

(s)
22 (λ) := I2,

where diag {I0, I1, I2} is an identity operator on F (2)
b (L2(Td)). A simple calculation shows that (A(s)

2 f, f) < λ(f, f),

f = (f0, f1, f2) ∈ F (2)
b (L2(Td)) if and only if (V (s)(λ)g, g) < 0, g = (f0, f1, (Â

(s)
22 − λI2)1/2f2). It follows that

N(−∞;λ)(A
(s)
2 ) = N(−∞;0)(V

(s)(λ)). (3.5)
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For a bounded self-adjoint operator B acting in a Hilbert space H, let us denote by HB(λ) ⊂ H, λ ∈ R, a subspace
such that (Bf, f) > λ‖f‖2 for any f ∈ HB(λ). Assume f̃ := (f0, f1) ∈ H−S(s)

1 (λ)
(0), i.e., (S

(s)
1 (λ)f̃ , f̃) < 0. Then for

any
g := (f0, f1,−V (s)

21 (λ)f1) ∈ F (2)
b (L2(Td)),

we have
(V (s)(λ)g, g) = (S

(s)
1 (λ)f̃ , f̃) < 0.

Therefore, g ∈ H−V (s)(λ)(0), and one has

N(−∞;0)(S
(s)
1 (λ)) ≤ N(−∞;0)(V

(s)(λ)). (3.6)

For any f̃ := (f0, f1) ∈ F (1)
b (L2(Td)) and f = (f0, f1, f2) ∈ F (2)

b (L2(Td)) the equality

(S
(s)
1 (λ)f̃ , f̃) = (V (s)(λ)f, f)− (V

(s)
12 (λ)V

(s)
21 (λ)f1, f1)− (V

(s)
21 (λ)f1, f2)− (V

(s)
12 (λ)f2, f1)− (f2, f2)

holds. Then we obtain
(S

(s)
1 (λ)f̃ , f̃) = (V (s)(λ)f, f)− ‖f2 + V

(s)
21 f1‖2 < 0

for all f = (f0, f1, f2) ∈ H−V (s)(λ)(0), i.e. f̃ ∈ H−S(s)
1 (λ)

(0). Consequently,

N(−∞;0)(V
(s)(λ)) ≤ N(−∞;0)(S

(s)
1 (λ)). (3.7)

Now inequalities (3.6), (3.7) and equality (3.5) complete the proof. �

By Theorem 3.5 and equality (2.1), we obtain

N(−∞,Emin)(A2) =
∑
s=±

N(−∞,0)(S
(s)
1 (Emin)). (3.8)

Note that the compact part K(s)(Emin) of S(s)
11 (Emin) is positive. Indeed, taking into account the identity

π

2x2y2(x2 + y2)
=

∞∫
0

dξ

(x4 + ξ2)(y4 + ξ2)

and the inequality

w(k1) +
sε− Emin

2
> 0, k1 ∈ Td,

we represent the kernel K(s)(·, ·) of the operator K(s)(Emin) in the form

K(s)(k1, t) =
α2v(k1)v(t)

π

[
w(k1) +

sε− Emin

2

][
w(t) +

sε− Emin

2

]
×
∞∫
0

([
w(k1) +

sε− Emin

2

]2
+ ξ2

)−1([
w(t) +

sε− Emin

2

]2
+ ξ2

)−1
dξ.

Then for any f1 ∈ L2(Td), we obtain

〈K(s)(Emin)f1, f1〉 =
α2

π

∞∫
0

∣∣∣∫
Td

v(t)
[
w(t) + sε−Emin

2

]3/2
f1(t)dt[

w(t) + sε−Emin

2

]2
+ ξ2

∣∣∣2dξ ≥ 0.

Therefore, K(s)(Emin) ≥ 0.

Proposition 3.6. The function N(−∞;0)(S1(·)) is monotonically increasing in (−∞;Emin).

Proof. Since N(−∞;0)(S1(λ)) = N(−∞;0)(S
(+)
1 (λ)) + N(−∞;0)(S

(−)
1 (λ)) for all λ ∈ (−∞;Emin), we show that the

function N(−∞;0)(S
(s)
1 (·)), s = ± is monotonically increasing in (−∞;Emin).

Let λ1, λ2 ∈ (−∞;Emin) be such that λ1 < λ2. Since for each f2 ∈ Lsym
2 ((Td)2) the function (R

(s)
22 (·)f2, f2) is

increasing in (−∞;Emin), we have

(S
(s)
1 (λ1)f̃ , f̃) = ((Â

(s)
00 − λ1)f0 + Â01f1, f0)

+(Â∗01f0 + (Â
(s)
11 − λ1 − Â12R

(s)
22 (λ1)Â∗12)f1, f1) = ((Â

(s)
00 − λ1)f0, f0)

+(Â01f1, f0) + (Â∗01f0, f1) + ((Â
(s)
11 − λ1)f1, f1)− (R

(s)
22 (λ1)Â∗12f1, Â

∗
12f1)

> ((Â
(s)
00 − λ2)f0, f0) + (Â01f1, f0) + (Â∗01f0, f1)

+((Â
(s)
11 − λ2)f1, f1)− (R

(s)
22 (λ2)Â∗12f1, Â

∗
12f1) = (S

(s)
1 (λ2)f̃ , f̃),
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where f̃ := (f0, f1). From here, we obtain that if f̃ ∈ H
S

(s)
1 (λ1)

(0), then f̃ ∈ H
S

(s)
1 (λ2)

(0), that is, H
S

(s)
1 (λ1)

(0) ⊂

H
S

(s)
1 (λ2)

(0) and hence, N(−∞;0)(S
(s)
1 (λ1)) ≤ N(−∞;0)(S

(s)
1 (λ2)). Proposition 3.6 is completely proved. �

FIG. 1. The graph of N(−∞;0)(S1(·)) for the case λ1 is a simple eigenvalue of A2 and λ2 is an eigen-
value of A2 with multiplicity two.

Definition 3.7. We denote byEm(·), m ∈ N the positive definite function on the segment [α;β] ⊂ R\σess(A2), satisfying
the condition: Em(λ) is the m-th eigenvalue (eigenvalues numbered in ascending order, counting their multiplicity) of
the operator S1(λ), λ ∈ [α;β].

Recall that the operator function S1(·) is continuous on [α;β] in the sense of the uniform operator topology. Therefore
for each m ∈ N, the function Em(·) is continuous in any segment [α;β] ⊂ R \ σess(A2).

Theorem 3.8. The number λ0 < Emin is the regular point of the operator A2 if and only if the function N(−∞;0)(S1(·))
is continuous at point λ = λ0.

Proof. Necessity. Let λ0 < Emin be the regular point of the operator A2. Then from Proposition 3.1, it follows that
En(λ0) 6= 0, n ∈ N.

Due to the continuity of the function En(·), there exists the number ρ > 0 such that for all n ∈ N and λ ∈
[λ0 − ρ;λ0 + ρ] ⊂ (−∞;Emin), the inequality En(λ) 6= 0 holds. From here, we obtain

card{n : En(λ0) < 0} = card{n : En(λ) < 0, λ ∈ [λ0 − ρ;λ0 + ρ]},

where cardM is the cardinality of the set M. Therefore, N(−∞;0)(S1(λ0)) = N(−∞;0)(S1(λ0 + ε)), ε ∈ [−ρ; ρ], that is,
the function N(−∞;0)(S1(·)) is continuous at the point λ = λ0.

Sufficiency. Let the function N(−∞;0)(S1(·)) be the continuous one at the point λ = λ0. Then for some ε > 0, the
equalities

N(−∞;0)(S1(λ0 − ε)) = N(−∞;0)(S1(λ0)) = N(−∞;0)(S1(λ0 + ε)) (3.9)

hold.
Taking into account the monotonicity of the quadratic form (S1(λ)·, ·) as λ ∈ (λ0 − ε;λ0 + ε) and arguing as in

the proving of Theorem 2 of the paper [16], one can show that the function E1(·), E2(·), . . . monotonically decreases on
(λ0 − ε;λ0 + ε). From here, we have En(λ0) > En(λ0 + ε), n ∈ N. Thus,

En(λ0) > En(λ0 + ε) ≥ 0, ∀n ∈ {n : En(λ0 − ε) ≥ 0}.

By virtue of (3.9), the following equality

{n : En(λ0 + ε) < 0} = {n : En(λ0 − ε) < 0}

holds. Therefore,

En(λ0) < En(λ0 − ε) < 0, ∀n ∈ {n : En(λ0 + ε) < 0}.

In such a way for every natural n ∈ N, we obtain the inequality En(λ0) 6= 0, that is, the number 0 is not an eigenvalue
of the operator S1(λ0). According to Proposition 3.1, the number λ0 is regular point of the operator A2. Theorem 3.8 is
completely proved. �
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