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ABSTRACT Approximate analytical formulas are obtained for the eigenfrequencies of longitudinal oscillations
of an elastic rod with different mechanical fixings of the ends. The eigenfrequencies are found by solving
Sturm–Liouville problems with the third kind boundary conditions as roots of transcendental equations. Ho-
mogeneous boundary conditions contain one or more parameters whose values are calculated through the
indices of mechanical system. Approximate expression for analytical dependencies of the eigenfrequencies on
the single parameter are obtained for one-parametric problems, which are called reference ones. We propose
a method for obtaining approximate analytical expression for dependencies of the eigenfrequencies on sev-
eral parameters in boundary conditions by sequentially solving the reference problems. The two-parametric
Sturm–Liouville problem is solved by the proposed method.
KEYWORDS Sturm–Liouville problem, elastic rod, longitudinal oscillations, eigenfrequencies, approximation,
least-squares method.
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1. Introduction

For the time being high-precision measuring instruments which use resonant microelectromechanical systems (MEMS)
and nanoelectromechanical systems (NEMS) are of theoretical and practical interests [1–11]. Simple elastic constructions
with resonance properties are used as primary converters of physical quantities in MEMS and NEMS [1,6,11]. The main
characteristic parameters of such systems are their resonant frequencies. Mathematical modeling of time-harmonic os-
cillations of one-dimensional distributed elastic constructions such as strings, rods, beams, supported by elastic elements
leads to the Sturm–Liouville problems. The Sturm–Liouville problem is the boundary value problem for an ordinary
linear homogeneous differential equation with homogeneous boundary conditions at the ends of the interval [12–19].

The Sturm–Liouville problem for the second-order differential equation with boundary conditions of the third kind
is of practical interest [20, 21]. The boundary condition at each edge of the interval has the form of annihilation of the
linear combination of the function value and its derivative calculated at the end point of the interval. The coefficients of
the linear combination in the boundary condition are the parameters of the problem. We call the Sturm–Liouville problem
containing n parameters n-parametric. The Sturm–Liouville problem eigenvalues are roots of a transcendental equation
which depend on the problem parameters.

We have proposed earlier (in [22–24]) an analytical method for obtaining approximate values for the eigenfrequencies
of the one-parametric Sturm–Liouville problem. Using the proposed method, we obtain approximate analytical solutions
of two one-parametric Sturm–Liouville problems, which will be called the reference ones. We extend this method to
solving of the n−parametric Sturm–Liouville problem. As an example, we solve the two-parametric Sturm–Liouville
problem.

2. Reference one-parametric Sturm–Liouville problems

Let the elastic homogeneous rod of length l be located on the interval [0, l] along the axis OX . The cross-sectional
area of the rectangular rod is F . The Young’s modulus and the linear rod density are E and ρ, respectively.

Small longitudinal displacements U = U(X, t) of the cross section of the rod with coordinateX from the equilibrium
position at time moment t satisfy to the following equation

ρF
∂2U(X, t)

∂t2
= EF

∂2U(X, t)

∂X2
, 0 < X < l. (1)
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FIG. 1. Choice of the coordinate system for the first reference one-parametric problem. R is an elastic
rod, the left end of the rod at X = 0 is rigidly embedded into the wall, the right end at X = l is
supported by a spring S

The left end of the rod at X = 0 is rigidly embedded into the wall. It is described by the boundary condition

U(0, t) = 0. (2)

The right end of the rod at X = l is supported by an elastic spring with the stiffness K. Correspondingly, one has the
following boundary condition [13]:

−EF ∂U(l, t)

∂X
= K U(l, t). (3)

To find the eigenfrequencies of the rod oscillations, we assume that the dependence of longitudinal displacement on
time is harmonic, U(X, t) = Y (X)e−iωt, where ω is the circular frequency, and Y (X) is the amplitude of the longitudinal
displacement of the cross section at the point with coordinate X .

Let’s transform the boundary value problem (1)–(3) to the dimensionless form. We introduce the dimensionless
coordinate x, x = X/l, 0 ≤ x ≤ 1 and the dimensionless amplitude of the longitudinal displacement of the cross-section
y(x) = Y (X)/l. We also introduce the following dimensionless quantities: eigenfrequency λ = ωl

√
ρ/E and stiffness

of the spring k = K/(EFl).
Taking into account the introduced dimensionless quantities, we have the first reference one-parametric Sturm–

Liouville problem for finding the set of eigenfunctions y(x) and dimensionless eigenfrequencies λ, λ > 0:

y′′(x) = −λ2y(x), 0 < x < 1 (4)

With the boundary conditions:
y(0) = 0, y′(1) + k y(1) = 0. (5)

The general solution of equation (4) is as follows

y = y(x) = C1 sinλx+ C2 cosλx, (6)

where C1, C2 are arbitrary constants.
Let’s find a particular solution of the differential equation (4) satisfying boundary conditions (5). It follows from the

boundary condition y(0) = 0 thatC2 = 0 in the representation (6). Correspondingly, the general solution transforms to the
form y = C1 sinλx. The second boundary condition at x = 1 gives one ∆(λ, k) = 0, where ∆(λ, k) = λ cosλ+k sinλ.
Keeping in mind that λ 6= πn, n ∈ Z, we transform this equation to the form

λctgλ+ k = 0. (7)

The spectral equation (7) gives the dependence of eigenfrequencies on the parameter k

λ = Λ(k), (8)

where Λ is a multivalued function implicitly specified by equation (7). The equation is transcendental with respect to the
frequency λ and does not allow one to find an analytical solution of the form (8) in elementary functions.

Graphical, numerical and analytical solutions of the spectral equations similar to (7) are considered in [25, 27]. To
obtain an approximate analytical solution of the spectral equation (7), we apply the method proposed in [24]. For this
purpose, we note that this equation is linear in respect to the parameter k. Therefore, at the first stage of solving the
spectral equation we find the dependence of the parameter k on the eigenfrequency λ:

k = Λ−1(λ) = −λctgλ.

This dependence is an elementary function, and is the inverse of the required dependence (8).
The function k = Λ−1(λ) is a meromorphic function which is defined for those values of λ > 0 for which the values

of function are nonnegative. The behavior of the function k = −λctgλ is determined by its zeros wn = π(n − 0.5) and
by its poles vn = πn. We assume here and elsewhere below that n ∈ N . The function takes nonnegative values for
wn ≤ λ < vn. On each interval of such type, the function has the positive derivative and is monotonically increasing.

We denote the function Λ−1(λ) for λ ∈ [wn, vn) as Λ−1n (λ). Note that each function Λ−1n (λ) is continuous and
monotonically increasing in the domain of λ ∈ [wn, vn). As for the values of these functions at the ends of the intervals,
one has Λ−1n (wn) = 0 and Λ−1n (λ)→ +∞ as λ→ vn−0. The functions Λ−1n (λ) have inverse functions with the range of
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values λ ∈ [wn, vn). Let’s denote these inverse functions by Λn so that λ = Λn(k). Graphs of the functions λ = Λn(k)
are shown in Fig. 2. In constructing the graphs, we used the fact that the functions k = Λ−1(λ) and λ = Λn(k) are
inverse functions. The points on the graphs have coordinates (Λ−1(λ), λ), λ ∈ [wn, vn).

FIG. 2. Graphs of the functions λ = Λn(k) for n=1, 2, 3. Graphical finding of eigenfrequencies λ1,
λ2, λ3 is presented

As the first step of the Sturm–Liouville problem solving, we find graphically (Fig. 2) the values λn = λn(k0) as
ordinates of the intersection points of function graphs λ = Λn(k) with the vertical straight line k = k0. The disadvantage
of the graphical solution is the impossibility of using the eigenfrequencies found graphically in the subsequent computer
modeling of the physical problem.

To obtain approximate analytical expressions for the eigenfrequencies, we use the method proposed in [24]. We
choose the approximation of functions Λ−1n (λ) by functions Gn(λ), following the conditions listed below:

– the functions Gn(λ) should be elementary functions with elementary inverse functions G−1n , i.e. analytic represen-
tations of Gn(λ) and G−1n functions should contain only basic elementary functions;

– the functions Gn(λ) should provide sufficient approximation accuracy Gn(λ) ≈ Λ−1n (λ), λ ∈ [wn, vn).
As in [28], we use the interpolation method and the approximation by the method of least-squares (LSM) in combi-

nation to find the Gn(λ) functions.
To interpolate the functions Gn(λ), λ ∈ [wn, vn), we choose the ends of intervals λ = vn and λ = wn, and the

middle of the intervals λ = γn = 0.5(vn + wn) as interpolation nodes. We look for the functions in the form

Gn(λ) = An

(
λ− wn
vn − λ

)rn
, (9)

where An and rn are some positive constants. The choice of the representation (9) ensures the equality of the functions
Gn(λ) and Λ−1n (λ) at λ = wn: Gn(wn) = Λ−1n (wn) = 0. The choice of the representation (9) also ensures that both
functions Gn(λ) and Λ−1n (λ) tend to +∞ as λ→ vn − 0.

Let’s choose the constants An so that the values of the functions Gn(λ) and Λ−1n (λ) are equal in the centers of the
intervals (wn, vn) i.e. at λ = γn = 0.5 (vn + wn):

Gn(γn) = Λ−1n (γn). (10)

Substitution the values of λ = γn into formula (9) gives one the equalities Gn(γn) = An. Given equality (10), we obtain

An = Λ−1n (γn) = −γn ctgγn. (11)

To find the constants rn, we use the LSM. Taking logarithm of the left and the right hand sides of equation (9), we
obtain

ψn(λ) = rnϕn(λ), wn < λ < vn. (12)
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TABLE 1. Values of approximation constants rn for the selected intervals

j 1 2 3 4 5 6 7 8 9 J = 10

nj 1 2 3 4 5 7 10 15 30 N = nJ = 50

rnj
0.961 0.878 0.864 0.854 0.849 0.843 0.838 0.834 0.832 rJ = r50 = 0.831

Here ψn(λ) = ln(Gn(λ)/An) and ϕn(λ) = ln ((λ− wn)/(vn − λ)). According to the LSM, on each interval (wn, vn),
we choose M points λnm ∈ (wn, vn), where m is the ordinal number of the chosen argument λnm and pick the coeffi-
cients rn to minimize the residual sum of squares

εn(rn) =
1

M

M∑
m=1

(ψn(λnm)− rnϕn(λnm))
2
. (13)

Differentiating with respect to rn, one obtains

dεn(rn)

drn
=

2

M

M∑
m=1

ψn(λnm)ϕn(λnm)− 2rn
M

M∑
m=1

(ϕn(λnm))
2

= 0. (14)

The solution of equation (14) gives one the values of the constants rn

rn =

M∑
m=1

ψn(λnm)ϕn(λnm)

/
M∑
m=1

(ϕn(λnm))
2
. (15)

Let’s find an approximate analytical dependence of the constant rn on the interval number n. We calculate rn
for J intervals with ordinal numbers n1, n2, ..., nj , ..., nJ = N . On each interval nj , we choose M points λnjm =
wnj

+ m∆nj
, where ∆nj

= (νnj
− wnj

)/(M + 1), and calculate the values of rn by formula (15). Table 1 gives one
the values of rnj

for J = 10, M = 20, N = 50.
Keeping in mind the obtained values rnj , we can suggest the following approximate analytical dependence of the

constant rn on the number n:

rn ≈ r̂n = ψ(n, α) = rN +
r1 − rN
nα

, (16)

provided that the approximation parameter α is positive: α > 0. The choice of formula (16) ensures that equality r1 = r̂1
and approximation equality rN ≈ r̂N are satisfied, since N = 50 � 1 and the second summand in the right side of
formula (16) is small.

To find the value of the parameter α, we use the LSM. Dependence (16) will be reduced to a linear model on the
parameter α after elementary transformations:

ln

(
r1 − rN
r̂n − rN

)
= α lnn, 2 ≤ n ≤ N − 1.

According to the LSM, by formulas similar to (12)–(15), we obtain the value

α =

J−1∑
j=2

ln

(
r1 − rN
r̂nj
− rN

)
lnnj

/
J−1∑
j=2

(lnnj)
2.

We find the inverse functionsG−1n for the functionsGn by solving the equations k = Gn(λ) with respect to λ. Taking
into account that the functions G−1n are approximations of the functions Λ−1n (λ), we find approximate values λn ≈ λ̂n
for the eigenfrequencies of the Sturm–Liouville problem

λ̂n =
kqnwn + (An)qnvn
kqn + (An)qn

,

where qn = 1/r̂n.
Table 2 shows the results of solving two reference problems. The first problem (s = 1) is solved above; the second

problem (s = 2) has different boundary condition and was solved similarly to the first problem.
In Table 2, we use the following notations: s is the number of the problem s = 1, 2, vn = πn, wn = π(n − 0, 5),

n ∈ N ,

r̂(s)n = r
(s)
N +

r
(s)
1 − r

(s)
N

nαs
, (17)

ϕ(s)
n (k, a, b) =

a kq
(s)
n + b(A

(s)
n )q

(s)
n

kq
(s)
n + (A

(s)
n )q

(s)
n

, (18)
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TABLE 2. One-parametric reference Sturm–Liouville problems: boundary conditions, intermediate so-
lution results and approximate formulas for eigenfrequencies

Boundary Spectral Function Approximate Eigenfrequencies αs

s conditions equation k = (Λ(s))−1(λ), function λ(s)n = r
(s)
1

∆(s)(λ, k) = 0 domain of function k =
(

Λ(s)
n

)−1
(λ) = ϕ(s)

n (k, a, b) r
(s)
50

y(0) = 0 ∆(1)(λ, k) = k = −λctgλ, k = λ(1)n = 0.9

1 y′(1) + ky(1) = 0 = λ cosλ+ k sinλ = 0 λ ∈ [wn, vn) = A(1)
n

(
λ− wn
vn − λ

)r̂(1)n

= ϕ(1)
n (k,wn, vn) 0.961

0.831

y′(0) = 0 ∆(2)(λ, k) = k = λtgλ, k = λ(2)n = 0.8

2 y′(1) + ky(1) = 0 = λ sinλ− k cosλ = 0 λ ∈ [vn−1, wn) = A(2)
n

(
λ− vn−1
wn − λ

)r̂(2)n

ϕ(2)
n (k, vn−1, wn) 1.100

0.840

where

An =
(

Λ(s)
n

)−1
(γn) (19)

q(s)n =
1

r̂
(s)
n

. (20)

The quality of the problem solution is characterized by the relative errors δn = δn(k) =
∣∣∣λn − λ̂n∣∣∣ /λn of the

determined values λ̂n. The functions δn = δn(k) are determined parametrically using the parameter λ:
k = Λ−1(λ),

δn =

∣∣∣∣∣1− λ̂n(Λ−1(λ))

λn

∣∣∣∣∣ .
Numerical calculations have shown that the relative errors of the approximate calculation of λn ≈ λ̂n values do not

exceed the magnitude of 0.002.

3. The two-parametric Sturm–Liouville problem

In this section, we show how to use the obtained solutions of one-parametric reference problems to solve the two-
parametric Sturm–Liouville problem.

We consider the problem on longitudinal oscillations of an elastic rod, whose ends are supported by elastic springs
S1 and S2 with stiffnesses K1 and K2 (Fig. 3).

FIG. 3. Coordinate system for the two-parametric problem. The ends of the rod R are supported by
springs S1 and S2 at X = 0 and X = l

Introducing the dimensionless quantities, as was done earlier in Section 2, we obtain the Sturm–Liouville problem for
finding the set of eigenfunctions y(x) and the set of eigenfrequencies λ: y′′(x) = −λ2y(x) for 0 < x < 1 with boundary
conditions

y′(0)− k1 y(0) = 0, y′(1) + k2 y(1) = 0, (21)

where kp = Kp/EFl, p = 1, 2 are dimensionless spring stiffnesses.
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We show that the solution of the two-parametric problem is reduced to sequential solving of the one-parametric
reference problems. The general solution of the differential equation (4) has the form (6). Substituting it into the boundary
conditions (21), we obtain a system of linear algebraic equations for constants C1 and C2. λC1 − k1 C2 = 0,

(λ cosλ+ k2 sinλ)C1 + (k2 cosλ− λ sinλ)C2 = 0.
(22)

To obtain the eigenfunctions y(x) we find a nonzero solution of the homogeneous system (22) from the condition
that the principal determinant ∆(λ, k1, k2) is zero:

∆(λ, k1, k2) = k1k2 sinλ+ λ(k1 + k2 ) cosλ− λ2 sinλ = 0. (23)

Equation (23) is the spectral equation for calculating the eigenfrequencies of the two-parametric problem for given values
of parameters k1 and k2. Let a function Γ represent the dependence of λ on parameters k1 and k2

λ = Γ(k1, k2). (24)

The function Γ(k1, k2) is a non-elementary multivalued function of two variables k1 and k2, implicitly given by equation
(23). Equation (23) is linear with respect to parameters k1, k2, and their permutation does not change the equation. Let a
function Γ−1 represent the dependence of k1 on λ and k2.

k1 = Γ−1(λ, k2). (25)

It follows from equation (23) that the function Γ−1(λ, k2) has the following form

k1 = Γ−1(λ, k2) =
λ(λ sinλ− k2 cosλ)

(λ cosλ+ k2 sinλ)
. (26)

The function Γ−1(λ, k2) is a meromorphic function of the variable λ. It also depends on a fixed value of the parameter
k2. The values of roots Wn and poles Vn of the function Γ−1(λ, k2) are found from the solutions of the reference
problems given in Table 2. We find the positive poles Vn = Vn(k2) of the function Γ−1(λ, k2) from the spectral equation
λ cosλ + k2 sinλ = 0 of the first reference problem (Table 2, s = 1): Vn(k2) = λ(1)n . We find the positive roots
Wn = Wn(k2) of the function Γ−1(λ, k2) from the spectral equation λ sinλ − k2 cosλ = 0 of the second reference
problem (Table 2, s = 2): Wn(k2) = λ(2)n . Using Table 2, we obtain formulas for the positive poles and roots of the
function Γ−1(λ, k2): λ(1)n = ϕ(1)

n (k2, wn, vn) and λ(2)n = ϕ(2)
n (k2, vn, wn). Note that the inequalities Wn(k2) < Vn(k2)

are satisfied. Graph of the function Γ−1(λ, k2) is similar to graph of the function k = Λ−1(λ) in Fig. 2 if we replace
quantities vn and wn with quantities Vn and Wn, respectively.

Then the two-parametric problem is solved by the method used above for solving the first reference problem:
1. We introduce the functions Γ−1n (λ, k2), λ ∈ [Wn, Vn).
2. We approximate the functions k1 = Γ−1n (λ, k2) by the functions Gn(λ, k2),

Gn(λ, k2) = An(k2)

(
λ− λ(2)n (k2)

λ
(1)
n (k2)− λ

)r̂n(k2)
,

where An(k2) and r̂n(k2) are approximation constants to be calculated.
3. We calculate the constants An(k2) = Γ−1n (γn(k2), k2), where

γn(k2) = 0.5 (λ(1)n (k2) + λ(2)n (k2)),

Γ−1n (γn(k2), k2) =
γn(k2)(γn(k2) sin γn − k2 cos γn(k2))

(γn(k2) cos γn(k2) + k2 sin γn(k2))
.

4. We calculate the constants r̂n(k2) by formulas similar to formulas (12)–(15).
5. We find the inverse functions G−1n and calculate approximate analytical dependencies of eigenfrequencies λ̂n =
G−1n (k1, k2) on the parameters k1 and k2.

As a result, in the case of the two-parametric problem, we calculate the eigenfrequencies λn for the given values of
the parameters k1 and k2 by the approximate formula

λn ≈ λ̂n =
λ
(2)
n (k2)k

qn(k2)
1 + (An(k2))qn(k2)λ

(1)
n (k2)

k
qn(k2)
1 + (An(k2))qn(k2)

, (27)

qn(k2) = 1/r̂n(k2), r̂n = r̂n(k2) = r50(k2) +
r1(k2)− r50(k2)

nα
.

Numerical calculations using the above algorithm for the two-parameter problem at the values of the parameters k1 = 2,
k2 = 1 gave us the following results: α = 1.320, r1(k2) = 0.947, r50(k2) = 0.837. The relative errors δn of calculating
λn ≈ λ̂n values do not exceed the magnitude of 0.002.



Method of reference problems for obtaining approximate analytical solution of... 327

4. Conclusion

Mathematical modeling of applied problems may lead to multi-parameter boundary value problems. This is the case
in the problem of longitudinal oscillations of a rod, the ends of which are supported by elastic springs and weighed by
masses. Several parameters also appear in the problem of bending oscillations of an elastic beam with elastic springs and
masses with given moments of inertia located at its ends [13].

The proposed approach makes it possible to find solutions of multi-parametric problems using the solutions of ref-
erence one-parametric problems. We obtain n one-parametric problems from an n-parametric Sturm–Liouville problem
assuming that all but one parameter is zero. The one-parametric problems are reference problems for the n-parametric
problem. By solving each one-parametric problem, we find an approximate analytical dependence of the eigenfrequencies
on the single parameter of the problem. Then we sequentially reduce the n-parametric Sturm–Liouville problem to the so-
lution of n one-parametric problems. As a result, we obtain an approximate analytical dependence of the eigenfrequencies
on all parameters of the n-parametric Sturm–Liouville problem.
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