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1. Introduction

One of the main problems for the Ising model is to describe all limiting Gibbs measures corresponding to the model.
It is well known that for the Ising model such measures form a nonempty, convex, and compact subset in the set of all
probability measures. The problem of completely describing the element of this set is far from being completely solved.
Some translation-invariant (see, e.g., [1–3]), periodic [4, 5], and continuum sets of non-periodic Gibbs measures for the
Ising model on a Cayley tree have already been described (see, e.g., [2, 3, 6, 7]).

In [8, 9], the notion of weakly periodic Gibbs measure is introduced. This notion generalizes the notion of periodic
Gibbs measures and such a measure is non-periodic. In [10], the author constructs new sets of non-periodic Gibbs
measures for the Ising model on the Cayley tree of order k, which called (k0)-translation-invariant, (k0)-periodic and
(k0)-non-translation-invariant, respectively. In [11], authors investigate p-adic Gibbs measures for the q-state Potts model
with an external field and establish the conditions for the existence of a phase transition. In p-adic case, such kind of
constructed measures for the Ising model were studied in [12–14]. In [15], the authors construct a very wide class of Gibbs
measures. The existence of the Gibbs measures for a given model defines the occurence of a phase transition [16, 17].

Entropy and free energy are fundamental concepts in thermodynamics that provide a powerful framework for under-
standing the behavior of systems. By considering both the energy content and the disorder of a system, these concepts
allow us to predict the direction and extent of spontaneous processes, making them invaluable tools in various fields of
science and engineering [18].

The progress in nanoscience and nanotechnology has spurred considerable research into adapting the principle of
thermodynamics and statistical mechanics for small systems with a limited number of particles, moving beyond traditional
large- scale applications [5].

Nanoscale systems are characterized by their dynamic structures, unlike the static equilibrium of macroscopic phases.
Phase coexistence in these small systems shifts from sharp points to ranges of temperature and pressure. This behavior
invalidates the Gibbs phase rule and allows for the formation of metastable phases that are unique to the nanoscale
[19, 36–39].

Working with nanoscale materials presents difficulties in accurately describing how their properties and phase
changes behave. To overcome these hurdles, we need to formulate new thermodynamic and statistical models specif-
ically designed for small-scale systems. This is particularly crucial for understanding molecular self-assembly, a core
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process in bottom-up nanotechnology, which is fundamentally governed by phase transition phenomena as emphasized
by Feynman [20].

In [21], the authors present, for the Ising model on the Cayley tree, some explicit formulae of the free energies (and
entropies) according to boundary conditions. They include translation-invariant, periodic as well as those corresponding
to (recently discovered) weakly periodic Gibbs states. It is proved that the free energies for the translation-invariant and
periodic boundary conditions are equal.

In [22], the authors consider the calculation of the entropy of an Ising ferromagnet with nonmagnetic impurities
distributed at random over the lattice sites or bonds. In [23], the authors found the exact free energy of such a chain
as a function of the impurity concentration, temperature, and the external magnetic field. In [24], the authors studied
Ising-Vannimenus model on a Cayley tree for order two with competing nearest-neighbor and prolonged next-nearest-
neighbor interactions. Moreover, the free energies and entropies, associated with translation invariant Gibbs measures,
are calculated.

In [25], the author considers the Ising-Vannimenus model on a Cayley tree of order three. In [26], the authors gen-
eralized the Ising-Vannimenus model’s Gibbs measures on a Cayley tree of any order using the Kolmogorov consistency
condition and classified the fixed points. They obtained a new formula to calculate the free energy of the model on
the Cayley tree of any order under given boundary conditions. In [27], the author studied thermodynamic properties of
mixed-spin (2, 1/2) Ising and Blum-Capel models on the Cayley tree.

In [28], the author constructs the partition function and then calculate the free energy of the Ising model having the
prolonged next nearest and nearest neighbor interactions and external field on a two-order Cayley tree using the self-
similarity of the semi-infinite Cayley tree. In [29], the author calculated the free energy and entropy for (1,1/2)-MSIM.
In [30], the author identified regions where the disordered phases are extreme by means of the tree-indexed Markov chain
and satisfied the Kesten-Stigum condition for non-extremality of the disordered phase according to the fixed point.

Recently, in [31], we constructed new Gibbs measures for the Ising model on the Cayley tree of order two and
calculated free energies of these measures. We noticed that these free energies are equal to the free energies of the
translation-invariant boundary conditions.

In this paper, we construct Gibbs measures for the Ising model on a third-order Cayley tree, which differ from those
mentioned above, and calculate the free energies and entropies. Also, we prove that the free energies and entropies
corresponding to the obtained measures (which are constructed on the Cayley tree of order three) differ from the free
energies of the translation-invariant boundary conditions.

This paper is organized as follows. In Section 2, we present necessary main definitions and formulas. In the next two
sections, we construct new Gibbs measures. In Section 5, we calculate the free energy corresponding to these measures.
In Section 6, we calculate the entropy corresponding to the measures.

2. Preliminaries

Let Γk = (V,L), k ≥ 1 be the Cayley tree of order k, where V and L are the set of vertices and the set of all edges
of the tree Γk, respectively. Γk can be represented as a group Gk, which is the free product of k + 1 cyclic groups of the
second order (see, e.g. [2, 7]).

Two vertices x and y are called nearest neighbors if there exists an edge l ∈ L connecting them l = 〈x, y〉. A
collection of nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, ..., 〈xm, y〉 is called the path from x to y. By the path, one can
define distance d on the tree. The distance between vertices x and y is the number of edges of the shortest path from x to
y. Let us fix a vertex x0 ∈ V and call it as a root of the tree. Then for any natural number n, we introduce the following
set:

Wn = {x ∈ V | d(x, x0) = n}, Vn =

n⋃
m=0

Wm, Ln = {〈x, y〉 ∈ L : x, y ∈ Vn},

The sets Wn and Vn are called a sphere and a ball with radius n, respectively.
For a given x ∈Wn, we in troduce

S(x) = {y ∈Wn+1 : d(x, y) = 1}, x ∈Wn,

which is called a set of direct successors of x.
For A ⊆ V , a spin configuration on A is defined as a function

x ∈ A→ σA(x) ∈ Φ = {−1, 1}.

The set of all configurations coincides with ΩA = ΦA. We denote Ω = ΩV and σ = σV .
We consider the Hamiltonian of the Ising model

H(σ) = −J
∑
〈x,y〉∈L

σ(x)σ(y), (1)

where J ∈ R, σ(x) ∈ Φ and 〈x, y〉 are the nearest neighbors.
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For every n, we then define a measure µn on ΩVn
by

µn(σn) = Z−1n exp{−βH(σn) +
∑
x∈Wn

hxσ(x)}, (2)

where β =
1

T
(T is a temperature, T > 0), σn = {σ(x), x ∈ Vn} ∈ ΩVn , Z−1n is the normalizing factor, and

H(σn) = −J
∑

〈x,y〉∈Ln

σ(x)σ(y).

The compatibility condition for the measures µn, n > 1 is∑
σ(n)

µn(σn−1, σ
(n)) = µn−1(σn−1), (3)

where σ(n) = {σ(x), x ∈Wn}.
Let µn, n ≥ 1 be a sequence of measures on the sets ΩVn that satisfy compatibility condition (3). By the Kolmogorov

theorem, we then have a unique limit measure µ on Ω such that

µ({σ |Vn
= σn}) = µn(σn),

for every n = 1, 2, ... and σn ∈ ΦVn . Such a measure is called a splitting Gibbs measure corresponding to the Hamiltonian
(1) and function hx, x ∈ V .

Theorem 2.1 [1–3] The measures µn(σn), n = 1, 2, ..., in (2) are compatible iff for any x ∈ V , the following
equation holds:

hx =
∑

y∈S(x)

f(hy, θ), (4)

where f(x, θ) = arctanh(θ tanhx), θ = tanh(Jβ).
Definition 2.1 Let K be a subgroup of Gk, k ≥ 1. We say that a function h = {hx ∈ R : x ∈ Gk} is K- periodic if

hyx = hx for all x ∈ Gk and y ∈ K. A Gk-periodic function h is called the translation-invariant one.
Definition 2.2 A Gibbs measure is called K-periodic if it corresponds to K- periodic function h.
Definition 2.3 A set of quantities h = {hx, x ∈ Gk} is called K- weakly periodic, if hx = hij , for any x ∈ Hi,

x↓ ∈ Hj , where x↓-ancestor of x.
Theorem 2.1 establishes a one-to-one correspondence: a boundary condition solving the functional equation (4)

uniquely determines a Gibbs measure and conversely. This means that finding all Gibbs measures is equivalent to finding
all solutions to equation (4).

We aim to investigate the relationship between the boundary condition and the resulting free energy, specifically when
the free energy exists:

F (β, h) = − lim
n→∞

1

β | Vn |
lnZn(β, h). (5)

The authors of [15] define a large variety of Gibbs measures. Studying the Gibbs measures on a k-order Cayley tree
is equivalent to solving a system of equations

h = (a1 − a2)f(h, θ) + (a3 − a4)f(l, θ),

l = (b1 − b2)f(h, θ) + (b3 − b4)f(l, θ),

(6)

where ai, bi, i = 1, 2, 3, 4 are non-negative integers and

a1 + a2 + a3 + a4 = k, b1 + b2 + b3 + b4 = k. (7)

Theorem 2.2 [15] Independently of the parameters, there is one Gibbs measure which corresponding to the solution (0, 0)
of the system of equations (6), and if

| ((a3 − a4)(b1 − b2)− (a1 − a2)(b3 − b4))θ2 + (a1 − a2 + b3 − b4)θ |> 1

then there are at least three distinct Gibbs measures corresponding to the solutions (0, 0), (±h∗,±l∗), of system of
equations (6), where h∗ > 0, l∗ > 0.

If an arbitrary edge 〈x, y〉 = l ∈ L is deleted from the Cayley tree Γk, it splits into two components, i.e., two identical
semi-infinite trees Γk0 and Γk1 (see Fig. 1). In this paper, we consider semi-infinite Cayley tree Γk0 = (V 0, L0). The vertex
x0 is considered as a root of tree, the root has k nearest neighbors and all other vertices of Γk0 has k+ 1 nearest neighbors.

This work identifies new families of Gibbs measures that differ from those described in the previous studies [5,31–34],
as well as those presented in Theorem 2.2.



264 M. M. Rahmatullaev, Z. A. Burxonova

FIG. 1. The Cayley tree of order k = 3, separated to two semi-infinite sub-trees Γk0 and Γk1

3. Constructive Gibbs measures with rule A

This section will detail the construction of Gibbs measures for the Ising model on a Cayley tree of order three. The
following definition specifies the set of quantities h = {hx, x ∈ V }:

(A) If hx = h2, then we put h1 on all direct successors of x.
If hx = h1, then we put h2 and 0 on an arbitrary vertex and the other two vertices of direct successors of x,

respectively.
If hx = 0, then we put 0 on all direct successors of x (see Fig. 2).

FIG. 2. Set of quantities h = {hx, x ∈ V } corresponding to the rule (A)

The set of the boundary condition {0, h1, h2} defined by the rule (A) must satisfy the boundary condition (4):
h1 = f(h2, θ),

h2 = 3f(h1, θ).

(8)

It is clear that h1 = h2 = 0 is a solution of (8).

Using the formula f(x, θ) = arctanh(θ tanhx)=
1

2
ln

(1 + θ)e2h + (1− θ)
(1− θ)e2h + (1 + θ)

, and introducing the notations α =

1− θ
1 + θ

, zi = e2hi , i = 1, 2, we have α ∈ (0, 1) ∪ (1, +∞). By the last notations, (8) yields the following system of
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equations: 
z1 =

z2 + α

αz2 + 1
,

z2 =

(
z1 + α

αz1 + 1

)3

.

(9)

The following lemma defines the number of positive solutions of (9).
Lemma 3.1 Let N be a number of the positive solutions (9). Then the following assertions hold:

N =

 3, if α ∈ (0 ; 2−
√

3) ∪ (2 +
√

3 ;∞),

1, if α ∈ ∪ (2−
√

3 ; 1) ∪ (1 ; 2 +
√

3).
(10)

Proof: See Appendix 1.
Using Lemma 3.1, we obtain the following theorem:
Theorem 3.1 For the Gibbs measures for the Ising model corresponding to h = {hx, x ∈ V } which defined by rule

(A) on the Cayley tree of order three the following statements hold:
(1) if α ∈ (0; 2−

√
3)∪(2+

√
3;∞), then there are three Gibbs measures, moreover, two of them are non-translation-

invariant Gibbs measures;
(2) if α ∈ (2−

√
3; 1) ∪ (1; 2 +

√
3), then there exists a unique translation-invariant Gibbs measure.

Remark 3.1 The translation-invariant measure corresponding to (z1, z2) = (1, 1) found in Theorem 3.1 was studied
[1, 8, 19].

4. Constructive Gibbs measures with rule B

The values for the set h = {hx, x ∈ V } are assigned according to the following rules.
(B) If hx = h2, then we put h1 on all direct successors of x.
If hx = h1, then we put 0 and h2 on an arbitrary vertex and the other two vertices of direct successors of x,

respectively.
If hx = 0, then we put 0 on all direct successors of x (see Fig. 3).
The set of quantities {0, h1, h2} as determined by the constructive rule (B) is constrained by the boundary condition

specified in equation (4):

FIG. 3. Set of quantities h = {hx, x ∈ V }, which corresponding to the rule (B)


h1 = 2f(h2, θ),

h2 = 3f(h1, θ).

(11)

From (11), we write the following: 
z1 =

(
z2 + α

αz2 + 1

)2

,

z2 =

(
z1 + α

αz1 + 1

)3

.

(12)
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According to the calculation in based on graphical analysis and the Descartes’ theorem we have the following result:
Lemma 4.1 Let K be a number of the positive solutions of (12). Then the following assertions hold:

K =

 3, if α ∈ (0; αc1 ] ∪ [αc2 ; ∞) ,

1, if α ∈ (αc1 ; αc2).
(13)

where αc1 ≈ 0.44, αc2 ≈ 2.3.
Proof: See Appendix 2.
Using Lemma 4.1 we obtain the following theorem:
Theorem 4.1 Let k = 3. For the Ising model constructed with rule (B) on the Cayley tree, the following holds true:

(1) if α ∈ (0; αc1 ] ∪ [αc2 ; ∞), then there are three Gibbs measures, moreover, two of them are non-translation-
invariant Gibbs measures;

(2) if α ∈ (αc1 ; αc2), then there exists unique translation-invariant Gibbs measure.

Remark 4.1 The translation-invariant measure corresponding to (z1, z2) = (1, 1) found in Theorem 4.1 was studied
[1, 8, 19].

Remark 4.2 The measures found by rules (A) and (B) are neither periodic nor weakly periodic, they are new Gibbs
measures (see in [5, 31–35]).

5. Free energy for the Gibbs measures constructed by rules (A) and (B)

In the section, we calculate the free energy for the measures found in the previous sections. Free energy plays an
important role in the fields of chemistry and physics, being used to determine the occurrence of processes and reactions,
energy transfer between systems, and their energetic stability.

The following theorem gives a formula of the free energy.
Theorem 5.1 [21] For boundary conditions satisfying (4), the free energy is given by the formula

F (β, h) = − lim
n→∞

1

| Vn |
∑
x∈Vn

a(x), (14)

where

a(x) =
1

2β
ln [4 cosh(hx − βJ) · cosh(hx + βJ)] .

Theorem 5.2 The free energy of the Gibbs measures which are defined by rule (A) for the Ising model on the Cayley
tree of order three is defined the following formula:

FA(β, hA) = − 3

4β
ln(2 cosh(βJ)), (15)

where hA are constructed according to the rule (A).
Proof LetA ⊂ V . Denote by | A(hAi

) | the number of hAi
in the setA, where i = 0, 1, 2 and hAi

is defined by rule
(A). Firstly, we calculate |WAn(hA0) |, |WAn(hA1) |, |WAn(hA2) | (see Fig. 1). WAn are constructed according to the
rule (A). After some calculations, we have

|WAn
(hA0

) | =

 3n − 3
n
2 , if n is even,

3n − 3
n+1
2 , if n is odd,

|WAn
(hA1

) | =

 0 , if n is even,

3
n+1
2 , if n is odd,

|WAn
(hA2

) | =

 3
n
2 , if n is even,

0, if n is odd,

It is clear that

| VAn(hAi) |=
n∑
k=0

|WAk
(hAi) |, i = 1, 2. (16)
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Using (16) we find the following:

| VAn
(hA0

) | =

 An, n is even,

Bn, n is odd,

| VAn
(hA1

) | =

 Cn, if n is even,

Dn, if n is odd,

| VAn
(hA2

) | =

 En, if n is even,

Fn, if n is odd,

where

An =
9

n+2
2 − 1

8
− 3

n+2
2 − 1

2
,

Bn =
3 · (9n+1

2 − 1)

8
− 3

n+1
2 − 1

2
,

Cn =
3

2
(3

n
2 − 1) + 1, Dn = 0, En = 0,

Fn =
1

2
· (3

n+1
2 − 1).

According to (14), we have

FA(β, hA) =

= − 1

2β
lim
n→∞

2

3n+1 − 1

 An ln[4 cosh(−βJ) · cosh(βJ)], if n is even

Bn ln[4 cosh(−βJ) · cosh(βJ)], if n is odd

− 1

2β
lim
n→∞

2

3n+1 − 1

 Cn ln[4 cosh(hA1
− βJ) · cosh(hA1

+ βJ)], if n is even

Dn ln[4 cosh(hA1 − βJ) · cosh(hA1 + βJ)], if n is odd

− 1

2β
lim
n→∞

2

3n+1 − 1

 En ln[4 cosh(hA2
− βJ) · cosh(hA2

+ βJ)], if n is even

Fn ln[4 cosh(hA2 − βJ) · cosh(hA2 + βJ)], if n is odd

= − 1

2β
· 3

4
ln[4 cosh(−βJ) · cosh(βJ)] = − 3

4β
ln[2 cosh(βJ)].

Similarly, we can prove the following theorem for the Gibbs measures which are defined by rule (B).
Theorem 5.3 The free energy of the Gibbs measures for the Ising model, defined by rule (B) on the Cayley tree of

order three, equals

FB(β, hB) = − 3

4β
ln(2 cosh(βJ)), (17)

where hB is constructed according to the rule (B).
Remark 5.1 a) Due to Theorems 5.2 and 5.3, we have

FA(β, hA) = FB(β, hB).

Moreover, we also show that
FA(β, hA) = FB(β, hB) 6= FTI(β, 0),

where FTI(β, 0) = − 1

β
ln(2 cosh(βJ)) is the free energy of the translation-invariant (TI) boundary condition [21].

b) In [21] it is shown that
FWP (β, h) < FTI(β, 0).

In the present paper, we show that
FTI(β, 0) < FA(β, hA) = FB(β, hB).

It implies that the free energy corresponding to the rule (A) differs from the free energy corresponding to the weakly
periodic b.c., more precisely,

FWP (β, h) < FTI(β, 0) < FA(β, hA) = FB(β, hB).

Corollary 5.1 The free energy of the Gibbs measures which are defined by rules (A) and (B) for the Ising model on
the Cayley tree of order three is defined as follows::
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FA(β, hA) = FB(β, hB) =
3

4
FTI(β, 0).

FIG. 4. Free energy FTI(β, 0) (dotted line) and free energy built according to rules (A) and (B) i.e
FA(β, hA) = FB(β, hB)(solid line). Here J = 1 and k = 3

6. Entropy for the Gibbs measures constructed by rules (A) and (B)

In this section, we calculate the entropy for rules (A) and (B). The concept of entropy is crucial to understanding
processes in both physics and chemistry. In physics, it expresses the energetic state and disorder of systems, while in
chemistry, it is used to determine whether reactions are spontaneous or non-spontaneous. The increase in entropy is the
main trend observed in natural processes, indicating changes in energy and the efficiency of movements between systems.

The entropy is found by the following expression (see in [21]):

S(β, h) = −dF (β, h)

dT
. (18)

Theorem 6.1 The entropy of the Gibbs measures which are given by rule (A) for the Ising model on the Cayley tree
of order three is defined the following formula:

SA(β, hA) =
3

4
· (ln(2 cosh(Jβ))− Jβ tanh(Jβ)) . (19)

Proof We calculate the entropy for the Gibbs measures constructed according to rule (A)

SA(β, hA) = −dF (β, hA)

dT
= −

d(− 3
4 ln 2 coshβJ)

dT
=

=
3

4
ln(e

J
T + e−

J
T )− 3

4
· J
T
· e

J
T − e− J

T

e
J
T + e−

J
T

=

=
3

4
· (ln(2 cosh(Jβ))− Jβ tanh(Jβ)) .

(20)

Remark 6.1 In [21], the entropy of the (TI) boundary comdishihe the following formula for h = 0

STI(β, 0) = ln(2 cosh(Jβ))− Jβ tanh(Jβ). (21)

We have the following expression according to Theorem 6.1

SA(β, hA) =
3

4
· (ln(2 cosh(Jβ))− Jβ tanh(Jβ)) ,

i.e. the entropy of Gibbs measures constructed according to rule (A) differs from STI(β, 0).
The entropy calculation for Gibbs measures associated with rule (B) follows the same procedure as for rule (A).
Theorem 6.2 The entropy of the Gibbs measures for the Ising model defined by rule (B) on the Cayley tree of order

three, equals

SB(β, hB) =
3

4
· (ln(2 cosh(Jβ))− Jβ tanh(Jβ)) . (22)

Remark 6.2 In [21] and according to Theorem 6.2, we get the following

SB(β, hB) =
3

4
· (ln(2 cosh(Jβ))− Jβ tanh(Jβ)) ,
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i.e. the entropy of the calculated according to the (B) is different from the Gibbs measures STI(β, 0).
Corollary 6.1 The following relation is valid between the entropy of the Gibbs measures constructed according to

(A) and (B) and the entropy STI(β, 0) of the Gibbs measures:

SA(β, hA) = SB(β, hB) =
3

4
STI(β, 0).

FIG. 5. Entropy STI(β, 0) (dotted line) and entropy built according to rules (A) and (B), i.e SA(β, hA)
= SB(β, hB)(solid line). Here J = 1 and k = 3

Appendix 1
Let us now explain how to calculate the proof of Lemma 3.1.
Proof Solving system (9) reduces to analyzing the following equation

z1 =

(
z1+α
α·z1+1

)3
+ α

α ·
(
z1+α
α·z1+1

)3
+ 1

. (23)

Simplifying (23), we have

(z1 − 1) · (z1 + 1) · ((α3 + α) · z12 + (−α4 + 6 · α2 − 1) · z1 + α3 + α) = 0. (24)

It follows z(0)1 = 1 or
(α3 + α) · z12 + (−α4 + 6 · α2 − 1) · z1 + α3 + α = 0. (25)

According to (9), every positive value of z1 corresponds to a positive value of z2. Therefore, we only need to focus on the
positive solutions of equation (25). Equation (25) can be rearranged as follows:

α · (α2 + 1)z21 − (α4 − 6 · α2 + 1)z1 + α · (α2 + 1) = 0. (26)

Denote by D the discriminant of the equation (26), i.e.

D = (α4 − 6 · α2 + 1)2 − 4 · (α3 + α)2.

Case 1. Equation (26) have two positive solutions, i.e. D > 0,

α4 − 6 · α2 + 1 > 0.
(27)

After solving the inequalities, we find that

α ∈ (0; 2−
√

3) ∪ (2 +
√

3;∞),

the equation (26) has two positive solutions

z
(1,2)
1 =

α4 − 6 · α2 + 1±
√
α8 − 16 · α6 + 30 · α4 − 16 · α2 + 1

2 · α · (α2 + 1)
,

Inserting these solutions into system (9), we obtain two corresponding solutions

z
(1,2)
2 =

(
3α4 − 4α2 + 1±

√
α8 − 16α6 + 30α4 − 16α2 + 1

α(α4 − 4α2 + 3±
√
α8 − 16α6 + 30α4 − 16α2 + 1)

)3

.
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It is clear that solutions z(1,2)1 and z(1,2)2 are positive.
Case 2. Equation (26) has a unique positive solution, i.e.

D = 0,

α4 − 6 · α2 + 1 > 0.

(28)

The equation D = 0 yields that α1,2 = ±1, α3,4 = 2±
√

3 and α5,6 = −2±
√

3. Since α ∈ (0, 1) ∪ (1, +∞), we
consider the cases α3,4 = 2±

√
3. According to the inequality in (28), it is sufficient to consider the case α3,4 = 2±

√
3.

If α3,4 = 2±
√

3 then we get the translation-invariant solution (z1, z2) = (1, 1).
Case 3. Let us assume that (26) does not have any positive solution, i.e.

D < 0, (29)

or 
D ≥ 0,

α4 − 6 · α2 + 1 ≤ 0.

(30)

It means that if α ∈ (2−
√

3; 1) ∪ (1; 2 +
√

3), then the equation (26) does not have any positive solution.

Appendix 2
The proof of Lemma 4.1 is found using this basic idea using the following algebraic substitutions.
Proof Solving system (12) reduces to analyzing the following equation

z2 =


(
z2+α
α·z2+1

)2
+ α

α ·
(
z2+α
α·z2+1

)2
+ 1


3

. (31)

Simplifying the last equation, we receive

(z2 − 1) · (α+ 1)3 · (α3 · z62 − (α6 − 3 · α5 + 6 · α4 − 14 · α3 + 6 · α2 − 3 · α+ 1) · z52−

−(α6 + 3 · α5 − 9 · α4 − 5 · α3 − 9 · α2 + 3 · α+ 1) · z42−

−(α6 + 6 · α5 − 15 · α4 − 4 · α3 − 15 · α2 + 6 · α+ 1) · z32−

−(α6 + 3 · α5 − 9 · α4 − 5 · α3 − 9 · α2 + 3 · α+ 1) · z22−

−(α6 − 3 · α5 + 6 · α4 − 14 · α3 + 6 · α2 − 3 · α+ 1) · z2 + α3) = 0.

(32)

It follows that z(0)2 = 1 or

α3 · z62 − (α6 − 3 · α5 + 6 · α4 − 14 · α3 + 6 · α2 − 3 · α+ 1) · z52−

−(α6 + 3 · α5 − 9 · α4 − 5 · α3 − 9 · α2 + 3 · α+ 1) · z42−

−(α6 + 6 · α5 − 15 · α4 − 4 · α3 − 15 · α2 + 6 · α+ 1) · z32−

−(α6 + 3 · α5 − 9 · α4 − 5 · α3 − 9 · α2 + 3 · α+ 1) · z22−

−(α6 − 3 · α5 + 6 · α4 − 14 · α3 + 6 · α2 − 3 · α+ 1) · z2 + α3 = 0.

(33)

Due to (12), each positive solution z2 defines a positive solution z1. Thus, it is sufficient to consider positive solution of

(33). We make a substitution ξ = z2 +
1

z2
and form the following equation

α3 · ξ3 + (−α6 + 3 · α5 − 6 · α4 + 14 · α3 − 6 · α2 + 3 · α− 1) · ξ2+

+(−α6 − 3 · α5 + 9 · α4 + 2 · α3 + 9 · α2 − 3 · α+ 1) · ξ+

+(α2 + 1) · (α4 − 12 · α3 + 26 · α2 − 12 · α+ 1) = 0.
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In the last cubic equation, D < 0, we know that when D < 0, the cubic equation has one real root. Let us find this real
root. In order to simplify this solution, we make the following substitution

t = (8 · α18 − 72 · α17 + 360 · α15 − 1380 · α15 + 4320 · α14−

−11016 · α13 + 22944 · α12 − 39132 · α11 + 54288 · α10−

−60712 · α9 + 54504 · α8 − 39564 · α7 + 23952 · α6 − 11448 · α5+

+12 · (−15 · α24 + 252 · α23 − 2088 · α22 + 11568 · α21 − 48798 · α20+

+167328 · α19 − 480252 · α18 + 1165176 · α17 − 2395593 · α16+

+4179936 · α15 − 62049242 · α14 + 7861968 · α13 − 8527860 · α12+

+7931520 · α11 − 6324768 · α10 + 4318848 · α9 − 2521269 · α8+

+1254636 · α7 − 527532 · α6 + 187272 · α5 − 54954 · α4 + 13080 · α3−

−2412 · α2 + 288 · α− 15)
1
2 + 4536 · α4 − 1452 · α3 + 360 · α2 − 72 · α+ 8)

1
3 .

The result is the following expression:

ξ = (t+ 4 · α3 · (α12 − 6 · α11 + 21 · α10 − 61 · α9 + 141 · α8 − 237 · α7+

+282 · α6 − 237 · α5 + 141 · α4 − 67 · α3 + 21 · α2 − 6 · α+ 1))/

(6 · α6 · t+ 2 · (α6 − 3 · α5 + 6 · α4 − 14 · α3 + 6 · α2 − 3 · α+ 1)).

By the substitution, we take

z2 +
1

z2
= (t+ 4 · α3 · (α12 − 6 · α11 + 21 · α10 − 61 · α9 + 141 · α8 − 237 · α7+

+282 · α6 − 237 · α5 + 141 · α4 − 67 · α3 + 21 · α2 − 6 · α+ 1))/

(6 · α6 · t+ 2 · (α6 − 3 · α5 + 6 · α4 − 14 · α3 + 6 · α2 − 3 · α+ 1)).

The last one yields that

z22 + ((−4 · α15 + 24 · α14 − 84 · α13 + 244 · α12 − 564 · α11+

+948 · α10 − 1128 · α9 + 948 · α8 − 564 · α7 + 268 · α6−

−84 · α5 + 24 · α4 − 4 · α3 − t)/(2 · α6 − 6 · α5 + 12 · α4 − 28 · α3+

+6 · α2 · t+ 12 · α2 − 6 · α+ 2)) · z2 + 1 = 0.

We find the discriminant of the last quadratic equation

D = ((−4 · α15 + 24 · α14 − 84 · α13 + 244 · α12−

−564 · α11 + 948 · α10 − 1128 · α9 + 948 · α8−

−564 · α7 + 268 · α6 − 84 · α5 + 24 · α4 − 4 · α3−

−t)/(2 · α6 − 6 · α5 + 12 · α4 − 28 · α3 + 6 · α2 · t+

+12 · α2 − 6 · α+ 2))2 − 4.

We introduce the notation

p = (−4 · α15 + 24 · α14 − 84 · α13 + 244 · α12 − 564 · α11+

+948 · α10 − 1128 · α9 + 948 · α8 − 564 · α7 + 268 · α6−

−84 · α5 + 24 · α4 − 4 · α3 − t)/(2 · α6 − 6 · α5 + 12 · α4 − 28 · α3+

+6 · α2 · t+ 12 · α2 − 6 · α+ 2).

As a result
z22 + p · z2 + 1 = 0. (34)

The discriminant of (34) is as follows:
D = p2 − 4.
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Case 1. Let (34) have two positive solutions, i.e.  D > 0,

p < 0.
(35)

Case 2. Let (34) have a unique positive solution, i.e.
D = 0,

p < 0.

(36)

Case 3. Assume that (34) does not have any positive solution, i.e.

D < 0, (37)

or 
D ≥ 0,

p ≥ 0.

(38)
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