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ABSTRACT The effect of electron-phonon interaction on the first excited state of a three-dimensional polar semi-
conductor quantum dot with Gaussian confinement is studied using the second-order Rayleigh-Schrödinger
perturbation theory. An analytical expression for the first excited state polaronic correction is obtained under a
plausible approximation. It is shown that this energy depends both on the strength and range of the Gaussian
potential. Finally our theory is applied to a GaAs quantum dot and it is shown that the polaronic effect to the first
excited level can be significantly large if the size of the dot is small. Since the information of the excited states
is important for the study of decoherence phenomena, our results could be useful for quantum information
processing.
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1. Introduction

The subject of quantum dot (QD) has been extensively studied both theoretically [1–3] and experimentally [4,5] over
the last four decades and a wealth of data on the electronic, thermodynamics optical and magnetic properties of QDs have
piled up in the literature. One of the essential information that is required to carry out a theoretical investigation for the
electronic and several other properties of a QD is the nature of the potential that is responsible for the confinement of the
electrons in the QD. Several initial investigations have considered the confinement potential as a square well. According
to this potential, the force experienced by the particles inside a QD is zero which is of course not true. Thus, the square-
well potential is an over-simplified approximation of a realistic QD. Later, it has been shown based on the generalized
Kohn theorem and the magneto-optical experiments that the confinement potential in a QD is essentially harmonic in
character [6, 7]. This triggered a large number of theoretical studies in this area [8–10] as the parabolic potential can be
handled much more easily. Some relatively recent experimental observations have advocated that the QD confinement
potential does not truly conform to the parabolic form but in reality has an anharmonic character. Motivated by these new
observations, Adamowsky and collaborators [11] have considered an attractive Gaussian potential as a model for the QD
confinement potential to investigate certain properties of a QD. It turns out that a Gaussian potential is a much better model
for quantum confinement in a QD than the parabolic potential or the square-well potential. The Gaussian potential mimics
the behaviour of a harmonic potential near the minimum and therefore it does satisfy the generalized Kohn’s theorem for
low-lying states [6]. Because of its finite depth, the Gaussian potential can take care of realistic phenomena like ionization
and tunneling processes which are not possible with a parabolic potential. Also, since this potential is smooth at the dot
boundary, it is mathematically more convenient to handle [12, 13]. Another advantage of the Gaussian potential over the
power law anharmonic potentials is that the latter can lead to divergences at larger distances.

Since in polar semiconductor QDs, the scale of the electron-longitudinal-optical (LO)-phonon interaction energy is of
the same order as that of the confinement energy and the repulsive Coulomb energy, the electron-LO-phonon interaction
is expected to influence the electronic properties equally as the other potentials do [1–3, 8–10, 13]. Indeed, the electron-
phonon interaction has been shown to produce pronounced effects on the various properties of a polar Semiconductor QD.
Most studies in this context have been essentially confined to the ground state (GS) [12, 13] and the investigations on the
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excited states [14] have been only few and far between. Also the research studies have been mostly limited to square well
and parabolic confining potentials [7–9, 15].

Chatterjee and collaborators [13] have carried out extensive studies on the GS polaronic properties of a Gaussian QD
(GQD) using several approximate methods. The purpose of the present paper is to explore the nature of the polaronic
correction to the first excited state (ES) of a one-electron GQD. Since the contribution of the electron-phonon interaction
to the polaronic correction according to the first-order Rayleigh-Schrodinger perturbation theory (RSPT) vanishes, we
will use the second-order RSPT in this work to obtain the lowest-order polaronic effect [14–18]. The knowledge of the
excited states would be important for the study of optical properties of a QD system. We will formulate our theory for a
general N-dimensional (ND) QD and finally get results for a 3D QD.

2. Main results

Let us consider a system of an electron that moves in an ND GQD and interacts with its LO phonons of dispersionless
frequency ω0. The system under consideration can be modeled by the modified Frohlich Hamiltonian in the Feynman
dimensionless units as [8, 19]

H =
p2

2
− Voe−

r2

2R2 +
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q

b†qbq +
∑
q

(
ξq e

−iq.r b†q + h.c.
)
, (1)

where all the vectors are N dimensional, r (p) is the electron position (momentum) operator, Vo (R) is the depth (range)
of the Gaussian confinement potential, b†q (bq) is the creation (annihilation) operator the LO phonons of wave vector q
and energy ~ωo and ξq is the electron-phonon interaction coefficient which is given by [1, 5, 8]
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where α is the dimensionless electron-phonon coupling constant which depends on the material parameters and vN is the
dimensionless volume of the N -dimensional QD. In 3D,

∣∣ξ−→q ∣∣2 is given by the usual expression:∣∣ξ−→q ∣∣2 =
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We assume that at least for low-lying states, it is possible to write the Gaussian potential as a sum of a harmonic potential
and a small perturbative potential [20, 22]. So we rewrite Eq. (1) as
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where we have added and subtracted a parabolic potential and introduced a parameter λ. For λ = 0, the confinement
potential becomes parabolic while for λ = 1, Eq. (4) describes a Gaussian confinement potential. We choose: ω̃h =√
Vo/R so that the lowest-order perturbative term for the confinement potential becomes quartic in (r/R) . Let us now

write the Hamiltonian (4) as
H = H0 +H1 +H2, (5)

where
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where H0 is exactly soluble, the harmonic oscillator part having the GS wave function φND0 (r) and H1 and H2 can be
treated as perturbations. We approximate the λ-term by its average w.r.t. φND0 (r). Thus, we write:
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Substituting Eq. (9) in (5), we have an effective parabolic QD problem given by the effective Hamiltonian:
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where
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We shall considerHeff
o as an unperturbed Hamiltonian andH2 as the perturbation. The eigenstate ofHeff

o can be written
as
∣∣φNDj 〉⊗

|n〉, where
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∑
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nq = n. As we have already mentioned, the lowest-order perturba-

tive contribution from the electron-phonon interaction H2 comes from the second-order RSPT. We are here interested in
calculating the polaronic correction to the first ES energy of Heff

o due to H2 [3, 13].
The second-order RSPT correction of the electron-phonon interaction H2 to the first ES energy of Heff

o is given by
the expression [14, 15]:
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we obtain

∆END
1 = − α

8
√
ωh

Γ ((N− 1)/2)

Γ (N/2 + 1)
×
[
(2N − 1)B

(
1

ωh
,

1

2

)
+B

(
(

1

ωh
− 1),

1

2

)]
, (20)

B(x, y) being the beta function. Finally, in terms of simpler functions, the first ES polaron energy is given in second-order
RSPT as

END1,per =
N + 2

2
ωh −

α
√
π

2l

Γ
(
N−1
2

)
Γ
(
N
2

) Γ
(

1
ωh

+ 1
)

Γ
(

1
ωh

+ 1
2

) × (1 +
ωh

4N (1− ωh)

)
. (21)

which can be calculated numerically to give the first ES energy of a GQD with polaronic interaction. One may note that
the present approximation leads to a divergent result in 2D and therefore it cannot be applied to a 2D QD. This however
is not a matter of concern here since we are interested in a 3D QD in this work, as mentioned earlier. For the sake of
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completeness, we would like to mention that a slightly different approximation can be made to obtain results for a 2D
GQD. For example, Eq. (9) can alternatively be approximated as
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One can easily see that the approximation made in Eq. (9) is supposed to give better results in all dimensions except
in 2D. Therefore, we use Eq. (21) in this work, as we are interested here in a 3D GQD.

We are interested in applying our theory to a realistic material. Since GaAs QD is a useful QD for technological
applications, we apply in this work our theory to a GaAs QD with Gaussian confinement. For GaAs, we have considered
m = 0.066 m0, α = 0.068 and ~ω0 = 36.7 meV [3,21]. Fig. 1. shows the behaviour of the ES polaronic correction−4E
(in meV) with respect to the effective QD size R (in nm) for GQD of GaAs for different strengths of the confinement
potential (V0) [22]. One may note that in the effective parabolic problem, the energy of the first excited state electron
plus the zero phonon energy is degenerate with the electron GS energy plus the one LO-phonon energy. Because of this
degeneracy, an electron in the first ES of the effective QD problem is unstable to the emission of an LO phonon. This
instability is expected to show up in the first ES polaronic correction in the form of a singularity. Indeed, the singularity
structure is clearly visible in Fig. 1. For different potential strengths V0, the singularity in the ES polaronic correction
occurs at different values of the range R. As V0 increases, the value of R at which the singularity appears also increases.
Thus, the singularity point can be tuned by tuning the potential. In general (except around the singularity), the polaronic
correction increases as the QD size decreases. The figure also shows that, as the confinement length is sufficiently
reduced, the polaronic correction may become substantially large. For large values of R, the electron- phonon interaction
corrections appear to be independent of R, as one would naturally expect in the case of bulk material. Therefore, we may
conclude that the effect of electron- phonon interaction on the first ES of a GQD is really important when the size of the
size of the GQD is small.

FIG. 1. Polaronic correction ∆E (in meV) to the first ES energy of an electron in GQD of GaAs with
respect to R (in nm)

3. Conclusion

In conclusion, we have studied the effect of electron-LO-phonon interaction on the first ES energy level of an electron
in a 3D GQD using second order RSPT. We have obtained an analytical expression for the first ES polaronic energy under
a plausible approximation. Since we are interested in a realistic material, we have applied our results to a GaAs polar
semiconductor QD. We have shown how the polaronic correction to the first ES energy of an electron in a GQD of GaAs
behaves as a function of the effective confinement length for two values of the potential strengths. The energy curves
show the singularity behaviour that corresponds to the instability of the first ES electron to the emission of an LO phonon.
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Our results show that the polaronic effect to the electron in the ES of a GaAs GQD can be significantly large if the size
of the QD is small. Since the information of the energies and wave functions of the excited state is important for the
study of decoherence phenomena particularly the decoherence time, our results could be useful for quantum information
processing.
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