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ABSTRACT We study the photon statistics of a single-mode sub-Poissonian light propagating in the lossy ther-
mal bosonic channel with fluctuating transmittance which can be regarded as a temperature-dependent model
of the turbulent atmosphere. By assuming that the variance of the transmittance can be expressed in terms of
the fluctuation strength parameter we show that the photon statistics of the light remains sub-Poissonian pro-
vided the averaged transmittance exceeds its critical value. The critical transmittance is analytically computed
as a function of the input states’ parameters, temperature, and the fluctuation strength. The results are applied
to study special cases of the one-mode squeezed states and the odd optical Shrödinger cats.
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1. Introduction

The nonclassical properties of optical fields lie at the heart of quantum optics and, from its very beginning, they have
been the subject of numerous intense studies. There are a number of indicators introduced to measure the quantumness
(nonclassicality) of light such as negativity of the Wigner function [1], squeezing [2, 3] and sub-Poissonian statistics [4]
(see also a recent review on quantumness quantifiers based on Husimi quasiprobability [5]).

Note that, for the squeezing and the sub-Poissonian statistics, the indicators are formulated in terms of second-order
moments of fluctuations of the experimentally measured quantities. For nonclassical fields, these moments violate certain
inequalities. For example, the sub-Poissonian light is indicated when the Fano factor, defined as the ratio of the photon
number variance and the mean photon number, is less than unity.

Aside from its fundamental importance, light nonclassicality plays a vital role in quantum metrology [6]. For sub-
Poissonian fields that will be our primary concern, there are various experimental techniques used to generate sub-
Poissonian light [7–11] and their applications in quantum imaging are reviewed in [12] (higher-order sub-Poissonian
statistics is discussed in [13, 14]). Security analysis of BB84 protocol with sub-Poissonian light sources was performed
in [15]. Influence of temporal filtering of sub-Poissonian single-photon pulses on the expected secret key fraction, the
quantum bit error ratio, and the tolerable channel losses is analyzed in [16].

It is well known that continuous variable quantum states of non-classical light used in quantum metrology and quan-
tum communication protocols [17, 18] are subject to loss and added noise, leading to degradation of non-classicality and
quantum correlations.

For free-space communication links [19–22], a widely used general theoretical approach to modeling environment-
induced decoherence effects is based on Gaussian quantum channels with fluctuating parameters. Specifically, a pure-
loss channel with fluctuating transmittance exemplifies a popular model that describes the propagation of quantum light
in a turbulent atmosphere (see a review on propagation of classical electromagnetic waves through a turbulent atmo-
sphere [23]).

This model has been extensively used to study nonclassical properties and quantum correlations of light propagating
in turbulent atmospheres [24–27]. In Ref. [28], Bell inequalities in turbulent atmospheric channels are explored using
the probability distribution of transmittance (PDT) in the elliptic-beam approximation with parameters suitable for the
weak to moderate-turbulence channels [29]. Gaussian entanglement in turbulent atmosphere and a protocol that enables
entanglement transfer over arbitrary distances [30, 31]. The evolution of higher-order non-classicality and entanglement
criteria in atmospheric fluctuating-loss channels are investigated in [32]. Theory of the classical effects associated with
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geometrical features of light propagation, such as beam wandering, widening, and deflection, is developed in [33, 34]. In
Ref. [35], the PDT derived by numerical simulations is compared with the analytical results.

In this paper, we adapt a generalized model of the channel and use the thermal-loss channel with fluctuating trans-
mittance to examine how the temperature effects combined with the fluctuating losses influence the sub-Poissonian light.

The paper is structured as follows. In Sec. 2 we describe a thermal-loss channel and the parameters expressed in
terms of the first-order and second-order moments of the photon number used to identify sub-Poissonian light fields. In
particular, we deduce the input-output relation for the q-parameter introduced as an unnormalized version of the Mandel
Q-parameter. In Sec. 3 this relation is generalized to the case of the thermal-loss channel with fluctuating transmittance.
After parameterization of the transmittance variance, it is shown that the output light will be sub-Poissonian only if the
average transmittance exceeds its critical value. In Sec. 4 we apply the theoretical results to the special cases of squeezed
states, odd optical cats and Fock states and study how the critical transmittance depends on the temperature and the
strength of transmittance fluctuations. Finally, concluding remarks are given in Sec. 5.

2. Channel and moments

We consider a single-mode quantized light with the annihilation and creation operators, â and â†, propagating through
a quantum Gaussian channel. The simplest and widely used method to describe the channel is to introduce an additional
bosonic mode representing the degree of freedom of the environment and assume that the interaction between the light
and noise modes is determined by the channel unitary Ûτ giving the beam splitter transformation of the form:

Û†τ âÛτ ≡ âτ =
√
τ â+

√
1− τ b̂, (1)

where τ is the channel transmittance and b̂ is the annihilation operator of the noise mode.
For the temperature loss channel, the input state of the bipartite system is the product of the density matrices given

by

ρ̂ = ρ̂in ⊗ ρ̂th, (2)

where ρ̂in is the density matrix of radiation

ρ̂in = |ψin〉〈ψin| (3)

prepared in the pure state |ψin〉, whereas the environment is in the thermal state

ρth =
1

nth + 1

∞∑
n=0

e−nβ~ω|n〉〈n|, nth = Tr{b̂†b̂ρ̂th} =
1

eβ~ω − 1
. (4)

where β = 1/(kBT ) is the inverse temperature parameter (kB is the Boltzmann constant and T is the temperature), ~ is
the Planck constant, ω is the photon frequency, nth is the average number of thermal photons (the mean thermal photon
number).

Temporal evolution of the density matrix (2) is governed by the channel unitary (1) as follows

ρ̂(τ) = Ûτ ρ̂Û
†
τ . (5)

We can now use Eqs. (1) and (5) to obtain the normally ordered characteristic function of the light as a function of the
channel transmittance

χ(α, τ) = Tr{: D̂(α) : ρ̂(τ)} = χin(
√
τα)χth(

√
1− τα), (6)

where : D̂(α) :=: exp(αâ† − α∗â) := exp(αâ†) exp(−α∗â) is the normally ordered displacement operator; χin and χth

are the input and thermal characteristic functions given by

χin(α) = Tr{: D̂(α) : ρ̂in}, χth(α) = Tr{: D̂(α) : ρ̂th} = exp(−nth|α|2). (7)

Note that the form of this result reproduces the characteristic function derived by solving the thermal single-mode Lindblad
equation (see, e.g., [36]) so that the beam splitter transformation representation (1) and the approach based on the Lindblad
dynamics appear to be equivalent tools for modeling the temperature loss quantum channel.

Given the transmittance τ , it is not difficult to find the average photon number of the output state nτ :

nτ = Tr{n̂ρ̂(τ)} = Tr{n̂τ ρ̂} ≡ 〈n̂τ 〉 = τnin + (1− τ)nth, (8)

nin = Tr{n̂ρ̂in} = 〈ψin|n̂|ψin〉, (9)

where n̂ = â†â and n̂τ = â†τ âτ .
Since n̂2 − n̂ = â†â†ââ ≡: n̂2 :, the difference between the variance and the mean photon number for the quantum

state ρ̂(τ) can be computed as the q-parameter given by

qτ = Tr{: n̂2 : ρ̂(τ)} − n2τ . (10)

Clearly, for ρ̂(τ), the photon statistics is sub-Poissonian if and only if the parameter (10) is negative. Note that the ratio
qτ/nτ gives the well-known Mandel Q-parameter [37], Q(M)

τ , introduced in Refs. [38, 39]. Note that the Q-parameter
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is also related to the normalized second-order correlation function g(2)τ (0) = Q(M)
τ /nτ + 1 and the Fano factor Fτ =

Q(M)
τ + 1.

We can now use the relation

〈: n̂2τ :〉 = τ2〈: n̂2 :〉+ 2(1− τ)2n2th + 4τ(1− τ)ninnth (11)

derived with the help of the identity 〈b̂†b̂†b̂b̂〉 = 2n2th to deduce the explicit expression for the parameter (10)

qτ = 〈: n̂2τ :〉 − n2τ = τ2qin + (1− τ)2n2th + 2τ(1− τ)ninnth, (12)

where

qin = Tr{: n̂2 : ρ̂in} − n2in = 〈: n̂2 :〉 − n2in. (13)

In the zero-temperature limit with nth = 0, formula (12) shows that losses cannot destroy the sub-Poissoinian statistics of
input light. The latter is generally no longer the case at non-zero temperatures. In the subsequent section, we will discuss
the conditions for negativity of the parameter qτ .

3. Fluctuating losses and critical transmittance

Now we extend the results of the preceding section to the case where the transmittance fluctuates and thus should be
treated as a random variable. In this case, the output density matrix takes the generalized form:

ρ̂out =

1∫
0

P (τ)ρ̂(τ)dτ, (14)

where P (τ) is the probability density function (PDF) of the transmittance. We can use Eqs. (8) and (5) with ρ̂(τ) replaced
by ρ̂out to introduce the output parameter qout as follows

qout = Tr{: n̂2 : ρ̂out} − Tr{n̂ρ̂out}2 = 〈〈: n̂2τ :〉〉τ − 〈nτ 〉2τ = 〈qτ 〉τ + [〈n2τ 〉τ − 〈nτ 〉2τ ], (15)

where 〈· · ·〉τ =

1∫
0

· · ·P (τ)dτ . After substituting formulas (8) and (10) into Eq. (15), we obtain the parameter qout in the

following explicit form:

qout = τ2(qin − n2in) + (τnin + (1− τ)nth)2+
Var(τ){qin − n2in + 2(nin − nth)2)}, (16)

where τ = 〈τ〉τ is the averaged transmittance and Var(τ) = 〈τ2〉τ − τ2 is the variance of the transmittance.
Since the transmittance varies from zero to unity, 0 ≤ τ ≤ 1, and the variance Var(τ) cannot be negative, Var(τ) ≥ 0,

the mean of the squared transmittance cannot exceed the average transmittance and must satisfy the condition: τ2 ≤
〈τ2〉τ ≤ τ . As a result, the variance is bounded from above by the product (1 − τ)τ : 0 ≤ Var(τ) ≤ (1 − τ)τ . In our
model, we assume that 〈τ2〉τ = Fτ + (1− F )τ2, so that the variance takes the following form

Var(τ) = 〈τ2〉 − τ2 = F (1− τ)τ (17)

where 0 ≤ F ≤ 1 is the parameter characterizing the strength of fluctuations.
In what follows, we shall treat the fluctuation strength F as a phenomenological parameter which is independent of

τ . The variance representation (17) can now be used to express the q-parameter (16) in terms of τ as follows

qout(τ) = τ2(qin − a) + τ(a− n2th) + n2th, (18)

where

a = 2ninnth − n2th + gF, g = qin − n2in + 2(nin − nth)2. (19)

In the limiting case of transparent medium described by the identity channel with τ = 1, the q-parameter is equal to
its initial value qin given by Eq. (13). For sub-Poissonian light, the parameter qin is negative, so that qout(1) = qin < 0.
In the opposite case with vanishing transmittance, τ = 1, from Eq. (18), the q-parameter is positive, qout(0) = n2th > 0.
Clearly, this implies that the transmitted light will remain sub-Poissonian provided the average transmittance exceeds its
critical value: τ > τc.

From Eq. (18), it is not difficult to find the analytical expression for the critical transmittance (the transmittance
threshold). So, we deduce the inequality

τ > τc = −
(a− n2th) +

√
(a+ n2th)

2 − 4n2thqin
2(qin − a)

(20)

giving the condition that effects of transmittance fluctuations and temperature fail to destroy the sub-Poissonian statistics
of light and the q-parameter of the transmitted (output) light is negative, qout < 0.
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We conclude this section with the remark on two important special cases with T = 0 and F = 0, respectively. In the
zero-temperature limit, the expression of the transmittance threshold is simplified as follows

τc|T=0 =
F (qin + n2in)

F (qin + n2in)− qin
, (21)

whereas the critical transmittance for the case, where fluctuations of the transmittance are negligible, is given by

τc|F=0 =
nth

nth +
√
n2in − qin − nin

. (22)

Clearly, when F and T are both vanishing, the critical transmittance is zero. This is the well-known case of non-fluctuating
pure-loss bosonic channel where qout = τ2qin (see Eq. (12) with nth = 0).

(A) F = 0.0 (B) F = 0.1

(C) F = 0.5 (D) F = 0.7

FIG. 1. Dependence of the critical transmittance τc on the square of the displacement amplitude, |β|2,
for the squeezed state (23) computed at different values of the fluctuation strength parameter F for
r = 0.4 and φ = π/2
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4. Effects of fluctuations and temperature

In this section, we apply our analytical results to the two special cases of input states: the displaced squeezed states
and the odd Schrödinger cat states. More specifically, we shall study how the temperature and transmittance fluctuations
influence the transmittance threshold for these states.

4.1. Squeezed light

The density matrix

ρ̂in = |ψsq〉〈ψsq|, |ψsq〉 = D̂(β)Ŝ(ξ)|0〉 (23)

describes the case of displaced squeezed vacuum states expressed using the squeezing operator, Ŝ(ξ), and the displacement
operator, D̂(β), given by

Ŝ(ξ) = e(ξ(â
†)2−ξ∗â2)/2, D̂(β) = eβâ

†−β∗â, (24)

ξ = reiψ is the squeezing parameter and β = |β|eiθ is the displacement. For the squeezed state (23), it is rather
straightforward to derive the expressions for the parameters nin = nsq and qin = qsq that enter the expression for the
critical transmittance (20):

nsq = |β|2 + sinh2 r, qsq = q2|β|2 + sinh2 r cosh 2r, (25)

where q2 = 2 sinh2 r + sinh 2r cos(2φ) and φ = θ − ψ/2.
From formula (25), the case where the photon statistics of the squeezed light is sub-Poissonian with negative param-

eter qsq may occur only when the coefficient q2 is negative. The latter requires the angle φ and the squeezing parameter r
to meet the inequality

| tanφ| > er, (26)

so that the squeezed light will be sub-Poissonian only when the squared displacement amplitude is above its critical value:

|β|2 > er sinh r cosh 2r

2(sin2 φ− e2r cos2 φ)
≡ β2

c . (27)

Clearly, when cosφ = 0, the condition (26) is always fulfilled and βc takes the minimal value that grows with r.
In Figs. 1 and 2, the threshold transmittance is plotted against the squared displacement amplitude, |β|2, at φ = π/2.

The numerical results for τc are evaluated using Eq. (20) with formula (25) giving the mean photon number nin and the
q-parameter qin.

At |β| = βc, the q-parameter vanishes, and thus the threshold transmittance equals unity. So, in the close vicinity of
βc, the transmittance τc drops as |β|2 increases.

From Eq. (22), it is not difficult to show that, when fluctuations are negligible, τc monotonically decreases with |β|2
approaching the value nth/(nth− q2/2) (see Fig. 1a). By contrast, from the relation (21) describing the zero-temperature
case, in the large displacement limit, the critical transmittance approaches unity. As a result, the |β|2-dependence of
τc reveals nonmonotonic behaviour illustrated in Fig. 2a. It can also be seen that such behaviour where the critical
transmittance exhibits a local minimum occurs at non-vanishing temperatures provided F 6= 0.

Normally, it is expected that the threshold will get higher at elevated temperatures. This is the case for the curves
shown in Figs. 1a–1c.

Interestingly, in the case of intense fluctuations with sufficiently high values of fluctuation strength, the latter is
no longer the case. From Figure 1 which shows the τc-vs-|β|2 curves computed at F = 0.7, it is seen that the long
displacement part of the zero-temperature curve appears to be above the curves with non-zero nth.

Similarly, the threshold is expected to increase with the fluctuation strength F . It is not difficult to show that the
threshold τc grows with F only if the coefficient g given by Eq. (19) is positive. According to formula (19), this coefficient
quadratically depends on nth and it takes negative values within the interval:

n− < nth < n+, n± = nin ±
√
n2in − qin

2
. (28)

So, in the low temperature region where nth < n− the critical transmittance is an increasing function of the fluctuation
strength. The curves presented in Figs. 2a–2b provide support to this conclusion.

For the cases of elevated temperatures illustrated in Figs. 2c–2d, the short displacement part of the curves where nth
meets the condition (28) is arranged differently. In this part, the curve with negligibly small fluctuations determines the
largest value of τc. Note that all the curves shown in Figs. 2c–2d intersect at the point where the coefficient g vanishes
with nth = n−.
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(A) nth = 0.0 (B) nth = 0.1

(C) nth = 0.3 (D) nth = 0.5

FIG. 2. Dependence of the critical transmittance τc on the square of the displacement amplitude, |β|2,
for the squeezed state (23) with r = 0.4 and φ = π/2 computed at different values of the mean thermal
photon number nth

4.2. Odd optical cats

Similar to the case of squeezed states, formulas

ρ̂in = |ψcat〉〈ψcat|, |ψcat〉 =
1√

2(1− e−2|β|2)
(|β〉 − |−β〉), (29)

ncat = |β̃|2 cosh |β|2, qcat = −|β̃|4, (30)

where |β̃|2 =
|β|2

sinh |β|2
, present the analytical results needed to evaluate the critical transmittance for the odd (antisym-

metric) cat states, |ψcat〉.
In Fig. 3 we show how the fluctuation strength affects the |β|2-dependencies of the critical transmittance at different

temperatures. From Eq. (22), in the weak fluctuation limit with F = 0 (see Fig. 3a), the starting value of τc is nth/(nth +√
2−1) and it monotonically increases approaching unity. By contrast to the case of the squeezed states, for the odd optical

cats, all the curves shown in Figs. 3 and 4 reveal similar behaviour. Similar to the squeezed states, it turned out that, at
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(A) F = 0.0 (B) F = 0.3

(C) F = 0.7 (D) F = 0.8

FIG. 3. Dependence of the critical transmittance τc on the square of the displacement amplitude, |β|2,
for the odd cat state (29) computed at different values of the fluctuation strength parameter F

sufficiently strong fluctuations (sufficiently large fluctuation strength F ) and sufficiently large |β|2, the zero-temperature
curve gives the largest value of τc.

Figure 4 presents the graphs illustrating the temperature induced effects. Since, in the limiting case of a single photon
state with β = 0, the mean photon number ncat is unity and qcat = −1, all the zero-temperature curves described by
Eq. (21) start from zero (see Fig. 4a). As is depicted in Figs. 4b and 4c, at non-vanishing temperatures and sufficiently
small |β|, the values of τc are dominated by the zero-fluctuation curve with F = 0 (for the single photon state, the zero-
fluctuation value of τc is nth/(nth +

√
2 − 1)). Referring to Fig. 4d, in the high temperature region with nth ≥ 0.9, the

latter holds for all values of |β|.
Since in the zero amplitude limit with β = 0, the odd state (29) becomes the single-photon state |1〉, it is instructive to

briefly discuss the case of the Fock states |n〉. For such states, we have min = −n and nin = n. So, at low temperatures
with nth < n− = n−

√
n(n+ 1)/2, an increase in F will enhance the threshold. Interestingly, in the special case with

n = 1, we have n− = 0. As a result, all the curves in Fig. 4a start from the zero and, in Figs. 4b–4d, the thresholds at
β = 0 are below the zero-fluctuation value of τc: nth/(nth +

√
2− 1).
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(A) nth = 0.0 (B) nth = 0.1

(C) nth = 0.5 (D) nth = 0.9

FIG. 4. Dependence of the critical transmittance τc on the square of the displacement amplitude, |β|2,
for the odd cat state (see Eq. (29)) computed at different values of the mean thermal photon number nth

5. Conclusions

In this paper, we have studied effects of the thermal-loss channel with fluctuating transmittance on the sub-Poissonian
light whose non-classicality is characterized by the q-parameter (see Eq. (10)). We have combined the input-output rela-
tion for the q-parameter (16) with the variance of the transmittance parameterized using the fluctuation strength param-
eter (17) to show that the condition for sub-Poissonian statistics of photon at the channel output is determined by the
critical transmittance (20). For the cases of the displaced squeezed state (see Eq. (23)) and the odd optical cat state (see
Eq. (29)), the critical transmittance is computed as a function of the squared displacement amplitude, |β|2, at different
values of temperature and the fluctuation parameter. In contrast to what is expected, under certain conditions, an increase
in either the fluctuation strength or the temperature may result in a decrease in the critical transmittance.

Note that the key point greatly simplifying our analysis is the parameterization of the transmittance variance (17),
where the fluctuation strength F is introduced as a phenomenological parameter which is independent of the mean trans-
mittance τ . A more sophisticated treatment of the atmospheric channels [29, 33, 35] requires computing the first-order
and second-order moments of the transmittance, 〈τ〉 = τ2 and 〈τ2〉 = τ2, from the correlation functions derived using
the phase approximation of the Huygens-Kirchhoff method [40, 41].
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