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Non-compact perturbations of the spectrum of multipliers given with functions
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The change in the spectrum of the multipliers H0f(x, y) = xα+yβf(x, y) and H0f(x, y) = xαyβf(x, y) for perturbation with partial integral
operators in the spaces L2[0, 1]

2 is studied. Precise description of the essential spectrum and the existence of simple eigenvalue is received. We
prove that the number of eigenvalues located below the lower edge of the essential spectrum in the model is finite.
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1. Introduction

The first results on the finiteness of the discrete spectrum ofN – particle Hamiltonians withN > 2 were obtained
by Uchiyama in 1969 [1–3]. He found sufficient conditions for the finiteness of the number of discrete eigenvalues for
energy operators in the space L2(R6) for the system of two identically charged particles in the field of a fixed center
with or without an external electromagnetic field. In 1971, Zhislin proved the finiteness of the discrete spectrum for
energy operators in symmetry spaces of negative atomic ions with nuclei of any mass and of molecules with infinitely
heavy nuclei under the assumption that the total charge of the system is less than −1 [4].

Let Ω1 and Ω2 be closed bounded sets in Rν1 and Rν2 , respectively. In the space Lp(Ω1 × Ω2), p ≥ 1 partially
integral operator (PIO) T of the Fredholm type in general is given by the equality [5]:

T = T0 + T1 + T2 +K, (1)

where the operators T0, T1, T2,K have the following view:

T0f(x, y) = k0(x, y)f(x, y), T1f(x, y) =

∫
Ω1

k1(x, s, y)f(s, y)dµ1(s),

T2f(x, y) =

∫
Ω2

k2(x, t, y)f(x, t)dµ2(t), Kf(x, y) =

∫
Ω1

∫
Ω2

k(x, y; s, t)f(s, t)dµ1(s)dµ2(t).

Here, the functions k0, k1, k2, and k are given measurable functions in the concept of Lebesque on Ω1×Ω2, Ω2
1×Ω2,

Ω1 × Ω2
2 and (Ω1 × Ω2)

2, respectively, and integration of functions is understood in the concept of Lebesgue, where
µk(·) – Lebesque measure on Ωk, k = 1, 2.

In the Hilbert space L2(Ω× Ω), where Ω = [a, b]ν , consider the following model operator:

H = H0 − (γT1 + µT2), γ > 0, µ > 0. (2)

Here, the actions of the operators H0, T1 and T2 are determined by formulas:

H0f(x, y) = k0(x, y)f(x, y),

T1f(x, y) =

∫
Ω

ϕ1(x)ϕ1(s)f(s, y)ds, T2f(x, y) =

∫
Ω

ϕ2(y)ϕ2(t)f(x, t)dt,

where k0(x, y) is a nonnegative continuous function on Ω× Ω, ϕj(·) is a continuous function on Ω and∫
Ω

ϕ2
j (t)dt = 1, j = 1, 2.

Via ρ(·), σ(·), σess(·) and σdisc(·) denote, respectively, the resolvent set, spectrum, essential spectrum and discrete
spectrum self-adjoint operators [6].
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In [7], sufficient conditions for finiteness and infinity were obtained in the discrete spectrum for σess(H) =
σ(H0). In work [8] proved the existence of the Efimov effect in model (2) for given k0(x, y). In [9], the essential
spectrum and the number eigenvalues below the lower bound of the essential spectrum in model (2), when the function
k0(x, y) has the form: k0(x, y) = u(x)u(y), where u(x) is a nonnegative continuous function on Ω = Ω1 = Ω2 and∫
Ω

dx

u(x)
<∞. In [10] studied the existence of an infinite number of eigenvalues (the existence of Efimov’s effect) for

a selfadjoint partial integral operators.

2. The lower boundary of the essential spectrum of V

Consider the multiplier:
V0f(x, y) = (xα + yβ)f(x, y), α > 0, β > 0.

Let us define a partially integral operator (PIO) V :

V = V0 − γ(T1 + T2), γ > 0, (3)

where:

T1f(x, y) =

1∫
0

f(s, y)ds, T2f(x, y) =

1∫
0

f(x, t)dt, f ∈ L2[0, 1]2.

In the space L2[0, 1] we define the operators H1 and H2 in Friedrichs models:

H1ϕ(x) = xαϕ(x)− γ
1∫

0

ϕ(s)ds, H2ψ(y) = yβψ(y)− γ
1∫

0

ψ(t)dt.

Lemma 1. [11] The number λ ∈ R\[0, 1] is the eigenvalue of the operator H1 (of the operator H2) if and only if
∆1(λ) = 0 (∆2(λ) = 0), where:

∆1(λ) = 1− γ
1∫

0

ds

sα − λ
, ∆2(λ) = 1− γ

1∫
0

ds

sβ − λ
.

Lemma 2.
A)

lim
λ→0−

∆1(λ) =

 1− γ

1− α
, if 0 < α < 1;

−∞, if α ≥ 1,

B)

lim
λ→0−

∆2(λ) =

 1− γ

1− β
, if 0 < β < 1;

−∞, if β ≥ 1.

Proof. First, we prove the statement A.
a) Let 0 < α < 1. Consider an arbitrary increasing sequence {λn}n∈N of negative numbers approaching to zero,

i.e λn ≤ λn+1 < 0 and lim
n→∞

λn = 0. Then:

0 <
1

sα − λn
≤ 1

sα − λn+1
, n ∈ N

and
1

sα − λn
≤ 1

sα
for almost all s ∈ [0, 1].

The function h0(s) =
1

sα
is integrable by [0, 1] in the concept of Lebesgue and:

1∫
0

h0(s)ds =
1

1− α
.

Hence, due to Lebesgue theorem on limited transition under the sign of the Lebesgue integral it follows that:
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lim
λ→0−

1∫
0

ds

sα − λ
=

1

1− α
.

Thus, we have:

lim
λ→0−

∆1(λ) = 1− γ

1− α
.

b) Let α ≥ 1. Suppose that α = 1. Then:

lim
λ→0−

∆1(λ) = 1− γ lim
λ→0−

1∫
0

ds

s− λ
= 1− γ lim

λ→0−
ln

(
1− 1

−λ

)
= −∞.

If α > 1, then we have:
1

sα − λ
≥ 1

s− λ
, s ∈ [0, 1].

Hence:

lim
λ→0−

1∫
0

ds

sα − λ
≥ lim
λ→0−

1∫
0

ds

s− λ
= +∞,

i.e.
lim
λ→0−

∆1(λ) = −∞.

Proposition 1. I) Let 0 < α < 1 (0 < β < 1). Then:
a) if α + γ ≤ 1 (β + γ ≤ 1), then the operator H1 (operator H2) outside the essential spectrum has the only

eigenvalue of the operator;
b) if α + γ > 1 (β + γ > 1), then the operator H1 (operator H2) outside the essential spectrum has the only

eigenvalue of the operator ξ1 (the eigenvalue value ξ2), while ξk is a simple proper value Hk ξk < 0, k = 1, 2.
II) Let α ≥ 1 (β ≥ 1). Then the operatorH1 (operatorH2) outside the essential spectrum has a unique eigenvalue

ξ1 (eigenvalue ξ2), for this ξk is a simple eigenvalue of the operator Hk and ξk < 0, k = 1, 2.
Proof. It is easy to note that the function ∆1(λ) by (−∞, 0) is strictly decreasing and ∆1(λ) > 0 to (1,∞), thus,

the operator H1 on the set (1,∞) has no eigenvalue.
Let 0 < α < 1. By Lemma 2 and monotonicity, the function ∆1(λ) to (−∞, 0) states a and b, since:

Ran(∆1) =

(
1− γ

1− α
, 1

)
.

Let α ≥ 1. Then from Lemma 2 we obtain: Ran(∆1) = (−∞, 1). Due to monotonicity functions ∆1(λ) (−∞, 0)
equation ∆1(λ) = 0 (−∞, 0) has a unique solution ξ1 < 0 ξ1 is a simple eigenvalue operator H1.

Proposition 1 for the operator H2 is proved similarly.
Theorem 1. Let 0 < α < 1 and 0 < β < 1. Then:
a) if α+ γ ≤ 1 and α+ β ≤ 1, then:

σ(V ) = σess(V ) = σ(V0) = [0, 2];

b) if α+ γ > 1 and α+ β ≤ 1, then

σ(V ) = σess(V ) = σ(V0) ∪ [ξ1, 1 + ξ1],

where ξ1 – negative eigenvalue of operator H1;
c) if α+ γ ≤ 1 and α+ β > 1, then:

σess(V ) = σ(V0) ∪ [ξ2, 1 + ξ2],

where ξ2 is a negative eigenvalue of operator H2;
d) if α+ γ > 1 and α+ β > 1, then:

σess(V ) = σ(V0) ∪ [ξ1, 1 + ξ1] ∪ [ξ2, 1 + ξ2] and σdisc(V ) = {ω0},
where ω0 = ξ1 + ξ2 and ω0 is a simple eigenvalue of operator V .

Proof. It is easy to note that the operator V will be unitarily equivalent to the operatorH1⊗E+E⊗H2 (see [12]).
Then σ(V ) = σ(H1) + σ(H2) and for of multiplicity nV (ω) eigenvalue ω ∈ σ(V ) \ σess(V ) of the operator V the
following equality takes place:
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nV (ω) =
∑

p+q=ω
(p,q)∈σ(H1)×σ(H2)

nH1
(p) · nH2

(q),

where nH1(p) and nH2(q) – multiplicity of the eigenvalues p and q of the operators H1 and H2, respectively. This
and Proposition 1 imply the proof the theorem.

Theorem 2. Let α ≥ 1 and 0 < β < 1. Then:
a) if β + γ ≤ 1, then:

σ(V ) = σess(V ) = σ(V0) ∪ [ξ1, 1 + ξ1];

b) if β + γ > 1, then:

σess(V ) = σ(V0) ∪ [ξ1, 1 + ξ1] ∪ [ξ2, 1 + ξ2] and σdisc(V ) = {ω0},
where ω0 = ξ1 + ξ2 and ω0 is a simple eigenvalue of the operator V .

Theorem 3. Let α ≥ 1 and β ≥ 1. Then:

σess(V ) = σ(V0) ∪ [ξ1, 1 + ξ1] ∪ [ξ2, 1 + ξ2] and σdisc(V ) = {ω0},
where ω0 = ξ1 + ξ2 è ω0 – is a simple eigenvalue of the operator V .

Corollary 1. Let 0 < α < 1 and 0 < β < 1. Then:

Emin(V ) =



0, if α+ γ ≤ 1 and β + γ ≤ 1,

ξ1, if α+ γ > 1 and β + γ ≤ 1,

ξ2, if α+ γ ≤ 1 and β + γ ≥ 1,

min{ξ1, ξ2}, if α+ γ > 1 and β + γ > 1.

3. Discrete spectrum of partial integral operators

Let’s define the multiplier H0:

H0f(x, y) = xαyβf(x, y), α > 0, β > 0,

and the operators T1, T2:

T1f(x, y) =

1∫
0

f(s, y)ds, T2f(x, y) =

1∫
0

f(x, t)dt.

Let us define a self-conjugate PIO H:

H = H0 − γ(T1 + T2), γ > 0.

We have σ(H0) = [0, 1]. For each λ ∈ R\ [0, 1] define the function ∆1(y;λ) on [0,1] (∆2(x;λ) on [0, 1]) by formula:

∆1(y;λ) = 1− γ
1∫

0

ds

sαyβ − λ
, ∆2(x;λ) = 1− γ

1∫
0

ds

xαsβ − λ
.

In the space L2[0, 1] we define the family {H1(t)}t∈[0,1] of the self-adjoint operators in the Friedrichs’ model:

H1(t)ϕ(x) = tβxαϕ(x)− γ
1∫

0

ϕ(s)ds.

Similarly, in the space L2[0, 1] we define the family {H2(t)}t∈[0,1]:

H2(t)ψ(y) = tαyβψ(y)− γ
1∫

0

ψ(s)ds.

Lemma 3. Function:
πj(t) = inf

‖ϕ‖=1
(Hj(t)ϕ,ϕ), t ∈ [0, 1] (j = 1, 2) (3)

is non-positive, continuous and increasing on [0, 1].
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Proof. In work [9], there is a proof of the continuity and non-positivity of the function πj(t) on [0, 1]. We will
show the monotonicity of the function πj(t) on [0, 1]. We define the family of the {H0(t)}t∈[0,1] multipliers:

H0(t)ϕ(x) = xαtβϕ(x), ϕ ∈ L2[0, 1].

Then it follows from t1 ≤ t2, t1, t2 ∈ [0, 1] that:

H0(t1) ≤ H0(t2).

Therefore, we have:

π1(t1) = inf
‖ϕ‖=1

(H1(t1)ϕ,ϕ) = inf
‖ϕ‖=1

[(H0(t1)ϕ,ϕ)− γ(K1ϕ,ϕ)] ≤

inf
‖ϕ‖=1

(H1(t2)ϕ,ϕ) = inf
‖ϕ‖=1

[(H0(t2)ϕ,ϕ)− γ(K1ϕ,ϕ)] = π1(t2),

Where:

K1ϕ(x) =

1∫
0

ϕ(s)ds.

This means that the function π1(t) is increasing on the set [0, 1].
Obviously, for each y ∈ [0, 1] the function ∆1(λ) = ∆1(y;λ) is strictly decreasing on (−∞, 0). Therefore, for

each y ∈ [0, 1] there exists finite or infinite limit lim
λ→0−

∆1(y;λ). Moreover, there is:

Lemma 4. a) if 0 < α < 1, then for each y ∈ (0, 1]:

lim
λ→0−

∆1(y;λ) = 1− γ

1− α
· 1

yβ
;

b) if α ≥ 1, then for each y ∈ (0, 1]:
lim
λ→0−

∆1(y;λ) = −∞.

Proof. a) Let 0 < α < 1. Then, for y ∈ (0, 1] we get

1

sαyβ − λ
≤ h0(s, y) =

1

sαyβ

and for any ascending sequence {λn} negative numbers decreasing to zero we have:

1

sαyβ − λn
≤ 1

sαyβ − λn+1
, n ∈ N.

On the other hand, for each y ∈ (0, 1] there exists a Lebesgue integral from function h1(s, y) on s ∈ [0, 1]:
1∫

0

h0(s, y)ds =
1

1− α
· 1

yβ
.

Then, by Lebesgue’s theorem on the limited transition under the sign of the Lebesgue integral, we obtain:

lim
λ→0−

∆1(y;λ) = 1− γ

1− α
· 1

yβ
, y ∈ (0, 1];

b) Let α ≥ 1 and assume that α = 1. It is obvious that for y = 0 we have: lim
λ→0−

∆1(y;λ) = −∞. For each

y ∈ (0, 1] we have:

1∫
0

ds

sαyβ − λ
=

1∫
0

ds

syβ − λ
=

1

yβ
ln

(
1− yβ

λ

)
.

Therefore for y ∈ (0, 1] we get:

lim
λ→0−

∆1(y;λ) = 1− γ

yβ
lim
λ→0−

ln

(
1− yβ

λ

)
= −∞;

Suppose that α > 1. Then from inequality:
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1∫
0

ds

sαyβ − λ
≥

1∫
0

ds

syβ − λ
, y ∈ [0, 1]

we get that

lim
λ→0−

1∫
0

ds

sαyβ − λ
= +∞, y ∈ [0, 1]

and accordingly, lim
λ→0−

∆1(y;λ) = −∞.

Obviously, the function:

h1(y) = lim
λ→0−

∆1(y;λ) = 1− γ

1− α
· 1

yβ

increases by (0, 1] from −∞ to hmax
1 = h1(1) = 1− γ

1− α
.

We put:
πmax
j = max

t∈[0,1]
πj(t), j = 1, 2.

Then πmax
j = πj(1).

Lemma 5. Let 0 < α < 1 (0 < β < 1). Then:
a) if γ + α ≤ 1 (γ + β ≤ 1), then πmax

1 = 0 (πmax
2 = 0);

b) if γ + α > 1 (γ + β > 1), then πmax
1 < 0 (πmax

1 < 0).
Proof. Let 0 < α < 1. a) Assume that: γ + α = 1. We have:

hmax
1 = h1(1) = lim

λ→0−
∆1(1;λ) = 1− γ

1− α
= 0.

Hence, taking into account the monotonicity of the function ∆1(1;λ) by λ < 0 we get that ∆1(1;λ) > 0 for any
λ < 0. Then, according to Proposition 1, the operator H1(1) has no eigenvalue below the bottom edge the essential
spectrum of the operator H1(1). By the minmax principle and from equality (3) we obtain that πmax

1 = π1(1) =
Emin (H1(1)) = 0.

If γ+α < 1. Then hmax
1 = h1(1) > 0. On the other hand ∆1(1;λ) > hmax

1 . Then according to the proposition 1,
the operator H1(1) has no negative eigenvalue value. It follows that πmax

1 = 0.
b) Let γ + α > 1. Then:

h1(y) ≤ hmax
1 = 1− γ

1− α
< 0.

Therefore, for for each y ∈ (0, 1] we have h1(y) = lim
λ→0−

∆1(y;λ) < 0. Hence, since the function ∆1(y;λ) is

monotonic with respect to λ < 0 implies the existence of a unique number λ0 = λ0(y) < 0 (for each y ∈ (0, 1])
such that ∆1(y;λ0(y)) = 0. For y = 0 we have ∆1(0;−γ) = 0, i.e λ0 = λ0(0) = −γ is a solution to the equation
∆1(0;λ) = 0. Due to minmax principle [13] solution of λ0(y) equation ∆1(y;λ) = 0 is defined using continuous
function π1(t), i.e. λ0(t) = π1(t), t ∈ [0, 1]. However λ0(y) < 0, y ∈ [0, 1]. Therefore π1(1) = πmax

1 < 0.
Lemma 6. Let α ≥ 1 (β ≥ 1). Then πmax

1 < 0 (πmax
2 < 0).

Proof. For y = 1 we get:

∆1(λ) = ∆1(1;λ) = 1−
1∫

0

ds

sα − λ
.

We have:
lim

λ→−∞
∆1(λ) = 1 and lim

λ→0−
∆1(λ) = −∞.

Then, due to the monotonicity of the function ∆1(λ) for λ < 0 we obtain the existence of unique number λ0 < 0,
such as ∆1(λ0) = 0. Therefore, λ0 = πmax

1 < 0.
By the theorem 3.3 [14] and Lemma 3,4 or the essential spectrum operator H we obtain the following statement.
Theorem 4. For the essential spectrum of the operator H there is a place for equality:

σess(H) = [−γ, γ0] ∪ [0, 1],

where γ0 = max{πmax
1 , πmax

2 }.
From the positivity of the operators H0, T1 and T2 for the operator H we have:

σ(H) ⊂ (−∞, 1],
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i.e. above the upper edge of the essential spectrum σess(H) of the operator H eigenvalues are missing. Then, by the
theorem 4 the discrete spectrum of the operator H lies in the set of negative numbers.

We put:

ξ0 =
1

(1 + α)(1 + β)
.

Theorem 5. If γ > ξ0, then the operator H has the negative eigenvalue, lying to the left of the bottom edge of the
essential spectrum.

Proof. Assume the conditions γ > ξ0. Put f0(x, y) = 1. Then ‖f0‖ = 1 and

(Hf0, f0) = (H0f0, f0)− γ((T1f0, f0) + (T2f0, f0)) = ξ0 − 2γ.

Then, by the theorem 4 we have Emin(H) = −γ and from γ > ξ0 we get that

λ0 = (Hf0, f0) < −γ = Emin(H).

Hereof and according to the minmax principle we get that λ0 ∈ σdisc(H), i.e. λ0 = ξ0 − 2γ – is the eigenvalue of the
operator H .

Corollary 2. Number of eigenvalues of the operator H is at most one and for γ > ξ0 the discrete spectrum of the
operator H is not empty.
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